Scheme of Teaching and Examination 2018 – 19 Outcome Based Education(OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2018 - 19)

				t	56		eachin urs /W			Exami	ination		
Sl. No		ourse and urse Code	Course Title	Teaching Department	Paper Setting Board	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
						L	T	P			• • • • • • • • • • • • • • • • • • • •		
1	BSC	18MAT11	Calculus and Linear Algebra	Mathematics	Maths	3	2		03	40	60	100	4
2	BSC	18PHY12	Engineering Physics	Physics	Physics	3	2		03	40	60	100	4
3	ESC	18ELE13	Basic Electrical Engineering	E and E Engineering	E and E Engineering	2	2		03	40	60	100	3
4	ESC	18CIV14	Elements of Civil Engineering and Mechanics	Civil Engineering	Civil Engineering	2	2		03	40	60	100	3
5	ESC	18EGDL15	Engineering Graphics	ME, Auto, IP, IEM, Mfg Engineering	Mechanical Engineering	2		2	03	40	60	100	3
6	BSC	18PHYL16	Engineering Physics Laboratory	Physics	Physics			2	03	40	60	100	1
7	ESC	18ELEL17	Basic Electrical Engineering Laboratory	E and E Engineering	E and E Engineering			2	03	40	60	100	1
8	HSMC	18EGH18	Technical English-I	Humanities	Humanities		2		03	40	60	100	1
					TOTAL	12	10	06	24	320	480	800	20

2 hour Tutorial (T) per week per semester =1 Credit

2 hour Practical/Laboratory/Drawing (P) per week per semester =1 Credit.

Scheme of Teaching and Examination 2018 – 19
Outcome Based Education(OBE) and Choice Based Credit System (CBCS)
(Effective from the academic year 2018 – 19)

					ಶಾ		eachin urs /W			Exami	nation	ition		
SI. No		urse and urse Code	Course Title	Teaching Department	Paper Setting Board	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Fotal Marks	Credits	
						L	T	P						
1	BSC	18MAT11	Calculus and Linear Algebra	Mathematics	Mathematics	3	2		03	40	60	100	4	
2	BSC	18CHE12	Engineering Chemistry	Chemistry	Chemistry	3	2		03	40	60	100	4	
3	ESC	18CPS13	C Programming for Problem Solving	Computer Science and Engineering	Computer Science and Engineering	2	2		03	40	60	100	3	
4	ESC	18ELN14	Basic Electronics	ECE/E and I/ TC	E and C Engineering	2	2		03	40	60	100	3	
5	ESC	18ME15	Elements of Mechanical Engineering	ME, Auto, IP, IEM, Mfg Engineering	Mechanical Engineering	2	2		03	40	60	100	3	
6	BSC	18CHEL16	Engineering Chemistry Laboratory	Chemistry	Chemistry		- 1	2	03	40	60	100	1	
7	ESC	18CPL17	C Programming Laboratory	Computer Science and Engineering	Computer Science and Engineering		1	2	03	40	60	100	1	
8	HSMC	18EGH18	Technical English- I	Humanities	Humanities		2		03	40	60	100	1	
					TOTAL	12	12	04	24	320	480	800	20	

1 hour Lecture (L) per week per semester = 1 Credit
2 hour Tutorial (T) per week per semester = 1 Credit

2 hour Practical/Laboratory/Drawing (P) per week per semester =1 Credit.

Scheme of Teaching and Examination 2018 – 19
Outcome Based Education(OBE) and Choice Based Credit System (CBCS)
(Effective from the academic year 2018 – 19)

			II SEMES	TER B.E./B.T	ech (PHYSIC	S GRO	OUP)						
					Teaching Hours /Week				Exami	nation			
Sl. No		urse and arse Code	Course Title	Teaching Department	Paper Setting Board	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Fotal Marks	Credits
						L	T	P	,			ı	
1	BSC	18MAT21	Advanced Calculus and Numerical Methods	Mathematics	Mathematics	3	2		03	40	60	100	4
2	BSC	18PHY22	Engineering Physics	Physics	Physics	3	2		03	40	60	100	4
3	ESC	18ELE23	Basic Electrical Engineering	E and E Engineering	E and E Engineering	2	2		03	40	60	100	3
4	ESC	18CIV24	Elements of Civil Engineering and Mechanics	Civil Engineering	Civil Engineering	2	2		03	40	60	100	3
5	ESC	18EGDL25	Engineering Graphics	ME, Auto, IP, IEM, Mfg Engineering	Mechanical Engineering	2		2	03	40	60	100	3
6	BSC	18PHYL26	Engineering Physics Laboratory	Physics	Physics		1	2	03	40	60	100	1
7	ESC	18ELEL27	Basic Electrical Engineering Laboratory	E and E Engineering	E and E Engineering			2	03	40	60	100	1
8	HSMC	18EGH28	Technical English— II	Humanities	Humanities		2	-	03	40	60	100	1
			·		TOTAL	12	10	06	24	320	480	800	20

Note: BSC: Basic Science Courses, ESC: Engineering Science Courses, HSMC: Humanity, Social Science and Management Courses.

1 hour Lecture (L) per week per semester = 1 Credit

Definition of Credit: 2 hour Tutorial (T) per week per semester = 1 Credit

2 hour Practical/Laboratory/Drawing (P) per week per semester = 1 Credit.

Scheme of Teaching and Examination 2018 – 19 Outcome Based Education(OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2018 – 19)

			II SEMESTE	R B.E./B.Tech	(CHEMIST	RY GI	ROU.	P)						
					+ pū			Teaching Hours /Week			Examination			
Sl. No		urse and urse Code	Course Title	Teaching Department	Paper Setting Board	Theory Lecture	- Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits	
1	BSC	18MAT21	Advanced Calculus and Numerical Methods	Mathematics	Maths	3	2		03	40	60	100	4	
2	BSC	18CHE22	Engineering Chemistry	Chemistry	Chemistry	3	2		03	40	60	100	4	
3	ESC	18CPS23	C Programming for Problem Solving	Computer Science and Engineering	Computer Science and Engineering	2	2		03	40	60	100	3	
4	ESC	18ELN24	Basic Electronics	ECE/E and I/ TC	E and C Engineering	2	2		03	40	60	100	3	
5	ESC	18ME25	Elements of Mechanical Engineering	ME, Auto, IP, IEM, Mfg Engineering	Mechanical Engineering	2	2		03	40	60	100	3	
6	BSC	18CHEL26	Engineering Chemistry Laboratory	Chemistry	Chemistry			2	03	40	60	100	1	
7	ESC	18CPL27	C Programming Laboratory	Computer Science and Engineering	Computer Science and Engineering			2	03	40	60	100	1	
8	HSMC	18EGH28	Technical English- II	Humanities	Humanities		2		03	40	60	100	1	
					TOTAL	12	12	04	24	320	480	800	20	

Note: BSC: Basic Science Courses, ESC: Engineering Science Courses, HSMC: Humanity, Social Science and Management Courses.

Definition of Credit:

1 hour Lecture (L) per week per semester =1 Credit 2 hour Tutorial (T) per week per semester =1 Credit

2 hour Practical/Laboratory/Drawing (P) per week per semester = 1 Credit.

CALCULUS AND LINEAR ALGEBRA

Semester	: I	CIE Marks	: 40
Course Code	: 18MAT11	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 3:2:0	Exam Hours	: 03
	Credits: 04		

Course Learning Objectives: This course Calculus and Linear Algebra (18MAT11) will enable students:

- To familiarize the important tools of calculus and differential equations that are essential in all branches of engineering.
- To develop the knowledge of matrices and linear algebra in a comprehensive manner.

MODULE-I

Differential Calculus-1: Review of elementary differential calculus, Polar curves - angle between the radius vector and tangent, angle between two curves, pedal equation. Curvature and radius of curvature- Cartesian and polar forms; Centre and circle of curvature (All without proof-formulae only) –applications to evolutes and involutes.

(RBT Levels: L1 & L2)

MODULE-II

Differential Calculus-2: Taylor's and Maclaurin's series expansions for one variable (statements only), indeterminate forms - L'Hospital's rule. Partial differentiation; Total derivatives-differentiation of composite functions. Maxima and minima for a function of two variables; Method of Lagrange multipliers with one subsidiary condition. Applications of maxima and minima with illustrative examples. Jacobians-simple problems.

(RBT Levels: L1 & L2)

MODULE-III

Integral Calculus: Review of elementary integral calculus.

Multiple integrals: Evaluation of double and triple integrals. Evaluation of double integrals- change of order of integration and changing into polar coordinates. Applications to find area volume and centre of gravity

Beta and Gamma functions: Definitions, Relation between beta and gamma functions and simple problems.

(RBT Levels: L1 & L2)

MODULE-IV

Ordinary differential equations (ODE's) of first order:

Exact and reducible to exact differential equations. Bernoulli's equation.

Applications of ODE's-orthogonal trajectories, Newton's law of cooling and L-R circuits. Nonlinear differential equations: Introduction to general and singular solutions; Solvable for p only; Clairaut's and reducible to Clairaut's equations only.

(RBT Levels: L1, L2 & L3)

MODIILE-V

Linear Algebra: Rank of a matrix-echelon form. Solution of system of linear equations – consistency. Gauss-elimination method, Gauss – Jordan method and Approximate solution by Gauss-Seidel method. Eigen values and eigenvectors-Rayleigh's power method. Diagonalization of a square matrix of order two.

(RBT Levels : L1, L2 & L3)

Textbooks:

- 1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.
- 2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed.(Reprint), 2016.

Reference books:

- 1. C.Ray Wylie, Louis C.Barrett: "Advanced Engineering Mathematics", 6th Edition, 2. McGraw-Hill Book Co., New York, 1995.
- 2. James Stewart: "Calculus –Early Transcendentals", Cengage Learning India Private Ltd., 2017.
- 3. B.V.Ramana: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill, 2010.
- 4. Srimanta Pal & Subobh C Bhunia: "Engineering Mathematics", Oxford University Press, 3rd Reprint, 2016.
- 5. Gupta C.B., Singh S.R. and Mukesh Kumar: "Engineering Mathematics for Semester I & II", Mc-Graw Hill Education (India) Pvt.Ltd., 2015.

Web links and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://academicearth.org/
- 4. VTU EDUSAT PROGRAMME 20

Course Outcomes: On completion of this course, students are able to:

- **CO1**: Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.
- CO2: Learn the notion of partial differentiation to calculate rates of change of multivariate functions and solve problems related to composite functions and Jacobians.

- CO3 : Apply the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.
- **CO4:** Solve first order linear/nonlinear differential equation analytically using standard methods
- CO5: Make use of matrix theory for solving system of linear equations and compute eigenvalues and eigenvectors required for matrix diagonalization process.

Question Paper Pattern:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

ENGINEERING PHYSICS

Semester	: I/II	CIE Marks	: 40
Course Code	: 18PHY12/22	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 3:2:0	Exam Hours	: 03
	Credits: 04		

Course Learning Objectives:

This course (18PHY12/22) will enable students to

- Learn the basic concepts in Physics which are very much essential in understanding and solving engineering related challenges.
- Gain the knowledge of newer concepts in modern physics for the better appreciation of modern technology

MODULE-I

Oscillations and Waves

Free Oscillations: Definition of SHM, derivation of equation for SHM, Mechanical simple harmonic oscillators (mass suspended to spring oscillator), complex notation and phasor representation of simple harmonic motion. Equation of motion for free oscillations, Natural frequency of oscillations.

Damped and forced oscillations: Theory of damped oscillations: over damping, critical & under damping, quality factor. Theory of forced oscillations and resonance, Sharpness of resonance. One example for mechanical resonance.

Shock waves: Mach number, Properties of Shock waves, control volume. Laws of conservation of mass, energy and momentum. Construction and working of Reddy shock tube, applications of shock waves.

Numerical problems

(RBT Levels : L1, L2 & L3)

MODULE-II

Elastic properties of materials:

Elasticity: Concept of elasticity, plasticity, stress, strain, tensile stress, shear stress, compressive stress, strain hardening and strain softening, failure (fracture/fatigue), Hooke's law, different elastic moduli: Poisson's ratio, Expression for Young's modulus (Y), Bulk modulus (K) and Rigidity modulus (n) in terms of and β. Relation between Y, n and K, Limits of Poisson's ratio.

Bending of beams: Neutral surface and neutral plane, Derivation of expression for bending moment. Bending moment of a beam with circular and rectangular cross section. Single cantilever, derivation of expression for Young's modulus.

Torsion of cylinder: Expression for couple per unit twist of a solid cylinder (Derivation), Torsional pendulum-Expression for period of oscillation. Numerical problems.

(RBT Levels : L1, L2 & L3)

MODULE-III

Maxwell's equations, EM waves and Optical fibers

Maxwell's equations: Fundamentals of vector calculus. Divergence and curl of electric field and magnetic field (static), Gauss' divergence theorem and Stokes' theorem. Description of laws of electrostatics, magnetism and Faraday's laws of EMI. Current density & equation of Continuity; displacement current (with derivation) Maxwell's equations in vacuum.

EM Waves: The wave equation in differential form in free space (Derivation of the equation using Maxwell's equations), Plane electromagnetic waves in vacuum, their transverse nature, polarization of EM waves (Qualitative).

Optical fibers: Propagation mechanism, angle of acceptance. Numerical aperture. Modes of propagation and Types of optical fibers. Attenuation: Causes of attenuation and Mention of expression for attenuation coefficient. Discussion of block diagram of point to point communication. Merits and demerits Numerical problems.

(RBT Levels : L1 & L2)

MODULE IV

Ouantum Mechanics and Lasers

Quantum mechanics: Introduction to Quantum mechanics, Wave nature of particles, Heisenberg's uncertainty principle and applications (non confinement of electron in the nucleus), Schrodinger time independent wave equation, Significance of Wave function, Normalization, Particle in a box, Energy eigen values of a particle in a box and probability densities.

Lasers: Review of spontaneous and stimulated processes, Einstein's coefficients (derivation of expression for energy density). Requisites of a Laser system. Conditions for laser action. Principle, Construction and working of CO₂ and semiconductor Lasers.

Application of Lasers in Defense (Laser range finder) and Engineering (Data storage).

Numerical problems

(RBT Levels : L1, L2 & L3)

MODULE-V

Material science

Quantum Free electron theory of metals: Review of classical free electron theory, mention of failures. Assumptions of Quantum Free electron theory,

Mention of expression for density of states, Fermi-Dirac statistics (qualitative), Fermi factor, Fermi level, Derivation of the expression for Fermi energy, Success of QFET.

Physics of Semiconductor: Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band, Hole concentration in valance band (only mention the expression), Conductivity of semiconductors(derivation), Hall effect, Expression for Hall coefficient (derivation)

Dielectric materials: polar and non-polar dielectrics, internal fields in a solid, Clausius-Mossotti equation(Derivation), mention of solid, liquid and gaseous dielectrics with one example each. Application of dielectrics in transformers. Numerical problems.

(RBT Levels : L1, L2 & L3)

Textbooks:

- 1. A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10th revised Ed, S. Chand & Company Ltd, New Delhi.
- 2. Engineering Physics-Gaur and Gupta Dhanpat Rai Publications-2017.
- 3. Concepts of Modern Physics-Arthur Beiser: 6th Ed, Tata McGraw Hill Edu Pvt Ltd- New Delhi 2006.

Reference books:

- 1. Introduction to Mechanics, MK Verma: 2nd Ed, University Press(India) Pvt Ltd, Hyderabad 2009.
- 2. Lasers and Non Linear Optics, BB laud, 3rd Ed, New Age International Publishers 2011.
- Solid State Physics-S O Pillai, 8th Ed New Age International Publishers-2018.
- 4. Shock waves made simple- Chintoo S Kumar, K Takayama and KPJ Reddy: Willey India Pvt. Ltd., New Delhi, 2014.
- 5. Introduction to Electrodynamics, David Griffiths, 4th Ed, Cambridge University Press 2017.

Course Outcomes:

Upon completion of this course, students will be able to

- 1. Understand various types of oscillations and their implications, the role of Shock waves in various fields and Recognize the elastic properties of materials for engineering applications.
- 2. Realize the interrelation between time varying electric field and magnetic field, the transverse nature of the EM waves and their role in optical fiber communication.
- 3. Compute Eigen values, Eigen functions, momentum of Atomic and subatomic particles using Time independent 1-D Schrodinger's wave equation.
- 4. Apprehend theoretical background of laser, construction and working of different types of laser and its applications in different fields

 Understand various electrical and thermal properties of materials like conductors, semiconductors and dielectrics using different theoretical models.

Question paper pattern:

Note:- The SEE question paper will be set for 100 marks and the marks will be proportionately reduced to 60.

- The question paper will have **ten** full questions carrying equal marks.
- Each full question consisting of **20** marks.
- There will be **two** full questions (with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer **five** full questions, selecting **one** full question from each module.

BASIC ELECTRICAL ENGINEERING

Semester	: I/II	CIE Marks	: 40
Course Code	: 18ELE13/23	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 2:2:0	Exam Hours	: 03
	Credits: 03		

Lecture hours per module: Six hours and Tutorials per module: one of 2 hours

Course Objectives:

- To explain Ohm's law and Kirchhoff's laws used for the analysis of DC circuits.
- To explain fundamentals of AC circuits and the behaviour of R, L and C and their combinations in AC circuits.
- To discuss three phase balanced circuits.
- To explain principle of operation, construction and performance of electrical machines such as single phase transformer, DC machines, synchronous generator and three phase induction motor.
- To introduce concepts of electrical wiring, circuit protecting devices and earthing.

MODULE-I

D.C.Circuits: Ohm's Law and Kirchhoff's Laws, analysis of series, parallel and series- parallel circuits excited by independent voltage sources. Power and Energy.

A.C. Fundamentals: Generation of sinusoidal voltage, frequency of generated voltage, definition and numerical values of average value, root mean square value, form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities.

(RBT Levels : L1, L2, L3 & L4)

MODULE - 2

Single Phase Circuits: Analysis, with phasor diagram, of circuits with R, L, C, R-L, RC, R-L-C for series and parallel configurations. Real power, reactive power, apparent power and power factor.

Three Phase circuits: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter method

(RBT Levels : L1, L2, L3 & L4)

MODULE - 3

Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of transformers. emf equation, losses, variation of losses with respect to load, efficiency, Condition for maximum efficiency.

Domestic Wiring: Service mains, meter board and distribution board. Brief discussion on concealed conduit wiring. Two-way and three-way control. Elementary discussion on circuit protective devices: Fuse and Miniature Circuit Breaker (MCB's), electric shock, precautions against shock. Earthing: Pipe and Plate earthing.

(RBT Levels : L1, L2 & L3)

MODULE - 4

DC Generators: Principle of operation, Construction of D.C. Generators. Expression for induced emf,Types of D.C. Generators,Relation between induced emf and terminal voltage.

DC motors: Principle of operation, Back emf, Torque equation, Types of dc motors, Characteristics of dc motors (shunt and series motors only) and Applications.

(RBT Levels : L1, L2 & L3)

MODULE - 5

Three Phase Synchronous Generators: Principle of operation, Constructional details, Synchronous speed, Frequency of generated voltage, emf equation, Concept of winding factor (excluding the derivation and calculation of distribution and pitch factors).

Three Phase Induction Motors: Principle of operation, Generation of rotating magnetic field, Construction and working of three-phase induction motor, Slip and its significance. Necessity of starter, star-delta starter.

(RBT Levels : L1, L2 & L3)

Textbooks:

- 1 Basic Electrical Engineering, D C Kulshreshtha, Tata McGraw Hill, Revised First Edition.
- 2 Principles of Electrical Engineering & Electronics, V.K. Mehta, Rohit Mehta, S.ChandPublications.

Reference Books:

- 1 Fundamentals of Electrical Engineering and Electronics, B. L. Theraja, S. Chand & Company Ltd, Reprint Edition 2013.
- 2 Electrical Technology, E. Hughes, International Students 9th Edition, Pearson, 2005.
- 3 Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Tata McGraw Hill, 2017.

Course Outcomes:

At the end of the course the student will be able to:

- Analyse D.C and A.C circuits.
- Explain the principle of operation and construction of single phase transformers.

- Explain the principle of operation and construction of DC machines and synchronous machines.
- Explain the principle of operation and construction of three phase induction motors.
- Discuss concepts of electrical wiring, circuit protecting devices and earthing.

Graduate Attributes (As per NBA): Engineering Knowledge, Problem Analysis.

Question paper pattern:

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub questions), should have a mix of topics under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

ELEMENTS OF CIVIL ENGINEERING AND MECHANICS

Semester	: I/II	CIE Marks :	40
Course Code	: 18CIV14/24	SEE Marks : 0	60
Teaching Hours/week (L:T:P)	: 2:2:0	Exam Hours :	03
	Credits: 03		

Course Objectives:

The objectives of this course are:

- To make students to learn Scope of various fields of Civil Engineering, basics of civil engineering concepts and importance of infrastructure development.
- To develop a student's ability to analyze the problems involving Forces and Moments with their applications, Centroid and Moment of inertia and Kinetics of bodies.

Module-1

Introduction to Civil Engineering: Scope of different fields of Civil Engineering; Surveying, Building Materials, Construction Technology, Geotechnical Engineering, Structural Engineering, Hydraulics, Water Resources & Irrigation Engineering, Transportation Engineering and Environmental Engineering. Role of Civil Engineers in the Infrastructural development, effect of infrastructural facilities on social-economic development of a country. (RBT Level: L1)

Introduction to Engineering Mechanics: Basic concepts of idealization-Particle, Continuum and Rigid Body; Force; Systems of Forces; Basic Principles – Physical Independence of forces, Superposition, Transmissibility, Newton's Laws of Motion, Resolution and Composition of forces, Law of parallelogram of forces, Polygonal law, Resultant of Concurrent coplanar force systems, Coplanar Non Concurrent Force System: Moment of a Forces, couple, Varignon's theorem, Resultant of Coplanar non-concurrent force system.

(RBT Level : L1, L2 & L3)

Module-2

Equilibrium of Forces: Free body diagrams, Lami's theorem, Equations of Equilibrium, equilibrium of concurrent and non concurrent coplanar force systems. (RBT Level: L1, L2 & L3)

Friction: Types of friction, Laws of dry Friction, Limiting friction, Concept of Static and Dynamic Friction; Numerical problems on motion of single and connected bodies on planes, wedge friction, ladder friction, rope and Pulley systems.

(RBT Level: L1, L2 & L3)

Module-3

Support Reactions: Types of Loads and Supports, statically determinate and indeterminate beams, Support Reaction in beams, Numerical problems on support reactions for statically determinate beams (Point load, uniformly distributed & uniformly varying loads and Moments)

(RBT Level : L1, L2 & L3)

Analysis of Simple trusses: Types of trusses, Analysis of statically determinate trusses using method of joints and method of sections.

(RBT Level : L1, L2 & L3)

Module-4

Centroid: Centroid of simple figures from first principle, Centroid of composite/built-up sections; Moment of Inertia: Introduction, second moment of area of plane sections from first principles, Parallel axes and perpendicular axes Theorems, Radius of gyration, Moment of inertia of composite area and built-up sections.

Concept of Product of Inertia (No Problems)

(RBT Level : L1, L2 & L3)

Module-5

Kinematics: Definitions, Displacement, Average velocity, Instantaneous velocity, Speed, Acceleration, Average acceleration, Variable acceleration, Acceleration due to gravity, Newton's Laws of Motion. Rectilinear Motion–Numerical problems. Curvilinear Motion–Super elevation, Projectile Motion, Relative motion, Numerical problems. Motion under gravity, Numerical problems,

(RBT Level : L1, L2 & L3)

Kinetics: D'Alembert's principle and its applications in plane motion and connected bodies including pulleys

(RBT Level : L2 & L3)

Course outcomes: After a successful completion of the course, the student will be able to:

- 1. Mention the applications of various fields of Civil Engineering.
- 2. Compute the resultant of given force system subjected to various loads.
- Comprehend the action of Forces, Moments and other loads on systems of rigid bodies and compute the reactive forces that develop as a result of the external loads.
- 4. Locate the Centroid and compute the Moment of Inertia of regular and built-up sections.
- 5. Express the relationship between the motion of bodies and analyze the bodies in motion.

Question paper pattern:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.
- The question paper will have ten full questions carrying equal marks.
- Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

- 1. R. C. Hibbler, Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press.
- 2. Bansal R.K., A Text Book of Engineering Mechanics, Laxmi Publications.

Reference Books:

- 1. Andy Ruina and Rudra Pratap , Introduction to Statics and Dynamics, Oxford University Press.
- 2. Reddy Vijaykumar K. and K. Suresh Kumar, Singer's Engineering Mechanics.
- 3. F. P. Beer and E. R. Johnston, Mechanics for Engineers, Statics and Dynamics, McGraw Hill.
- 4. Irving H. Shames, Engineering Mechanics, Prentice Hall.

ENGINEERING GRAPHICS

Semester	: I/II	CIE Marks : 40
Course Code	: 18EGDL15/25	SEE Marks : 60
Teaching Hours/week (L:T:P)	: 2:0:2	Exam Hours : 03
	Credits: 03	

Course Learning Objectives:

This course will enable students to

- **CLO1** To expose the students to standards and conventions followed in preparation of engineering drawings.
- **CLO2** To make them understand the concepts of orthographic and isometric projections.
- CLO3 Develop the ability of conveying the engineering information through drawings.
- **CLO4** To make them understand the relevance of engineering drawing to different engineering domains.
- **CLO5** To develop the ability of producing engineering drawings using drawing instruments.
- CLO6 To enable them to use computer aided drafting packages for the generation of drawings.

MODULE-I

Introduction to Computer Aided Sketching:

Introduction, Drawing Instruments and their uses, relevant BIS conventions and standards. Lettering, line conventions, dimensioning, material conventions, and free hand practicing.

Computer screen, layout of the software, standard tool bar / menu and description of most commonly used tool bars, and navigational tools.

Co-ordinate system and reference planes HP, VP, RPP & LPP of 2D/3D environment. Selection of drawing sheet size and scale.

Commands and creation of Lines, coordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz., tangency, parallelism, inclination and perpendicularity.

MODULE-II

Orthographic projections of points, straight lines and planes:

Introduction, Definitions - Planes of projection, reference line and conventions employed. First angle and Third angle projection.

Projections of points in all the four quadrants.

Projections of straight lines (located in first quadrant/first angle only), true and apparent lengths, true and apparent inclinations to reference planes (No application problems and midpoint problems).

Orthographic projections of plane surfaces (First angle projection only):

Projections of regular plane surfaces—triangle, square, rectangle, pentagon, hexagon and circle-in simple positions inclined to both the planes; planes in different positions by change of position method only. (No problems on punched plates and composite plates).

MODULE - III

Projections of solids:

Introduction, definitions – projections of right regular tetrahedron, hexahedron (cube), prisms, pyramids, and cones with axis inclined to both the planes. (Solids resting on HP only and no problems on octahedrons, and freely suspended solids.)

MODULE IV

Development of Lateral Surfaces of Solids:

Introduction to section planes and sectional views.

Development of lateral surfaces of right regular prisms, cylinders, pyramids, and cones resting with base on HP only. Development of their frustums and truncations. (No problems on lateral surfaces of trays, tetrahedrons, spheres and transition pieces).

MODULE-V

Isometric Projection (using isometric scale only)

Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of hexahedron(cube), right regular prisms, pyramids, cylinders, cones, and spheres. Isometric projection of combination of two simple solids. Conversion of given isometric/ pictorial views to orthographic views of simple objects.

Course Outcomes:

Upon completion of this course, students will be able to

- **CO1** Prepare engineering drawings as per BIS conventions mentioned in the relevant codes.
- **CO2** Produce computer generated drawings using CAD software.
- **CO3** Use the knowledge of orthographic projections to represent engineering information / concepts and present the same in the form of drawings.
- **CO4** Develop isometric drawings of simple objects reading the orthographic projections of those objects.
- CO5 Convert pictorial and isometric views of simple objects to orthographic views.

Question paper pattern:

- Module -1 is only for practice and CIE and not for examination.
- Question paper for each batch of students will be sent online by VTU and has to be downloaded before the commencement of Examination of each batch. The answer sheets will have to be jointly evaluated by the Internal & External examiners.
- A maximum of THREE questions will be set as per the following pattern (No mixing of questions from different Modules).

Scheme of evaluation:

	From Chapters						
Modu	le 2 [Choice between (Lines or	Planes)]	25				
	Module 3						
	30						
	100						
Q. No.	Solutions and sketching in the sketch book	Computer display and printout	Total Marks				
1	15	10	25				
2	25	20	45				
3	20	10	30				
Total Marks	60	40	100				

- Students have to submit the computer printouts and the sketches at the end of the examination. Both Internal & External examiners have to jointly evaluate the solutions (sketches) and computer display & printouts of each student for 100 marks (60 marks for solutions & sketches + 40 marks for computer display and printouts) and submit the marks list along with the solution (sketches) on graph sheets & computer printouts in separate covers.
- Each batch must consist of a maximum of 12 students.
- Examination can be conducted in parallel batches, if necessary.

Textbooks:

- 1. **Engineering Drawing** N.D. Bhatt & V.M. Panchal, 48th edition, 2005-Charotar Publishing House, Gujarat.
- 2. **Engineering Graphics** K.R. Gopalakrishna, 32nd edition, 2005-Subash Publishers Bangalore.
- 3. **Computer Aided Engineering Drawing -** by Dr. M H Annaiah, Dr C N Chandrappa and Dr. B Sudheer Premkumar, Fifth edition, New Age International Publishers.

Reference Books:

- Computer Aided Engineering Drawing S. Trymbaka Murthy, I.K. International Publishing House Pvt. Ltd., New Delhi, 3rd revised edition-2006.
- 2. **Engineering Drawing-**by N.S.Parthasarathy & Vela Murali, Oxford University Press, 2015
- 3. Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production-Luzadder Warren J., Duff John M., Eastern Economy Edition, 2005- Prentice-Hall of India Pvt. Ltd., New Delhi.
- 4. **A Primer on Computer Aided Engineering Drawing-**2006, Published by VTU, Belgaum.
- 5. Publications of Bureau of Indian Standards
 - a) **IS 10711 2001:** Technical products documentation Size and lay out of drawing sheets.
 - b) **IS 9609 (Parts 0 & 1) 2001:** Technical products documentation Lettering.
 - c) **IS 10714 (Part 20) 2001 & SP 46 2003:** Lines for technical drawings.
 - d) **IS 11669 1986 & SP 46 2003:** Dimensioning of Technical Drawings.
 - e) IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods

ENGINEERING PHYSICS LABORATORY

Semester	: I/II	CIE Marks : 40
Course Code	: 18PHYL16/26	SEE Marks : 60
Teaching Hours/week (L:T:P)	: 0:0:2	Exam Hours : 03
	Credits: 01	

Course Learning Objectives:

This course (18PHY16/26) will enable students

- To realize experimentally, the mechanical, electrical and thermal properties of materials, concept of waves and oscillations
- Design simple circuits and hence study the characteristics of semiconductor devices

Sl. No.	Title of the Experiment	To which Module it belongs
1	Determination of spring constants in Series and Parallel combination	I
2	Determination of Magnetic field intensity is along the axis of a circular coil carrying current(by deflection method)	III
3	n & I by Torsional pendulum (radius of the wire, mass and dimensions of the regular bodies to be given). (In the examination either n or I to be asked)	II
4	Young's modulus of a beam by Single Cantilever experiment (breadth and thickness of the beam to be given)	II
5	Radius of curvature of piano convex lens using Newton's rings(wavelength of light to be given)	III
6	Study Series and parallel LCR resonance and hence Calculate inductance, band width and quality factor using series LCR Resonance	I/III
7	Determine Acceptance angle and Numerical aperture of an optical fiber	III
8	Determine Wavelength of semiconductor laser using Laser diffraction by calculating grating constant.	IV
9	Estimation of Fermi Energy of Copper	V
10	Study of input and output Transistor characteristics and hence calculate input resistance, and	V
11	Draw photodiode characteristics and calculate power responsivity	V
12	Calculation of Dielectric constant by RC charging and Discharging	V

Note:

^{1.} In addition to above experiments, Reddy shock tube must be introduced as compulsory demo experiment.

^{2.} All 12 experiments are mandatory. Student has to perform 2 experiments in the semester end examination.

Course Outcomes:

Upon completion of this course, students will be able to

- 1. Apprehend the concepts of interference of light, diffraction of light, Fermi energy and magnetic effect of current
- 2. Understand the principles of operations of optical fibers and semiconductor devices such as Photodiode, and NPN transistor using simple circuits
- 3. Determine elastic moduli and moment of inertia of given materials with the help of suggested procedures
- 4. Recognize the resonance concept and its practical applications
- 5. Understand the importance of measurement procedure, honest recording and representing the data, reproduction of final results

Scheme of Evaluation

(with effect from 2018-19 Scheme)

Subject : Engineering Physics Lab Code : 18PHYL16/26

The student has to perform **TWO** experiments during the practical examination of **THREE** hours duration. The scheme of valuation shall be as follows.

Sl.	Description		Part:A	Part:B
No.		Max.Marks	Marks for	Marks for
			First experiment	Second experiment
01	Write up: Formula, Tabular column and Circuit diagram/Ray Diagram	16	4+2+2=08	4+2+2=08
02	Experimental set up/Circuit connection	10	05	05
03	Conduction and reading	40	20	20
04	Graph, Calculations, Results and accuracy	20	2+4+2+2=10	2+4+2+2=10
06	Viva-Voce	14	07	07
	Total	100	50	50

Note: The student is required to obtain a minimum of 40 % Marks in the practical examination to pass.

BASIC ELECTRICAL ENGINEERING LABORATORY

Semester	: I/II	CIE Marks	: 40
Course Code	: 18ELEL17/27	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 0:0:2	Exam Hours	: 03
	Credits: 01		

Course Objectives:

- To provide exposure to common electrical components such as Resistors, capacitors and inductors, types of wires and measuring instruments.
- To measure power and power factor measurement of different types of lamps and three phase circuits.
- To explain measurement of impedance for R-L and R-C circuits.
- To determine power consumed in a 3 phase load.
- To determine earth resistance and explain methods of controlling a lamp from different places.

Orientation class for an exposure to:

- Resistors, capacitors, inductors, rheostats, diodes, transistors, types of
 wires, measuring instruments voltmeter, ammeter, wattmeter, multimeter, Regulated power supply, Function generator, oscilloscope,
 transformer, dc motor, synchronous generator, three phase induction motor
 etc.
- Basic safety precautions while dealing with electricity.

LIST OF EXPERIMENTS

- 1. Verification of KCL and KVL for DC circuits.
- 2. Measurement of current, power and power factor ofincandescent lamp, fluorescent lamp, and LED lamp.
- 3. Measurement of resistance and inductance of a choke coil using 3 voltmeter method.
- 4. Determination of phase and line quantities in three phase star and delta connected loads.
- 5. Measurement of three phase power using two wattmeter method.
- 6. Two way and three way control of lamp and formation of truth table.
- 7. Measurement of earth resistance.
- 8. Study of effect of open and short circuit in simple circuits.

Demonstration Experiments (for CIE only):

- 1. Demonstration of fuse and MCB separately by creating a fault.
- 2. Demonstration of cut-out sections of electrical machines (DC machines, Induction machines and synchronous machines).
- 3. Understanding ac and dc supply. Use of tester and test lamp to ascertain the healthy status of mains.
- 4. Understanding of UPS.

Revised Bloom's Taxonomy Levels L_1 - Remembering, L_2 - Understanding, L_3 - Applying, L_4 - Analysing

Course Outcomes:

At the end of the course the student will be able to:

- Identify the common electrical components and measuring instruments used for conducting experiments in the electrical laboratory.
- Compare power factor of lamps.
- Determine impedance of an electrical circuit and power consumed in a 3 phase load.
- Determine earth resistance and understand two way and three way control of lamps.

Graduate Attributes (As per NBA): Engineering Knowledge, Problem Analysis, Individual and Team work, Communication

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part shall be made zero.

TECHNICAL ENGLISH - I

Semester	: I	CIE Marks	: 40
Course Code	: 18EGH18	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 0:2:0	Exam Hours	: 03
	Credits: 01		

Course Learning Objectives:

The course Technical English – I will enable the students,

- To impart basic English grammar and essentials of language skills
- To train to identify the nuances of phonetics, intonation and enhance pronunciation skills
- To enhance with English vocabulary and language proficiency

Language Lab

For augment LSRW and GV skills (Listening, Speaking, Reading, Writing and Grammar, Vocabulary) through tests, activities, exercises etc., comprehensive web-based learning and assessment systems can be referred.

Module - I

Introduction to Technical Communication

Fundamentals of Technical Communication Skills, Barriers to Effective Communication, Different styles in Technical Communication. Interpersonal Communication Skills, How to improve Interpersonal Communication Skills, Developing Interpersonal Skills.

Grammar : Basic English Grammar and Parts of Speech - Nouns, Pronouns, Adjectives, Verbs, Adverbs, Preposition, Articles, Conjunctions.

(RBT Levels : L1, L2 & L3)

Module - II

Introduction to Listening Skills and Phonetics - I

Introduction to Phonetics, Sounds Mispronounced, Silent and Non silent Letters, Homophones and Homonyms, Aspiration, Pronunciation of 'The', words ending 'age', some plural forms.

Articles: Use of Articles – Indefinite and Definite Articles.

(RBT Levels : L1, L2 & L3)

Module - III

Developing Listening Skills (Phonetics and Vocabulary Building) - II

Speech Sounds: Vowels and Consonants - Exercises on it. Preposition, kinds of Preposition and Prepositions often Confused. Word Accent - Rules for Word Accent, Stress Shift, Question Tags, Question Tags for Assertive Sentences(Statements) - Some Exceptions in Question Tags and Exercises, One Word Substitutes and Exercises.

Vocabulary – Synonyms and Antonyms, Exercises on it.

(RBT Levels : L1, L2 & L3)

Module - IV

Speaking Skills (Grammar and Vocabulary) – I

Syllables, Structures, Strong and Weak forms of words, Words formation - Prefixes and Suffixes (Vocabulary), Contractions and Abbreviations.

Spelling Rules and Words often Misspelt – Exercises on it. Word Pairs (Minimal Pairs) – Exercises, The Sequence of Tenses (Rules in use of Tenses) and Exercises on it. (RBT Levels: L1, L2 & L3)

Module - V

Speaking Skills (Grammar and Vocabulary)-II

Extempore/Public Speaking, Difference between Extempore/Public Speaking, and Guidelines for Practice.

Mother Tongue Influence(MTI) – South Indian Speakers, Various Techniques for Neutralisation of Mother Tongue Influence – Exercises, Listening Comprehension – Exercises. Information Transfer: Oral Presentation - Examples. Common Errors in Pronunciation.

(RBT Levels : L1, L2 & L3)

Course Outcomes:

On completion of the course, students will be able to,

- CO 1: Use grammatical English and essentials of language skills and identify the nuances of phonetics, intonation and flawless pronunciation
- CO 2: Implement English vocabulary at command and language proficiency
- CO 3: Identify common errors in spoken and written communication
- CO 4: Understand and improve the non verbal communication and kinesics
- CO 5: Perform well in campus recruitment, engineering and all other general competitive examinations

Question paper pattern for SEE (Semester end examination)

The SEE question paper will be set for 100 marks and the pattern of the question paper will be objective type (MCQ).

Textbooks

- Communication Skills by Sanjay Kumar and Pushp Lata, Oxford University Press - 2018. Refer it's workbook for activities and exercises - "Communication Skills - I (A Workbook)" published by Oxford University Press - 2018.
- 2) English Language Communication Skills (Lab Manual cum Workbook), Cengage learning India Pvt Limited [Latest Revised Edition] 2018.

Reference Books

- 1) **English for Technical Communication** by N.P.Sudharshana and C.Savitha, Cambridge University Press 2016.
- 2) **Technical Communication** by Gajendra Singh Chauhan and Et al, Cengage learning India Pvt Limited [Latest Revised Edition] 2018.
- 3) **Practical English Usage** by Michael Swan, Oxford University Press 2016.
- 4) **High School English Grammar & Composition** by Wren and Martin, S Chandh & Company Ltd 2015.
- 5) **Effective Technical Communication** Second Edition by M. Ashraf Rizvi, McGraw Hill Education (India) Private Limited 2018.

ADVANCED CALCULUS AND NUMERICAL METHODS

Semester	: II	CIE Marks	: 40
Course Code	: 18MAT21	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 3:2:0	Exam Hours	: 03
	Credits: 04		

Course Learning Objectives: This course viz., Advanced Calculus and Numerical Methods (18MAT21) aims to prepare the students:

- To familiarize the important tools of vector calculus, ordinary/partial differential equations and power series required to analyze the engineering problems.
- To apply the knowledge of interpolation/extrapolation and numerical integration technique whenever analytical methods fail or very complicated, to offer solutions.

MODULE-I

Vector Calculus:-

Vector Differentiation: Scalar and vector fields. Gradient, directional derivative; curl and divergence-physical interpretation; solenoidal and irrotational vector fields-Illustrative problems.

Vector Integration: Line integrals, Theorems of Green, Gauss and Stokes (without proof). Applications to work done by a force and flux.

(RBT Levels : L1 & L2)

MODULE-II

Differential Equations of higher order:- Second order linear ODE's with constant coefficients-Inverse differential operators, method of variation of parameters; Cauchy's and Legendre homogeneous equations. Applications to oscillations of a spring and L-C-R circuits.

(RBT Levels : L1, L2 & L3)

MODULE-III

Partial Differential Equations(PDE's):- Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Solution of Lagrange's linear PDE. Derivation of one dimensional heat and wave equations and solutions by the method of separation of variables.

(RBT Levels: L1, L2 & L3)

MODULE-IV

Infinite Series:- Series of positive terms- convergence and divergence. Cauchy's root test and D'Alembert's ratio test(without proof)- Illustrative examples.

Power Series solutions:- Series solution of Bessel's differential equation leading to Jn(x)- Bessel's function of first kind-orthogonality. Series solution of Legendre's differential equation leading to Pn(x)-Legendre polynomials. Rodrigue's formula (without proof), problems.

(RBT Levels : L1 & L2)

MODULE-V

Numerical Methods:

Finite differences. Interpolation/extrapolation using Newton's forward and backward difference formulae, Newton's divided difference and Lagrange's formulae (All formulae without proof). Solution of polynomial and transcendental equations — Newton-Raphson and Regula-Falsi methods(only formulae)- Illustrative examples.

Numerical integration: Simpson's $(1/3)^{rd}$ and $(3/8)^{th}$ rules, Weddle's rule (without proof)—Problems. (RBT Levels: L1, L2 & L3)

Textbooks:

- **1. B.S. Grewal:** Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.
- **2. E. Kreyszig:** Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed.(Reprint), 2016.

Reference books:

- 1. C.Ray Wylie, Louis C.Barrett: "Advanced Engineering Mathematics", 6th Edition, 2. McGraw-Hill Book Co., New York, 1995.
- **2. James Stewart :** "Calculus –Early Transcendentals", Cengage Learning India Private Ltd., 2017.
- **3. B.V.Ramana:** "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill, 2010.
- **4. Srimanta Pal & Subobh C Bhunia:** "Engineering Mathematics", Oxford University Press, 3rd Reprint, 2016.
- **5. Gupta C.B., Singh S.R. and Mukesh Kumar:** "Engineering Mathematics for Semester I & II", Mc-Graw Hill Education (India) Pvt.Ltd., 2015.

Web links and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://academicearth.org/
- 4. VTU EDUSAT PROGRAMME 20

Course Outcomes: On completion of this course, students are able to:

CO1: Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors and also exhibit the inter dependence of line, surface and volume integrals.

CO2: Demonstrate various physical models through higher order differential equations and solve such linear ordinary differential equations.

Co3: Construct a variety of partial differential equations and solution by exact methods/method of separation of variables.

CO4: Explain the applications of infinite series and obtain series solution of ordinary differential equations.

Co5: Apply the knowledge of numerical methods in the modeling of various physical and engineering phenomena.

Question Paper Pattern:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

ENGINEERING CHEMISTRY

Semester	: I/II	CIE Marks	: 40
Course Code	: 18CHE12/22	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 3:2:0	Exam Hours	: 03
	Credits: 04		

Course Learning Objectives:

This course (18CHE12/22) will enable students to

- Master the basic knowledge of engineering chemistry for building technical competence in industries, research and development.
- To develop knowledge in the fields of use of free energy in chemical equilibrium, electrochemistry and energy storage systems, Corrosion and metal finishing.
- To understand the importance of energy systems, environmental pollution, waste management, water chemistry, Instrumental methods of analysis and Nanomaterials.

MODULE-I

Electrochemistry and Energy storage systems

Use of free energy in chemical equilibria: Thermodynamic functions: Definitions of free energy and entropy. Cell potential, derivation of Nernst equation for single electrode potential, numerical problems on E, E0, and Ecell

Electrochemical energy systems: Reference electrodes: Introduction, construction, working and applications of Calomel electrode. Ion-selective electrode – Definition, construction and principle of Glass electrode and determination of pH using glass electrode. Electrolyte concentration cells, numerical problems

Energy storage systems: Introduction, classification - primary, secondary and reserve batteries. Construction, working and applications of Ni-MH and Li-ion batteries

(RBT Levels: L3)

MODULE-II

Corrosion and Metal finishing

Corrosion: Introduction, Electrochemical theory of corrosion, Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of corrosion product, nature of medium – pH, conductivity and temperature. Types of corrosion - Differential metal and differential aeration - pitting and water line). Corrosion control: Anodizing – Anodizing of aluminium, Cathodic protection - sacrificial anode and impressed current methods, Metal coatings – Galvanization

Metal finishing: Introduction, Technological importance. Electroplating: Introduction, principles governing electroplating-Polarization, decomposition potential and overvoltage. Electroplating of chromium (hard and decorative). Electroless plating: Introduction, electroless plating of nickel & copper, distinction between electroplating and electroless plating processes

(RBT Levels: L1 & L2)

MODULE-III

Energy Systems

Chemical Fuels: Introduction, classification, definitions of CV, LCV, and HCV, determination of calorific value of solid/liquid fuel using bomb calorimeter, numerical problems. Knocking of petrol engine — Definition, mechanism, ill effects and prevention. Power alcohol, unleaded petrol and biodiesel

Fuel Cells: Introduction, differences between conventional cell and fuel cell, limitations & advantages. Construction, working & applications of methanoloxygen fuel cell with H₂SO₄ electrolyte, and solid oxide fuel cell (SOFCs)

Solar Energy: Photovoltaic cells- introduction, construction and working of a typical PV cell, Preparation of solar grade silicon by Union Carbide Process/Method. Advantages & disadvantages of PV cells

MODULE - IV

Environmental Pollution and Water Chemistry

Environmental Pollution: Air pollutants: Sources, effects and control of primary air pollutants: Carbon monoxide, Oxides of nitrogen and sulphur, hydrocarbons, Particulate matter, Carbon monoxide, Mercury and Lead. Secondary air pollutant: Ozone, Ozone depletion

Waste Management: Solid waste, e-waste & biomedical waste: Sources, characteristics & disposal methods (Scientific land filling, composting, recycling and reuse)

Water Chemistry: Introduction, sources and impurities of water; boiler feed water, boiler troubles with disadvantages -scale and sludge formation, boiler corrosion (due to dissolved O₂, CO₂ and MgC₁₂). Sources of water pollution, Sewage, Definitions of Biological oxygen demand (BOD) and Chemical Oxygen Demand (COD), determination of COD, numerical problems on COD. Chemical analysis of water: Sulphates (gravimetry) and Fluorides (colorimetry). Sewage treatment: Primary, secondary (activated sludge) and tertiary methods. Softening of water by ion exchange process. Desalination of sea water by reverse osmosis

(RBT Levels: L3)

Module V

Instrumental methods of analysis and Nanomaterials

Instrumental methods of analysis: Theory, Instrumentation and applications of Colorimetry, Flame Photometry, Atomic Absorption Spectroscopy, Potentiometry, Conductometry (Strong acid with a strong base, weak acid with a strong base, mixture of strong acid and a weak acid with a strong base)

Nanomaterials: Introduction, size dependent properties (Surface area, Electrical, Optical, Catalytic and Thermal properties). Synthesis of nanomaterials: Top down and bottom up approaches, Synthesis by Sol-gel, precipitation and chemical vapour deposition, Nanoscale materials: Fullerenes, Carbon nanotubes and graphenes – properties and applications

(RBT Levels: L1 & L2)

Course Outcomes: On completion of this course, students will have knowledge in:

CO1: Use of free energy in equilibria, rationalize bulk properties and processes using thermodynamic considerations, electrochemical energy systems.

CO2: Causes & effects of corrosion of metals and control of corrosion. Modification of surface properties of metals to develop resistance to corrosion, wear, tear, impact etc. by electroplating and electroless plating.

CO3: Production & consumption of energy for industrialization of country and living standards of people. Electrochemical and concentration cells. Classical, modern batteries and fuel cells. Utilization of solar energy for different useful forms of energy.

CO4: Environmental pollution, waste management and water chemistry.

CO5: Different techniques of instrumental methods of analysis. Fundamental principles of nano materials.

Question Paper Pattern:

- The SEE question paper will be set for 100 marks and the marks scored by the student will be proportionately reduced to 60.
- The question paper will have **ten** full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be **two** full questions (with a **maximum** of **three** sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer **five** full questions, selecting **one** full question from each module.

Textbooks:

- 1. P.C. Jain & Monica Jain. "Engineering Chemistry", Dhanpat Rai Publications, New Delhi (2015-Edition).
- 2. S. S. Dara, A textbook of Engineering Chemistry, 10th Edition, S Chand & Co., Ltd., New Delhi, 2014.
- 3. Physical Chemistry, by P. W. Atkins, Oxford Publications (Eighth edition-2006).

Reference books:

- 1. O.G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint (2015-Edition).
- **2.** R.V. Gadag & A. Nityananda Shetty., "Engineering Chemistry", I K International Publishing House Private Ltd. New Delhi (2015-Edition).
- **3.** "Wiley Engineering Chemistry", Wiley India Pvt. Ltd. New Delhi. Second Edition-2013.
- **4.** B. Jaiprakash, R. Venugopal, Sivakumaraiah and Pushpa Iyengar, Chemistry for Engineering Students, Subhash Publications, Bengaluru, (2015-Edition).

C PROGRAMMING FOR PROBLEM SOLVING

Semester	: I/II	CIE Marks	: 40
Course Code	: 18CPS13/23	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 2:2:0	Exam Hours	: 03
	Credits: 03		

Course Learning Objectives:

This course (18CPS13/23) will enable students to:

- Familiarize with writing of algorithms, fundamentals of C and philosophy of problem solving.
- Implement different programming constructs and decomposition of problems into functions.
- Use and implement data structures like arrays and structures to obtain solutions.
- Define and use of pointers with simple applications.

MODULE-I

Introduction to computer Hardware and software: Computer generations, computer types, bits, bytes and words, CPU, Primary memory, Secondary memory, ports and connections, input devices, output devices, Computers in a network, Network hardware, Software basics, software types.

Overview of C: Basic structure of C program, executing a C program. Constant, variable and data types, Operators and expressions,

(RBT Levels : L1 & L2)

MODULE 2

Managing Input and output operations. Conditional Branching and Loops. Example programs, Finding roots of a quadratic equation, computation of binomial coefficients, plotting of Pascals triangle.

(RBT Levels : L1 & L2)

MODULE 3

Arrays: Arrays (1-D, 2-D), Character arrays and Strings, Basic Algorithms: Searching and Sorting Algorithms (Linear search, Binary search, Bubble sort and Selection sort).

(RBT Levels : L1, L2 & L3)

MODULE 4

User Defined Functions and Recursion.

Example programs, Finding Factorial of a positive integers and Fibonacci series.

(RBT Levels : L1, L2 & L3)

MODULE 5

Structure and Pointers, Preprocessor Directives

(RBT Levels : L1, L2 & L3)

Course Outcomes:

The student will be able to:

- Illustrate simple algorithms from the different domains such as mathematics, physics, etc.
- Construct a programming solution to the given problem using C.
- Identify and correct the syntax and logical errors in C programs.
- Modularize the given problem using functions and structures.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- 1. E. Balaguruswamy, Programming in ANSI C, 7^{th} Edition, Tata McGraw-Hill
- 2. Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, Prentice Hall of India.

Reference Books:

- 1. Sumitabha Das, Computer Fundamentals & C Programming, Mc Graw Hill Education.
- 2. Gary J Bronson, ANSI C Programming, 4th Edition, Ceneage Learning.
- 3. Dey and Ghosh, Programming in C, 3rd Edition, Oxford University Press.
- 4. Vikas Gupta: Computer Concepts and C Programming, Dreamtech Press 2013.
- 5. R S Bichkar, Programming with C, University Press, 2012.
- 6. V Rajaraman: Computer Programming in C, PHI, 2013.
- 7. Basavaraj S. Anami, Shanmukhappa A Angadi, Sunilkumar S. Manvi, Computer Concepts and C Programming: A Holistic Approach to Learning C, Seond edition, PHI India, 2010.

BASIC ELECTRONICS

Semester	: I/II	CIE Marks	: 40
Course Code	: 18ELN14/24	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 2:2:0	Exam Hours	: 03
	Credits: 03		

Course Objectives:

This course will enable students to:

- Understand characteristics, operation and applications of the diodes, bipolar junction transistors, field effect transistors, SCRs and operational amplifiers in electronic circuits.
- Understand different number systems and working of fundamental building blocks of digital circuits.
- Understand the principle of basic communication system and mobile phones.

MODULE-1

Semiconductor Diodes and Applications:

p-n junction diode, Equivalent circuit of diode, Zener Diode, Zener diode as a voltage regulator, Rectification-Half wave rectifier, Full wave rectifier, Bridge rectifier, Capacitor filter circuit (2.2, 2.3, 2.4 of Text 1).

Photo diode, LED, Photo coupler. (2.7.4, 2.7.5, 2.7.6 of Text 1).

78XX series and 7805 Fixed IC voltage regulator (8.4.4 and 8.4.5 of Text 1).

(RBT Levels : L1, L2 & L3)

MODULE-2

FET and SCR:

Introduction, JFET: Construction and operation, JFET Drain Characteristics and Parameters, JFET Transfer Characteristic, Square law expression for I_D , Input resistance, MOSFET: Depletion and Enhancement type MOSFET-Construction, Operation, Characteristics and Symbols, (refer 7.1, 7.2, 7.4, 7.5 of Text 2), CMOS (4.5 of Text 1).

Silicon Controlled Rectifier (SCR) – Two-transistor model, Switching action, Characteristics, Phase control application (refer 3.4 upto 3.4.5 of Text 1).

(RBT Levels : L1, L2 & L3)

MODULE-3

Operational Amplifiers and Applications:

Introduction to Op-Amp, Op-Amp Input Modes, Op-Amp Parameters-CMRR, Input Offset Voltage and Current, Input Bias Current, Input and Output Impedance, Slew Rate (12.1, 12.2 of Text 2).

Applications of Op-Amp - Inverting amplifier, Non-Inverting amplifier, Summer, Voltage follower, Integrator, Differentiator, Comparator (6.2 of Text 1).

(RBT Levels : L1, L2 & L3)

MODULE-4

BJT Applications, Feedback Amplifiers and Oscillators:

BJT as an amplifier, BJT as a switch, Transistor switch circuit to switch ON/OFF an LED and a lamp in a power circuit using a relay (refer 4.4 and 4.5 of Text 2). Feedback Amplifiers — Principle Properties and advantages of Negative

Feedback Amplifiers – Principle, Properties and advantages of Negative Feedback, Types of feedback, Voltage series feedback, Gain stability with feedback (7.1-7.3 of Text 1).

Oscillators – Barkhaunsen's criteria for oscillation, RC Phase Shift oscillator, Wien Bridge oscillator (7.7-7.9 of Text 1).

IC 555 Timer and Astable Oscillator using IC 555 (17.2 and 17.3 of Text 1).

(RBT Levels : L1, L2 & L3)

MODULE-5

Digital Electronics Fundamentals:

Difference between analog and digital signals, Number System-Binary, Hexadecimal, Conversion- Decimal to binary, Hexadecimal to decimal and vice-versa, Boolean algebra, Basic and Universal Gates, Half and Full adder, Multiplexer, Decoder, SR and JK flip-flops, Shift register, 3 bit Ripple Counter (refer 10.1-10.7 of Text 1).

Basic Communication system, Principle of operations of Mobile phone (refer 18.2 and 18.18 of Text 1).

(RBT Levels : L1 & L2)

Course Outcomes:

After studying this course, students will be able to:

- Describe the operation of diodes, BJT, FET and Operational Amplifiers.
- Design and explain the construction of rectifiers, regulators, amplifiers and oscillators.
- Describe general operating principles of SCRs and its application.
- Explain the working and design of Fixed voltage IC regulator using 7805 and Astable oscillator using Timer IC 555.
- Explain the different number system and their conversions and construct simple combinational and sequential logic circuits using Flip-Flops.
- Describe the basic principle of operation of communication system and mobile phones.

Proposed Activities to be carried out for 10 marks of CIE:

Students should construct and make the demo of the following circuits in a group of 3/4 students:

- +5V power supply unit using Bridge rectifier, Capacitor filter and IC 7805.
- 2. To switch on/off an LED using a Diode in forward/reverse bias using a battery cell.
- 3. Transistor switch circuit to operate a relay which switches off/on an LED.
- 4. IC 741 Integrator circuit/Comparator circuit.
- 5. To operate a small loud speaker by generating oscillations using IC 555.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Textbooks:

- D.P.Kothari, I.J.Nagarath, "Basic Electronics", 2nd edn, Mc Graw Hill, 2018.
- Thomas L. Floyd, "Electronic Devices", Pearson Education, 9th edition, 2012.

Reference Books:

- 1. D.P.Kothari, I.J.Nagarath, "Basic Electronics", 1st edn, Mc Graw Hill, 2014.
- 2. Boylestad, Nashelskey, "Electronic Devices and Circuit Theory", Pearson Education, 9th Edition, 2007/11th edition, 2013.
- 3. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.
- 4. Muhammad H. Rashid, "Electronics Devices and Circuits", Cengage Learning, 2014.

ELEMENTS OF MECHANICAL ENGINEERING

Semester	: I/II	CIE Marks	: 40
Course Code	: 18ME15/25	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 2:2:0	Exam Hours	: 03
	Credits: 03		

Course Objectives:

This course (18ME15/25) will enable students to

- CLO1 Learn the fundamental concepts of energy, its sources and conversion.
- CLO2 Comprehend the basic concepts of thermodynamics.
- CLO3 Understand the concepts of boilers, turbines, pumps, internal combustion engines and refrigeration
- CLO4 Distinguish different metal joining techniques.
- CLO5 Enumerate the knowledge of working with conventional machine tools, their specifications.

MODULE-1

Sources of Energy: Introduction and application of energy sources like fossil fuels, hydel, solar, wind, nuclear fuels and bio-fuels; environmental issues like global warming and ozone depletion.

Basic concepts of Thermodynamics: Introduction, states, concept of work, heat, temperature; Zeroth, 1st, 2nd and 3rd laws of thermodynamics. Concept of internal energy, enthalpy and entropy (simple numericals).

Steam: Formation of steam and thermodynamic properties of steam (simple numericals).

(RBT : L1, L2 & L3)

MODULE-II

Boilers: Introduction to boilers, classification, Lancashire boiler, Babcock and Wilcox boiler. Introduction to boiler mountings and accessories (no sketches).

Turbines: Hydraulic Turbines – Classification and specification, Principles and operation of Pelton wheel turbine, Francis turbine and Kaplan turbine (elementary treatment only).

Hydraulic Pumps: Introduction, classification and specification of pumps, reciprocating pump and centrifugal pump, concept of cavitation and priming.

(RBT: L1, L2 & L3)

MODULE - III

Internal Combustion Engines

Classification, I.C. Engines parts, 2 and 4 stroke petrol and 4-stroke diesel engines. P-V diagrams of Otto and Diesel cycles. Simple problems on indicated power, brake power, indicated thermal efficiency, brake thermal efficiency, mechanical efficiency and specific fuel consumption.

Refrigeration and Air conditioning

Refrigeration - Definitions - Refrigerating effect, Ton of Refrigeration, Ice making capacity, COP, relative COP, Unit of Refrigeration. Refrigerants, Properties of refrigerants, List of commonly used refrigerants. Principle and working of vapor compression refrigeration and vapor absorption refrigeration. Domestic refrigerator. Principles and applications of air conditioners, window and split air conditioners.

(RBT Levels : L1, L2 & L3)

MODULE IV

Properties, Composition and Industrial Applications of engineering materials

Metals – Ferrous: cast iron, tool steels and stainless steels and nonferrous: aluminum, brass, bronze. Polymers - Thermoplastics and thermosetting polymers. Ceramics - Glass, optical fiber glass, cermets. Composites - Fiber reinforced composites, Metal Matrix Composites Smart materials – Piezoelectric materials, shape memory alloys, semiconductors and insulators.

Joining Processes: Soldering, Brazing and Welding

Definitions. Classification and methods of soldering, brazing and welding. Brief description of arc welding, oxy-acetylene welding, TIG welding, and MIG welding.

Belt drives

Open & crossed belt drives, Definitions -slip, creep, velocity ratio, derivations for length of belt in open and crossed belt drive, ratio of tension in flat belt drives, advantages and disadvantages of V belts and timing belts, simple numerical problems.

Gear drives

Types—spur, helical, bevel, worm and rack and pinion. Velocity ratio, advantages and disadvantages over belt drives, simple numerical problems on velocity ratio.

(RBT Levels : L1, L2 & L3)

MODULE-V

Lathe - Principle of working of a center lathe. Parts of a lathe. Operations on lathe - Turning, Facing, Knurling, Thread Cutting, Drilling, Taper turning by Tailstock offset method and Compound slide swiveling method, Specification of Lathe.

Milling Machine - Principle of milling, types of milling machines. Working of horizontal and vertical milling machines. Milling processes - plane milling, end milling, slot milling, angular milling, form milling, straddle milling, and gang milling.

(Layout sketches of the above machines need not be dealt. Sketches need to be used only for explaining the operations performed on the machines)

Introduction to Advanced Manufacturing Systems

Computer Numerical Control (CNC): Introduction, components of CNC, open loop and closed loop systems, advantages of CNC, CNC Machining centers and Turning centers.

Robots: Robot anatomy, joints and links, common robot configurations.

Applications of Robots in material handling, processing and assembly and inspection.

(RBT Levels : L1, L2 & L3)

Course Outcomes:

Upon completion of this course, students will be able to

- CO1 Identify different sources of energy and their conversion process.
- CO2 Explain the working principle of hydraulic turbines, pumps, IC engines and refrigeration.
- CO3 Recognize various metal joining processes and power transmission elements.
- CO4 Understand the properties of common engineering materials and their applications in engineering industry.
- CO5 Discuss the working of conventional machine tools, machining processes, tools and accessories.
- CO6 Describe the advanced manufacturing systems.

Question paper pattern:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.
- The question paper will have **ten** full questions carrying equal marks.
- Each full question consisting of **20** marks.
- There will be **two** full questions (with a **maximum** of **three** sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer **five** full questions, selecting **one** full question from each module.

Note

- To illustrate the concepts of operations of turbines, pumps, conventional machines like lathe, drilling, milling, grinding etc., the instructions should be blended with video presentations and visit to the laboratories/ machine shop concerned.
- Demonstration of soldering, brazing and welding should be arranged in the workshop.
- To illustrate the fundamentals of CNC machining and turning centers and robots, video presentations should be adapted in addition to class room instructions.
- The boiler mountings and accessories should be shown in the engine lab.

• Assignments should be submitted by students on materials, sources of energy, global warming, welding processes, robots and their applications. These assignments should be given due credit in awarding CIE marks.

Textbooks:

- 1. **Elements of Mechanical Engineering,** K. R. Gopalakrishna, Subhas Publications, Bangalore, 2008.
- 2. **Elements of Mechanical Engineering,** Vol.-1 & 2, Hajra Choudhury, Media Promoters, New Delhi, 2001.
- 3. **A Text Book of Elements of Mechanical Engineering"**, S. Trymbaka Murthy, 3rd revised edition 2006, I .K. International Publishing House Pvt. Ltd., New Delhi.

Reference Books:

- Elements of Mechanical Engineering, R.K. Rajput, Firewall Media, 2005.
- 2. **Elements of Mechanical Engineering,** Dr. A. S. Ravindra, Best Publications, 7th edition, 2009.
- 3. **CAD/CAM/CIM,** Dr. P Radhakrishnan, 3rd edition, New Age International Publishers, New Delhi.
- 4. **Introduction to Robotics: Mechanics And Control,** Craig, J. J., 2nd Ed.Addison-Wesley Publishing Company, Readong, MA, 1989.
- 5. **Introduction to Engineering Materials"**, B.K. Agrawal ,Tata McGraHill Publication, New Delhi.
- 6. **Thermal Science and Engineering"**, Dr. D.S. Kumar, S.K. Kataria & sons Publication, New Delhi.

ENGINEERING CHEMISTRY LABORATORY

Semester	: I/II	CIE Marks	: 40
Course Code	: 18CHEL16/26	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 0:0:2	Exam Hours	: 03
	Credits: 01		

Course Objectives:

To provide students with practical knowledge of

- Quantitative analysis of materials by classical methods of analysis.
- Instrumental methods for developing experimental skills in building technical competence.

Instrumental Experiments

- 1. Potentiometric estimation of FAS using standard K₂Cr₂O₇ solution.
- 2. Conductometric estimation of acid mixture.
- 3. Determination of Viscosity co-efficient of the given liquid using Ostwald's viscometer.
- 4. Colorimetric estimation of Copper.
- 5. Determination of pKa of the given weak acid using pH meter.
- 6. Flame photometric estimation of sodium and potassium.

Volumetric Experiments

- 1. Estimation of Total hardness of water by EDTA complexometric method.
- 2. Estimation of CaO in cement solution by rapid EDTA method.
- 3. Determination of percentage of Copper in brass using standard sodium thiosulphate solution.
- 4. Determination of COD of waste water.
- 5. Estimation of Iron in haematite ore solution using standard K₂Cr₂O₇ solution by external indicator method.
- 6. Estimation of percentage of available chlorine in the given sample of bleaching powder (Iodometric method)

Course Outcomes:

On completion of this course, students will have the knowledge in,

- CO1: Handling different types of instruments for analysis of materials using small quantities of materials involved for quick and accurate results.
- CO2: Carrying out different types of titrations for estimation of concerned in materials using comparatively more quantities of materials involved for good results.

Conduction of Practical Examination:

- 1. Examination shall be conducted for 100 marks, later reduced to 60 marks.
- 2. All experiments are to be included for practical examination.
- 3. One instrumental and another volumetric experiment shall be set.
- 4. Different experiments shall be set under instrumental and a common experiment under volumetric.

Reference Books:

- 1. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, "Vogel's Text Book of Quantitative Chemical Analysis".
- 2. O.P. Vermani & Narula, "Theory and Practice in Applied Chemistry", New Age International Publishers.
- 3. Gary D. Christian, "Analytical chemistry", 6th Edition, Wiley India.

C PROGRAMMING LABORATORY

Semester	: I/II	CIE Marks	: 40
Course Code	: 18CPL17/27	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 0:0:2	Exam Hours	: 03
	Credits: 01		

Course Learning Objectives:

This course (18CPL17/27) will enable students to:

- Write flowcharts, algorithms and programs.
- Familiarize the processes of debugging and execution.
- Implement basics of C programming language.
- Illustrate solutions to the laboratory programs.

Descriptions (if any):

- The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm being implemented or implemented for the problems given.
- Note that experiment 1 is mandatory and written in the journal.
- Questions related with experiment 1, need to be asked during viva-voce for all experiments.
- Every experiment should have algorithm and flowchart be written before writing the program.
- Code should be traced using minimum two test cases which should be recorded.
- It is preferred to implement using Linux and GCC.

Laboratory Programs:

1. Familiarization with computer hardware and programming environment, concept of naming the program files, storing, compilation, execution and debugging, taking any simple C-code.

PART A

- 2. Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)
- 3. Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.
- 4. Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages.

- 5. An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400, then an additional surcharge of 15% of total amount is charged. Write a program to read the name of the user, number of units consumed and print out the charges.
- 6. Introduce 1D Array manipulation and implement Binary search.
- 7. Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)

PART B

- 8. Develop a program to introduce 2D Array manipulation and implement Matrix multiplication and ensure the rules of multiplication are checked.
- 9. Develop a Program to compute Sin(x) using Taylor series approximation. Compare your result with the built- in Library function. Print both the results with appropriate messages.
- 10. Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.
- 11. Develop a program to sort the given set of N numbers using Bubble sort.
- 12. Develop a program to find the square root of a given number N and execute for all possible inputs with appropriate messages. Note: Don't use library function sqrt(n).
- Implement structures to read, write and compute average- marks and the students scoring above and below the average marks for a class of N students.
- 14. Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers.
- 15. Implement Recursive functions for Binary to Decimal Conversion.

Laboratory Outcomes:

The student should be able to:

- Write algorithms, flowcharts and program for simple problems.
- Correct syntax and logical errors to execute a program.
- Write iterative and wherever possible recursive programs.
- Demonstrate use of functions, arrays, strings, structures and pointers in problem solving.

- All laboratory experiments, excluding the first, are to be included for practical examination.
- Experiment distribution
 - o For questions having only one part: Students are allowed to pick one experiment from the lot and are given equal opportunity.

- o For questions having part A and B: Students are allowed to pick one experiment from part A and one experiment from part B and are given equal opportunity.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks
- Change of experiment is allowed only once and marks allotted for procedure part to be made zero.
- Marks Distribution (Subjected to change in accordance with university regulations)
 - a) For questions having only one part Procedure + Execution + Viva-Voce: 15+70+15 = 100 Marks
 - b) For questions having part A and B
 - i. Part A Procedure + Execution + Viva = 4 + 21 + 5 = 30 Marks
 - ii. Part B Procedure + Execution + Viva = 10 + 49 + 11 = 70 Marks

TECHNICAL ENGLISH - II

Semester	: II	CIE Marks	: 40
Course Code	: 18EGH28	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 0:2:0	Exam Hours	: 03
	Credits: 01		

Course Objectives:

The course Technical English – II will enable the students,

- To implement English vocabulary at command and ensure language proficiency
- To Achieve better Technical writing and Presentation skills
- Identify the common errors in speaking and writing English
- Acquire Employment and Workplace communication skills

Language Lab

For augment LSRW and GV skills (Listening, Speaking, Reading, Writing and Grammar, Vocabulary) through tests, activities, exercises etc., comprehensive web-based learning and assessment systems can be referred.

Module - I

Identifying Common Errors in Writing and Speaking English

Subject Verb Agreement (Concord Rules with Exercises), Common errors in Subject-verb agreement, Noun-pronoun agreement, Adjective, Adverb, Verb, Sequence of Tenses, Misplaced modifiers, Articles and Prepositions, Common errors in Conjunctions, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural.

(RBT Levels : L1, L2 & L3)

Module - II

Nature and Style of sensible writing

Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Redundancies & Clichés.

(RBT Levels : L1, L2 & L3)

Module - III

Technical Reading and Writing Practices

Effective Technical Reading and Writing Practices, Technical Reports writing and Technical Proposals Writing.

Grammar – Voice (Active and Passive Voices) and Reported Speech, Vocabulary – Anologies, Words Confused/Misused, Collocations. The

Listening Comprehension, Spotting Error Exercises, Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

(RBT Levels : L1, L2 & L3)

Module - IV

Communication for Employment

Components of a Formal Letter, Formats and Types of Business Letters, Model Letter of Application (Cover Letter) with Resume, Email and Blog Writing, Reading Skills and Reading Comprehension.

(RBT Levels : L1, L2 & L3)

Module - V

Communication at Workplace

Interpersonal Communication Skills, Non-Verbal Communication Skills (Body Language), Group Discussion and Employment Interviews, Presentation skills and Formal Presentations by Students, Dialogues in Various Situations (Practical Sessions by Students).

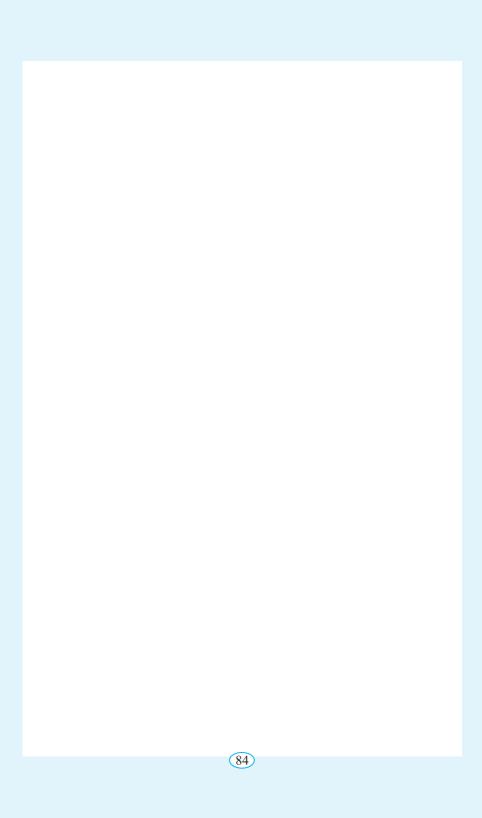
(RBT Levels : L1, L2 & L3)

Course Outcomes:

On completion of the course, students will be able to,

- CO 1: Identify common errors in spoken and written communication
- CO 2: Get familiarized with English vocabulary and language proficiency
- CO 3: Improve nature and style of sensible writing and acquire employment and workplace communication skills
- CO4: Improve their Technical Communication Skills through Technical Reading and Writing practices
- CO 5: Perform well in campus recruitment, engineering and all other general competitive examinations

Question paper pattern:


The SEE question paper will be set for 100 marks and the pattern of the question paper will be objective type (MCQ).

Textbooks:

- 1. **Technical Communication** by Gajendra Singh Chauhan and Et al, Cengage learning India Pvt Limited [Latest Revised Edition] 2018.
- 2. **Communication Skills** by Sanjay Kumar and Pushp Lata, Oxford University Press 2018. **Refer it's workbook** for activities and exercises "Communication Skills II (A Workbook)" published by Oxford University Press 2018.

Reference Books:

- 1. **High School English Grammar & Composition** by Wren and Martin, S Chandh & Company Ltd 2015.
- English Language Communication Skills Lab Manual cum Workbook, Cengage learning India Pvt Limited [Latest Revised Edition] –2018.
- 3. **Technical Communication** Principles and Practice, Third Edition by Meenakshi Raman and Sangeetha Sharma, Oxford University Press 2017.
- 4. **Effective Technical Communication** Second Edition by M Ashraf Rizvi, McGraw Hill Education (India) Private Limited 2018.
- 5. **Intermediate Grammar, Usage and Composition** by M.L.Tichoo, A.L.Subramanian, P.R.Subramanian, Orient Black Swan 2016.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELAGAVI

Scheme of Teaching and Examination and Syllabus B.E. AERONAUTICAL ENGINEERING III-VIIISEMESTER (Effective from Academic year 2018-19)

B. E. AERONATICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES

(Common to all Programmes)

	(
Course Code	18MAT31	CIE Marks	40
Teaching Hours/Week (L: T:P)	(2:2:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To have an insight into Fourier series, Fourier transforms, Laplace transforms, Difference equations and Z-transforms.
- To develop the proficiency in variational calculus and solving ODE's arising in engineering applications, using numerical methods.

Module-1

Laplace Transform: Definition and Laplace transforms of elementary functions (statements only). Laplace transforms of Periodic functions (statement only) and unit-step function – problems.

Inverse Laplace Transform: Definition and problems, Convolution theorem to find the inverse Laplace transforms (without Proof) and problems. Solution of linear differential equations using Laplace transforms.

Module-2

Fourier Series: Periodic functions, Dirichlet's condition. Fourier series of periodic functions period 2π and arbitrary period. Half range Fourier series. Practical harmonic analysis.

Module-3

Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier transforms, Problems.

Difference Equations and Z-Transforms: Difference equations, basic definition, z-transform-definition, Standard z-transforms, Damping and shifting rules, initial value and final value theorems (without proof) and problems, Inverse z-transform and applications to solve difference equations.

Module-4

Numerical Solutions of Ordinary Differential Equations(ODE's):

Numerical solution of ODE's of first order and first degree- Taylor's series method, Modified Euler's method. Runge -Kutta method of fourth order, Milne's and Adam-Bash forth predictor and corrector method (No derivations of formulae)-Problems.

Module-5

Numerical Solution of Second Order ODE's: Runge-Kutta method and Milne's predictor and corrector method. (No derivations of formulae).

Calculus of Variations: Variation of function and functional, variational problems, Euler's equation, Geodesics, hanging chain, problems.

Course outcomes: At the end of the course the student will be able to:

- CO1: Use Laplace transform and inverse Laplace transform in solving differential/ integral equation arising in network analysis, control systems and other fields of engineering.
- CO2: Demonstrate Fourier series to study the behaviour of periodic functions and their applications in system communications, digital signal processing and field theory.
- CO3: Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arising in wave and heat propagation, signals and systems.
- CO4: Solve first and second order ordinary differential equations arising in engineering problems using single step and multistep numerical methods.
- CO5:Determine the externals of functionals using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis.

Question paper pattern:

• The question paper will have ten full questions carrying equal marks.

- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ooks			
1	Advanced Engineering	E. Kreyszig	John Wiley & Sons	10 th Edition,
	Mathematics			2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition,
				2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University	3 rd Edition, 2016
			Press	
Refere	ence Books			
1	Advanced Engineering	C. Ray Wylie,	McGraw-Hill Book Co	6 th Edition, 1995
	Mathematics	Louis C. Barrett		
2	Introductory Methods of	S.S.Sastry	Prentice Hall of India	4 th Edition 2010
	Numerical Analysis	-		
3	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill	11 th Edition,2010
4	A Textbook of Engineering	N.P.Bali and	Laxmi Publications	6 th Edition, 2014
	Mathematics	Manish Goyal		
5	Advanced Engineering	Chandrika Prasad	Khanna Publishing,	2018
	Mathematics	and Reena Garg		

Web links and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://academicearth.org/
- 4. VTU EDUSAT PROGRAMME 20

B. E. AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

Aero Thermodynamics				
Course Code	18AS32/18AE32	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Understand various concepts and definitions of thermodynamics.
- Comprehend the I-law and II-law of thermodynamics.
- Acquire the knowledge of various types of gas cycles

Module-1

Fundamental Concepts & Definitions:

Thermodynamics definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems, Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and Modules, intensive and extensive properties. Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic processes; Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium. Zeroth law of thermodynamics, Temperature; concepts, scales, fixed points and measurements.

Work and Heat:

Mechanics-definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. Problems.

Module-2

First Law of Thermodynamics:

Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, pure substance; definition, two-property rule, Specific heat at constant volume, enthalpy, specific heat at constant pressure. Extension of the First law to control volume; steady state-steady flow energy equation, important applications, analysis of unsteady processes such as film and evacuation of vessels with and without heat transfer.

Module-3

Second Law of Thermodynamics:

Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal reservoir. Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation, coefficients of performance. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics, Equivalence of the two statements; Reversible and Irreversible processes; factors that make a process irreversible, reversible heat engines, Carnot cycle, Carnot principles.

Entropy: Clasius inequality; Statement, proof, application to a reversible cycle. Entropy; definition, a property, change of entropy, principle of increase in entropy, entropy as a quantitative test for irreversibility, calculation of entropy using Tds relations, entropy as a coordinate. Available and unavailable energy.

Module-4

Pure Substances & Ideal Gases: Mixture of ideal gases and real gases, ideal gas equation, compressibility factor use of charts. P-T and P-V diagrams, triple point and critical points. Sub-cooled liquid, Saturated liquid, mixture of saturated liquid and vapour, saturated vapour and superheated vapour states of pure substance with water as example. Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-S diagrams, representation of various processes on these diagrams.

Thermodynamic relations

Maxwell's equations, Tds relations, ratio of heat capacities, evaluation of thermodynamic properties from an equation of state.

Module-5

Gas Power Cycles: Efficiency of air standard cycles, Carnot, Otto, Diesel cycles, P-V & T-S diagram, calculation of efficiency.

Vapour power cycle:

Simple Rankine cycle, Analysis and performance of Rankine Cycle, Ideal and practical regenerative Rankine cycles –Reheat and Regenerative Cycles, Binary vapour cycle.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Apply the concepts and definitions of thermodynamics.
- CO2: Differentiate thermodynamic work and heat and apply I law and II law of thermodynamics to different process.
- CO3: Apply the principles of various gas cycles.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
		Textbooks		
1	Basic and Applied Thermodynamics	P K Nag	Tata McGraw Hill	2 nd Ed, 2002
2.	Basic Engineering Thermodynamics	A Venkatesh	Universities Press, India	2007
		Reference Books		
1	Thermodynamics: An Engineering Approach	Yunus A. Cenegal and Michael A. Boles	Tata McGraw Hill	2002
2	Engineering Thermodynamics	J.B. Jones and G.A. Hawkins, John Wiley and Sons	Wiley	1986
3	Fundamentals of Classical Thermodynamics	G. J. Van Wylen and R.E. Sonntag	Wiley Eastern, Wiley	1985
4	An Introduction to Thermodynamics	Y.V.C. Rao	Wiley Eastern	1993
5	Basic Thermodynamics	B. K Venkanna, Swati B. Wadavadagi	PHI, New Delhi	2010

B. E. AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

Mechanics of Materials				
Course Code	18AS33/18AE33	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:2:0)	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Comprehend the basic concepts of strength of materials.
- Acquire the knowledge of stress, strain under different loadings.
- Understand the properties of materials.

Module-1

Basics of linear elasticity: The concept of stress strain, state of stress strain at a point, Equilibrium equations, The state of plane stress and plane strain. Compatibility equations, Constitutive Laws (Hooke's Law), Stress-strain curves for brittle and ductile materials, Allowable stress, Material selection for structural performance.

Simple & Compound Stresses: Extension / Shortening of a bar, bars with cross sections varying in steps, bars with continuously varying cross sections. Elongation due to self-weight. Volumetric strain, expression for volumetric strain, elastic constants, simple shear stress, shear strain, temperature stresses, Introduction to Plane stress, stresses on inclined sections, principal stresses & strains, Analytical & graphical method (Mohr's Circle) to find principal stresses & strains.

Module-2

Bending Moment and Shear Force in Beams: Introduction, Types of beams, loads and reactions, shear forces and bending moments, rate of loading, sign conventions, relationship between shear force and bending moments. Shear force and bending moment diagrams for different beams subjected to concentrated loads, uniformly distributed load, (UDL) uniformly varying load (UVL) and couple for different types of beams.

Euler-Bernoulli beam theory: The Euler-Bernoulli assumptions, Implications of the Euler-Bernoulli assumptions, the Euler-Bernoulli Beam theory derivation, Bending stress equation, Moment carrying capacity of a section. Shearing stresses in beams, shear stress across rectangular, circular, symmetrical I and T sections (Only Numerical).

Module-3

Deflection of Beams: Introduction, Differential equation for deflection. Equations for deflection, slope and bending moment. Double integration method for cantilever and simply supported beams for point load, UDL, UVL and Couple. Macaulay's method.

Torsion of Circular Shafts and Elastic Stability of Columns: Introduction. Pure torsion, assumptions, derivation of torsional equations, polar modulus, torsional rigidity / stiffness of shafts. Power transmitted by solid and hollow circular shafts.

Module-4

Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids.

Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle.

Module-5

Mechanical Properties of materials:

Fracture: Type I, Type II and Type III.

Creep: Description of the phenomenon with examples. Three stages of creep, creep properties, stress relaxation.

Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue properties, fatigue testing and S-N diagram.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Apply the basic concepts of strength of materials.
- CO2: Compute stress, strain under different loadings.
- CO3: Distinguish the properties of different materials.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

Sl.	Title of the Book	Name of the	Name of the	Edition
No.	Title of the book	Author/s	Publisher	and Year
Textbo	ook/s			
1	Strength of Materials	S. S. Bhavaikatii	Vikas Publications	2012
			House, New Delhi	
2	Strength of Materials	S. Ramamrutham	Dhanapath Rai	2012
			Publishing Company	
Refere	nce Books			
1	Introduction to Aircraft Structural	T. H. G Megson	Butterworth-	2007
	Analysis		Heinemann	
2	Mechanics of Materials	Beer. F. P. and	McGraw Hill	2006
		Johnston. R	Publishers	
3	Elements of Strength of Materials	Timoshenko and	East-West Press	1976
	_	Young		
4	Structural Analysis	O. A. Bauchau and J.	Springer	
		I. Craig	Dordrecht Heidelberg	
		-	London New York	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - III**

Elements of Aeronautics				
Course Code	18AE34	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- To know the history and basic principle of aviation.
- To understand the foundation of flight, aircraft structures, material aircraft propulsion.
- To develop an understanding stability of an aircraft along with its different systems.

Module-1

Introduction to Aircrafts

History of aviation; Atmosphere and its properties; Classification of aircrafts; Basic components of an aircraft; aircraft axis system; aircraft motions; control surfaces and high lift devices; conventional design configurations; principle of operation of each major part; Helicopters, their parts and functions.

Aircraft Structures and Materials:

Introduction; structural members; general types of construction; monocoque, semi-monocoque and geodesic structures; typical wing and fuselage structure; metallic and non-metallic materials for aircraft application.

Module-2

Basic principles of flight – significance of speed of sound; airspeed and groundspeed; standard atmosphere; Bernoulli's theorem and its application for generation of lift and measurement of airspeed; forces over wing section, aerofoil nomenclature, pressure distribution over a wing section.Lift and drag components generation of lift and drag; lift curve, drag curve, types of drag, factors affecting lift and drag; centre of pressure and its significance; aerodynamic centre, aspect ratio, Mach number and supersonic flight effects; simple problems on lift and drag.

Module-3

Aircraft Propulsion:

Aircraft power plants, classification based on power plant and location and principle of operation. Turboprop, turbojet and turbofan engines; ramjets and scramjets; performance characteristics. Aircraft power plants – basic principles of piston, turboprop and jet engines; Brayton cycle and its application to gas turbine engines; use of propellers and jets for production of thrust; comparative merits and limitations of different types of propulsion engines; principle of thrust augmentation.

Module-4

Aircraft Stability:

Forces on an aircraft in flight; static and dynamic stability; longitudinal, lateral and roll stability; necessary conditions for longitudinal stability; basics of aircraft control systems. Effect of flaps and slats on lift, control tabs, stalling, gliding, landing, turning, aircraft manoeuvres; stalling, gliding, turning, Simple problems on these. Performance of aircraft – power curves, maximum and minimum speeds for horizontal flight at a given altitude; effect of changes in engine power and altitude on performance; correct and incorrect angles of bank; aerobatics, inverted manoeuvre, manoeuvrability. Simple problems.

Module-5

Introduction to Aircraft Systems:

Aircraft systems (Mechanical) – hydraulic and pneumatic systems and their applications; environment control system; fuel system, oxygen system.

Aircraft systems (Electrical) – flight control system, cockpit instrumentation and displays; communication systems; navigation systems; power generation systems – engine driven alternators, auxiliary power Module, ram air turbine; power conversion, distribution and management.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1 :Appreciate and apply the basic principle of aviation
- 2. CO2 :Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and aircraft materials during the development of an aircraft
- 3. CO3: Comprehend the complexities involved during development of flight vehicles.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
oook/s			
Introduction to Flight	John D. Anderson	McGraw-Hill Education	2011
Fundamentals of Flight Vol-I to Vol-IV	Lalit Gupta and O P Sharma	Himalayan Books	2006
rence Books			
Flight without formulae	A.C. Kermode	Pearson Education India	1989
Flight stability and automatic control	Nelson R.C	McGraw-Hill International Editions	1998
Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration	Ian Moir, Allan Seabridge	John Wiley & Sons	2011
	Flight without formulae Flight stability and automatic control Aircraft Systems: Mechanical, Electrical and Avionics	Introduction to Flight John D. Anderson Fundamentals of Flight Vol-I to Vol-IV Lalit Gupta and O P Sharma ence Books Flight without formulae A.C. Kermode Flight stability and automatic control Aircraft Systems: Mechanical, Electrical and Avionics Author/s John D. Anderson Lalit Gupta and O P Sharma Nelson R.C Ian Moir, Allan Seabridge	Introduction to Flight John D. Anderson Fundamentals of Flight Vol-I to Vol-IV Lalit Gupta and O P Sharma Himalayan Books Pence Books Flight without formulae A.C. Kermode Pearson Education India Flight stability and automatic control Aircraft Systems: Mechanical, Electrical and Avionics Introduction to Flight John D. Anderson Himalayan Books Himalayan Books Himalayan Books Himalayan Books Himalayan Books Flight Subtraction India Flight stability and automatic control Aircraft Systems: Mechanical, Electrical and Avionics Flight Stability Sons Seabridge

$B.\ E.\ AEROSPACE\ ENGINEERING \\ Choice\ Based\ Credit\ System\ (CBCS)\ and\ Outcome\ Based\ Education\ (OBE)$

SEMESTER - III

Mechanics of Fluids			
Course Code	18AS35/18AE35	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the basic fluid properties.
- Understand the governing laws of fluid flow.
- Acquire the knowledge of types of fluid flows.

Module-1

Basic Considerations:

Introduction, Dimensions- Modules and physical quantities, Continuum view of gases and liquids, Pressure and Temperature scales, Physical properties of fluids.

Fluid Statics:

Pressure distribution in a static fluid, Pressure and its measurement, hydrostatic forces on plane and curved surfaces, buoyancy, illustration by examples.

Module-2

Fluids in motion:

Methods of describing fluid motion, types of fluid flow, continuity equation in 3 dimensions, velocity potential function and stream function. Types of motion, Source sink, doublet, plotting of stream lines and potential lines Numerical problems.

Fluid Kinematics:

Kinematics of fluid motion and the constitutive equations, Integral (global) form of conservation equations (mass, momentum, energy) and applications, Differential form of conservation equations (continuity, Navier-Stokes equations, energy equation).

Module-3

Fluid Dynamics:

Equations of motion: Euler's and Bernoulli's equation of motion for ideal and real fluids. Momentum equation, Fluid flow measurements. Numerical problems.

Dimensional analysis and similarity:

Dimensional homogeneity, methods of dimensional analysis, model analysis, types of similarity and similitude. Dimensionless numbers. Model laws. Numerical problems.

Module-4

Flow past Immersed bodies:

Introduction to boundary layer, boundary layer thickness, karman's integral momentum theory, drag on a flat plate for laminar and turbulent flow, Drag on immersed bodies. Expression for drag and lift. Kutta – joukowsky theorem; Fundamentals of aerofoil theory Numerical problems.

Module-5

Compressible flow and Boundary Layers theory:

Steady, one-dimensional gas dynamics, Propagation of pressure waves in a compressible medium, velocity of sound, Mach number, Mach cone, Stagnation properties, Bernoulli's eqn for isentropic flow, normal shock waves. Numerical Problem; Laminar and turbulent boundary layers.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Evaluate the effect of fluid properties.
- CO2: Apply the governing laws of fluid flow.
- CO3: Classify different types of fluid flows.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s			•
1	Fluid Mechanics and Hydraulics Machines	Bansal, R.K	Laxmi Publications (P) Ltd., New Delhi	2015
2	Fluid Mechanics	Rathakrishnan. E	Prentice-Hall of India Pvt. Ltd	2010
Refe	rence Books			
1	Fluid Mechanics and Applications	Yunus A. Cengel & John M Cimbala	McGraw Hill Education;	3 rd edition,2013
2	Hydraulic Fluid Mechanics and Fluid Machines	Ramamritham. S	Dhanpat Rai& Sons, Delhi	1988
3	Engineering Fluid Mechanics	Kumar. K.L	Eurasia Publishing House (P) Ltd., New Delhi	VII Ed.,1995
4	Fluid Mechanics	Streeter. V. L., and Wylie, E.B	McGraw Hill	1983

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

Measurement and Metrology			
Course Code	18AE36	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the standards of measurement, system of limits, fits, tolerances and gauging.
- Understand the principles of measuring instruments.
- Acquire the knowledge on measurement and measurement systems.

Module-1

Standards of measurement: Definition and Objectives of metrology, Standards of length - International prototype meter, Imperial standard yard, Wave length standard, subdivision of standards, line and end standard, comparison, transfer from line standard to end standard, calibration of end bars (Numerical), Slip gauges, Wringing phenomena, Indian Standards (M-81, M-112), Numerical problems on building of slip gauges.

Module-2

System of limits, Fits, Tolerances and gauging: Definition of tolerance, Specification in assembly, Principle of inter changeability and selective assembly limits of size, Indian standards, concept of limits of size and tolerances, compound tolerances, accumulation of tolerances, definition of fits, types of fits and their designation (IS 919 -1963), geometrical tolerance, positional - tolerances, hole basis system, shaft basis of system, classification of gauges, brief concept of design of gauges (Taylor's principles), Wear allowance on gauges, Types of gauges -plain plug gauge, ring Gauge, snap gauge, limit gauge and gauge materials.

Module-3

Comparators and Angular measurement: Introduction to Comparator, Characteristics, classification of comparators, mechanical comparators - Sigma Comparators, dial indicator, Optical Comparators -principles, Zeiss ultra optimeter, Electric and Electronic Comparators -principles, Pneumatic Comparators, back pressure gauges, Solex Comparators. Angular measurements, Bevel Protractor, Sine Principle and. use of Sine bars, Sine center, use of angle gauges, Clinometers,

Screw thread gear measurement: Terminology of screw threads, measurement of major diameter, minor diameter pitch, angle and effective diameter of screw threads by 2-wire and 3-wire methods, Best size wire. Gear tooth vernier.

Module-4

Measurements and Measurement systems: Definition, Significance of measurement, generalized measurement system, definitions and concept of accuracy, precision, calibration, threshold, sensitivity, hysteresis, repeatability, linearity, loading effect, system response-times delay. Errors in Measurements, Classification of Errors. Transducers, Transfer efficiency, Primary and Secondary transducers, electrical, Mechanical, electronic transducers, advantages of each type transducers.

Module-5

Measurement of quantities: Principle, analytical balance, platform balance, proving ring, Torque measurement, Prony brake, hydraulic dynamometer. Pressure Measurements, Principle, use of elastic members, Bridgeman gauge, Mcloed gauge, Pirani Gauge.

Temperature and strain measurement: Resistance thermometers, thermocouple, law of thermocouple, materials used for construction, pyrometer, Optical Pyrometer. Strain Measurements, Strain gauge, preparation and mounting of strain gauges, gauge factor, methods of strain measurement

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the standards of measurement, system of limits, fits, tolerances and gauging.
- 2. CO2: Identify and use appropriate measuring instruments.
- 3. CO3: Acquire the knowledge on measurement and measurement systems

Question paper pattern:

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

	Author/s	Name of the Publisher	Edition and Year		
ook/s					
Mechanical Measurements	Beckwith Marangoni and Lienhard, John H. Lienhard V	6th Ed.,	2006		
Engineering Metrology	R.K.Jain	Khanna Publishers	1994		
Reference Books					
Engineering Metrology	I.C.Gupta	Dhanpat Rai Publications	2013		
Industrial Instrumentation	Alsutko, Jerry. D.Faulk	Thompson Asia Pvt. Ltd	2002		
<u> </u>	Mechanical Measurements Engineering Metrology ence Books Engineering Metrology	Mechanical Measurements Beckwith Marangoni and Lienhard, John H. Lienhard V Engineering Metrology R.K.Jain ence Books Engineering Metrology I.C.Gupta Industrial Instrumentation Alsutko, Jerry.	Mechanical Measurements Beckwith Marangoni and Lienhard, John H. Lienhard V Engineering Metrology R.K.Jain Khanna Publishers ence Books Engineering Metrology I.C.Gupta Dhanpat Rai Publications Industrial Instrumentation Alsutko, Jerry. Thompson Asia Pvt. Ltd		

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - III

MEASUREMENTS AND METROLOGY LAB			
Course Code	18AEL37A	CIE Marks	40
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60
Credits	02	Exam Hours	03

Course Learning Objectives:

- Learn the concepts of mechanical measurements and metrology
- Use the concept of accuracy, error and calibration
- Use the basic metrological instruments

Sl.	Experiments
No.	
1	Calibration of Pressure Gauge
2	Calibration of Thermocouple
3	Calibration of LVDT
4	Calibration of Load cell
5	Determination of modulus of elasticity of a mild steel specimen using strain gauges.
6	Comparison and measurements using vernier caliper and micrometer
7	Measurement of vibration parameters using vibration setup.
8	Measurements using Optical Projector / Toolmaker Microscope.
9	Measurement of angle using Sine Center / Sine bar / bevel protractor
10	Measurement of alignment using Autocollimator / Roller set
11	Measurement of Screw thread Parameters using Two-wire or Three-wire method.
12	Measurements of Surface roughness, Using Tally Surf/Mechanical Comparator
13	Measurement of gear tooth profile using gear tooth vernier /Gear tooth micrometer
14	Calibration of Micrometer using slip gauges.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Identify and classify different measuring tools related to experiments.
- 2. CO2: Identify, define, and explain accuracy, precision, and some additional terminology.
- 3. CO3: Conduct, Analyze, interpret, and present measurement data from measurements experiments.

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. ■

B.E AERONAUTICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - III

SEWIESTER - III				
MATERIAL TESTING LAB				
Course Code	18AEL37B	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60	
Credits	02	Exam Hours	03	

Course Learning Objectives:

- Understand the relations among materials and their properties.
- Understand the formation, properties and significance of the alloys through different experiments.
- Understand the types, advantages and applications of various NDT methods.

Sl.	Experiments
No.	-
1	Hardness Testing – Vicker's, Brinell, Rockwell
2	Tensile Test
3	Flexural Test
4	Torsional Test
5	Impact Test
6	Shear Test
7	Fatigue Test
8	Preparation of specimen for metallograpic examination of different engineering materials. Identification of microstructures of plain carbon steel, tool steel, gray C.I, SG iron, Brass, Bronze & metal matrix composites
9	Heat treatment: Annealing, normalizing, hardening and tempering of steel. Hardness studies of heat-treated samples.
10	To study the wear characteristics of ferrous, non-ferrous and composite materials for different parameters.
11	Visual Testing Technique, Dye penetration testing. To study the defects of Cast and Welded specimens.
12	Magnetic Particle Inspection.
13	Ultrasonic Inspection.
14	Eddy Current Inspection

Course outcomes:

At the end of the course the student will be able to:

- Apply the relations among materials and their properties.
- Differentiate the formation, properties and significance of the alloys through different experiments.
- Differentiate the types, advantages and applications of various NDT methods.

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. ■

B.E AERONAUTICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - III
MACHINE SHOP LAR

MACHINE SHOP LAB				
Course Code	18AEL38	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60	
Credits	02	Exam Hours	03	

Course Learning Objectives:

- Practice general-purpose machine tools and manufacturing process.
- Operate the special purpose machine tools
- Prepare physical models using different manufacturing processes.

Sl.	Experiments
No.	
1	Introduction to Machining operations & tools (Lathe machine.)
2	Introduction to Machining operations & tools (Shaper machine)
3	Machining of plain turning and facing
4	Machining of taper turning & step turning
5	Machining of knurling operation
6	Machining of drilling operation
7	Machining of boring operation
8	Machining of internal thread cutting
9	Machining of external thread cutting
10	Machining of eccentric turning
11	Machining of hexagon in shaping machine
12	Machining of square in shaping machine
13	Cutting of gear teeth using milling machine
14	Grinding operations using grinding machine.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Demonstrate the operation of general purpose machine tools and manufacturing process.
- 2. CO2 :Identify the special purpose machine tools for specific requirements
- 3. CO3: Develop physical models using different manufacturing processes.

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. ■

B. E. (Common to all Programmes)

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER –II / III / IV

Aadalitha Kannada

Course Code	18KAK28/39/49		
Teaching Hours/Week (L:T:P)	(0:2:0)	CIE Marks	100
Credits	01		

ಆಡಳಿತ ಕನ್ನಡ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು:

- ಪದವಿ ವಿದ್ಯಾರ್ಥಿಳಾಗಿರುವುದರಿಂದ ಆಡಳಿತ ಕನ್ನಡದ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.
- ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಕನ್ನಡ ಭಾಷೆಯ ವ್ಯಾಕರಣದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು.
- ಕನ್ನಡ ಭಾಷಾ ರಚನೆಯಲ್ಲಿನ ನಿಯಮಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.
- ಕನ್ನಡ ಭಾಷಾ ಬರಹದಲ್ಲಿ ಕಂಡುಬರುವ ದೋಷಗಳು ಹಾಗೂ ಅವುಗಳ ನಿವಾರಣೆ. ಮತ್ತು ಲೇಖನ ಚಿಹ್ನೆಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.
- ಸಾಮಾನ್ಯ ಅರ್ಜಿಗಳು, ಸರ್ಕಾರಿ ಮತ್ತು ಅರೆ ಸರ್ಕಾರಿ ಪತ್ರವ್ಯವಹಾರದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು.
- ಭಾಷಾಂತರ ಮತ್ತು ಪ್ರಬಂಧ ರಚನೆ ಬಗ್ಗೆ ಅಸಕ್ತಿ ಮೂಡಿಸುವುದು.
- ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ ಮತ್ತು ಸಾಮಾನ್ಯ ಕನ್ನಡ ಹಾಗೂ ಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.

ಪರಿವಿಡಿ (ಪಠ್ಯಮಸ್ಕಕದಲ್ಲಿರುವ ವಿಷಯಗಳ ಪಟ್ಟಿ)

ಅಧ್ಯಾಯ - 1 ಕನ್ನಡಭಾಷೆ - ಸಂಕ್ಷಿಪ್ತ ವಿವರಣೆ.

ಅಧ್ಯಾಯ – 2 ಭಾಷಾ ಪ್ರಯೋಗದಲ್ಲಾಗುವ ಲೋಪದೋಷಗಳು ಮತ್ತು ಅವುಗಳ ನಿವಾರಣೆ.

ಅಧ್ಯಾಯ – 3 ಲೇಖನ ಚಿಹ್ನೆಗಳು ಮತ್ತು ಅವುಗಳ ಉಪಯೋಗ.

ಅಧ್ಯಾಯ – 4 ಪತ್ರ ವ್ಯವಹಾರ.

ಅಧ್ಯಾಯ – 5 ಆಡಳಿತ ಪತ್ರಗಳು.

ಅಧ್ಯಾಯ – 6 ಸರ್ಕಾರದ ಆದೇಶ ಪತ್ರಗಳು.

ಅಧ್ಯಾಯ -7 ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ರಚನೆ (ಪ್ರಿಸೈಸ್ ರೈಟಿಂಗ್), ಪ್ರಬಂಧ ಮತ್ತು ಭಾಷಾಂತರ.

ಅಧ್ಯಾಯ – 8 ಕನ್ನಡ ಶಬ್ದಸಂಗ್ರಹ.

ಅಧ್ಯಾಯ -9 ಕಂಪ್ಯೂಟರ್ ಹಾಗೂ ಮಾಹಿತಿ ತಂತ್ರಜ್ಞಾನ.

ಅಧ್ಯಾಯ -10 ಪಾರಿಭಾಷಿಕ ಆಡಳಿತ ಕನ್ನಡ ಪದಗಳು ಮತ್ತು ತಾಂತ್ರಿಕ/ ಕಂಪ್ಯೂಟರ್ ಪಾರಿಭಾಷಿಕ ಪದಗಳು.

ಆಡಳಿತ ಕನ್ನಡ ಕಲಿಕೆಯ ಫಲಿತಾಂಶ'ಗಳು:

- ಆಡಳಿತ ಭಾಷೆ ಕನ್ನಡದ ಪರಿಚಯವಾಗುತ್ತದೆ.
- ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಕನ್ನಡ ಭಾಷೆಯ ವ್ಯಾಕರಣದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡುತ್ತದೆ.
- ಕನ್ನಡ ಭಾಷಾ ರಚನೆಯಲ್ಲಿನ ನಿಯಮಗಳು ಮತ್ತು ಲೇಖನ ಚಿಹ್ನೆಗಳು ಪರಿಚಯಿಸಲ್ಪಡುತ್ತವೆ.
- ಸಾಮಾನ್ಯ ಅರ್ಜಿಗಳು, ಸರ್ಕಾರಿ ಮತ್ತು ಅರೆ ಸರ್ಕಾರಿ ಪತ್ರವ್ಯವಹಾರದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡುತ್ತದೆ.
- ಭಾಷಾಂತರ ಮತ್ತು ಪ್ರಬಂಧ ರಚನೆ ಬಗ್ಗೆ ಅಸಕ್ಕೆ ಮೂಡುತ್ತದೆ.
- ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ ಮತ್ತು ಸಾಮಾನ್ಯ ಕನ್ನಡ ಹಾಗೂ ಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳು ಪರಿಚಯಿಸಲ್ಪಡುತ್ತವೆ.

ಪರೀಕ್ಷೆಯ ವಿಧಾನ : ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನ – ಅಖಇ (ಅಡುಣುಟಿಷಾ ಖಟಣಜಾಟಿಚಿಟ ಇಷಟಿಷಚಿಣುಡು):

ಕಾಲೇಜು ಮಟ್ಟದಲ್ಲಿಯೆ ಆಂತರಿಕ ಪರೀಕ್ಷೆಯನ್ನು 100 ಅಂಕಗಳಿಗೆ ವಿಶ್ವವಿದ್ಯಾಲಯದ ನಿಯಮಗಳು ಮತ್ತು ನಿರ್ದೇಶನದಂತೆ ನಡೆಸತಕ್ಕದ್ದು.

ಪಠ್ಯಮಸ್ತಕ : ಆಡಳಿತ ಕನ್ನಡ ಪಠ್ಯ ಮಸ್ತಕ (ಏಚಿಟಿಟಿಚಿಜಚಿ ಜಿಂಡಿ ೦ಜರುಭಾಡಿಚಿಡುತು)

ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ

ಸಂಪಾದಕರು

ಪ್ರೊ. ವಿ. ಕೇಶವಮೂರ್ತಿ

ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

B. E. (Common to all Programmes) Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER –II & III/IV

Vyavaharika Kannada

Course Code	18KVK28/39/49		
Teaching Hours/Week (L:T:P)	(0:2:0)	CIE Marks	100
Credits	01		

Course Learning Objectives:

The course will enable the students to understand Kannada and communicate in Kannada language.

Table of Contents:

- Chapter 1: Vyavaharika kannada Parichaya (Introduction to Vyavaharika Kannada).
- Chapter 2: Kannada Aksharamale haagu uchcharane (Kannada Alpabets and Pronunciation).
- Chapter 3: Sambhashanegaagi Kannada Padagalu (Kannada Vocabulary for Communication).
- Chapter 4: Kannada Grammar in Conversations (Sambhashaneyalli Kannada Vyakarana).
- Chapter 5: Activities in Kannada.

Course Outcomes:

At the end of the course, the student will be able to understand Kannada and communicate in Kannada language.

ಪರೀಕ್ಷ್ಮೆಯ ವಿಧಾನ : ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನ – ಅಖಇ (ಅಂಟಿಣಟಿಷಾ ಖಟಿಣಜಾಟಿಚಿಟ ಇಷಿಟಷಣಿಣುಟಿ): ಕಾಲೇಜು ಮಟ್ಟದಲ್ಲಿಯೆ ಆಂತರಿಕ ಪರೀಕ್ಷ್ಮೆಯನ್ನು 100 ಅಂಕಗಳಿಗೆ ವಿಶ್ವವಿದ್ಯಾಲಯದ ನಿಯಮಗಳು ಮತ್ತು ನಿರ್ದೇಶನದಂತೆ ನಡೆಸತಕ್ಕದ್ದು.

ಖಿಜ್ಞಾಂಛಾಣ (ಪಠ್ಯಮಸ್ತಕ): ವ್ಯಾವಹಾರಿಕ ಕನ್ನಡ ಪಠ್ಯ ಮಸ್ತಕ (ಗಿಥಿಚಿತಚಿಸಿಚಿಡಿಸ್ ಚಿ ಏಚಿಟಿಟಿಚಿಜಚಿ ಖಿಜ್ಞಾ :ಹ್ಞಾ) ಸಂಪಾದಕರು

> ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಪ್ರೊ. ವಿ. ಕೇಶವಮೂರ್ತಿ

ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

B. E. (Common to all Programmes) Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - III

CONSTITUTION OF INDIA, PROFESSIONAL ETHICS AND CYBER LAW (CPC)

	,		` /
Course Code	18CPC39/49	CIE Marks	40
Teaching Hours/Week (L:T:P)	(1:0:0)	SEE Marks	60
Credits	01	Exam Hours	02

Course Learning Objectives: To

- know the fundamental political codes, structure, procedures, powers, and duties of Indian government institutions, fundamental rights, directive principles, and the duties of citizens
- Understand engineering ethics and their responsibilities; identify their individual roles and ethical responsibilities towards society.
- Know about the cybercrimes and cyber laws for cyber safety measures.

Module-1

Introduction to Indian Constitution:

The Necessity of the Constitution, The Societies before and after the Constitution adoption. Introduction to the Indian constitution, The Making of the Constitution, The Role of the Constituent Assembly - Preamble and Salient features of the Constitution of India. Fundamental Rights and its Restriction and limitations in different Complex Situations. Directive Principles of State Policy (DPSP) and its present relevance in our society with examples. Fundamental Duties and its Scope and significance in Nation building.

Module-2

Union Executive and State Executive:

Parliamentary System, Federal System, Centre-State Relations. Union Executive – President, Prime Minister, Union Cabinet, Parliament - LS and RS, Parliamentary Committees, Important Parliamentary Terminologies. Supreme Court of India, Judicial Reviews and Judicial Activism. State Executives – Governor, Chief Minister, State Cabinet, State Legislature, High Court and Subordinate Courts, Special Provisions (Articles 370.371,371J) for some States.

Module-3

Elections, Amendments and Emergency Provisions:

Elections, Electoral Process, and Election Commission of India, Election Laws. Amendments - Methods in Constitutional Amendments (How and Why) and Important Constitutional Amendments. Amendments - 7,9,10,12,42,44, 61, 73,74, ,75, 86, and 91,94,95,100,101,118 and some important Case Studies. Emergency Provisions, types of Emergencies and its consequences.

Constitutional special provisions:

Special Provisions for SC and ST, OBC, Women, Children and Backward Classes.

Module-4

Professional / Engineering Ethics:

Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India): Profession, Professionalism, and Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility. Trust and Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering

Module-5

Internet Laws, Cyber Crimes and Cyber Laws:

Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber law, Cyber Crimes and the information Technology Act 2000, Internet Censorship. Cybercrimes and enforcement agencies.

Course Outcomes: On completion of this course, students will be able to,

- CO 1: Have constitutional knowledge and legal literacy.
- CO 2: Understand Engineering and Professional ethics and responsibilities of Engineers.
- CO 3: Understand the the cybercrimes and cyber laws for cyber safety measures.

Question paper pattern for SEE and CIE:

• The SEE question paper will be set for 100 marks and the marks scored by the students will proportionately be reduced to 60. The pattern of the question paper will be objective type (MCQ).

• For the award of 40 CIE marks, refer the University regulations 2018.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Constitution of India,	Shubham Singles,		2018
	Professional Ethics and Human	Charles E. Haries,	Cengage Learning	
	Rights	and et al	India	
2	Cyber Security and Cyber Laws	Alfred Basta and et	Cengage Learning	2018
		al	India	
Referen	nce Books			
3	Introduction to the	Durga Das Basu	Prentice –Hall,	2008.
	Constitution of India			
4	Engineering Ethics	M. Govindarajan, S.	Prentice –Hall,	2004
		Natarajan, V. S.		
		Senthilkumar		

B.E.(Common to all Programmes)

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - III

ADDITIONAL MATHEMATICS – I

(Mandatory Learning Course: Common to All Programmes)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech. programmes)

Course Code	18MATDIP31	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60
Credits	0	Exam Hours	03

Course Learning Objectives:

- To provide basic concepts of complex trigonometry, vector algebra, differential and integral calculus.
- To provide an insight into vector differentiation and first order ODE's.

Module-1

Complex Trigonometry: Complex Numbers: Definitions and properties. Modulus and amplitude of a complex number, Argand's diagram, De-Moivre's theorem (without proof).

Vector Algebra: Scalar and vectors. Addition and subtraction and multiplication of vectors- Dot and Cross products, problems.

Module-2

Differential Calculus: Review of successive differentiation-illustrative examples. Maclaurin's series expansions-Illustrative examples. Partial Differentiation: Euler's theorem-problems on first order derivatives only. Total derivatives-differentiation of composite functions. Jacobians of order two-Problems.

Module-3

Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl-simple problems. Solenoidal and irrotational vector fields-Problems.

Module-4

Integral Calculus: Review of elementary integral calculus. Reduction formulae for sinⁿx, cosⁿx (with proof) and sin^mxcosⁿx (without proof) and evaluation of these with standard limits-Examples. Double and triple integrals-Simple examples.

Module-5

Ordinary differential equations (ODE's. Introduction-solutions of first order and first-degree differential equations: exact, linear differential equations. Equations reducible to exact and Bernoulli's equation.

Course outcomes: At the end of the course the student will be able to:

- CO1: Apply concepts of complex numbers and vector algebra to analyze the problems arising in related area.
- CO2: Use derivatives and partial derivatives to calculate rate of change of multivariate functions.
- CO3: Analyze position, velocity and acceleration in two and three dimensions of vector valued functions.
- CO4: Learn techniques of integration including the evaluation of double and triple integrals.
- CO5: Identify and solve first order ordinary differential equations.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook			
1	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	43 rd Edition, 2015
Refere	ence Books			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015
2	Engineering Mathematics	N. P .Bali and	Laxmi Publishers	7th Edition, 2007
		Manish Goyal		
3	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015

B. E. AEROSPACE ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - IV

COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS

(Common to all programmes)

[As per Choice Based Credit System (CBCS) scheme]

Course Code	18MAT41	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To provide an insight into applications of complex variables, conformal mapping and special functions arising in potential theory, quantum mechanics, heat conduction and field theory.
- To develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, design engineering and microwave engineering.

Module-1

Calculus of complex functions: Review of function of a complex variable, limits, continuity, and differentiability. Analytic functions: Cauchy-Riemann equations in Cartesian and polar forms and consequences.

Construction of analytic functions: Milne-Thomson method-Problems.

Module-2

Conformal transformations: Introduction. Discussion of transformations: $w = Z^2$, $w = e^z$, $w = z + \frac{1}{z}$, $(z \neq 0)$.Bilinear transformations- Problems.

Complex integration: Line integral of a complex function-Cauchy's theorem and Cauchy's integral formula and problems.

Module-3

Probability Distributions: Review of basic probability theory. Random variables (discrete and continuous), probability mass/density functions. Binomial, Poisson, exponential and normal distributions- problems (No derivation for mean and standard deviation)-Illustrative examples.

Module-4

Statistical Methods: Correlation and regression-Karl Pearson's coefficient of correlation and rank correlation -problems. Regression analysis- lines of regression –problems.

Curve Fitting: Curve fitting by the method of least squares- fitting the curves of the form-

y = ax + b, $y = ax^b$ and $y = ax^2 + bx + c$.

Module-5

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation and covariance

Sampling Theory: Introduction to sampling distributions, standard error, Type-I and Type-II errors. Test of hypothesis for means, student's t-distribution, Chi-square distribution as a test of goodness of fit.

Course Outcomes:

At the end of the course the student will be able to:

- Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory.
- Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.
- Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.
- Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.
- Construct joint probability distributions and demonstrate the validity of testing the hypothesis.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	Textbooks					
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition,2016		
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017		
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition,2016		
Referen	ce Books					
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C.Barrett	McGraw-Hill	6 th Edition 1995		
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010		
3	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill	11 th Edition,2010		
4	A Text Book of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	2014		
5	Advanced Engineering Mathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018		

Web links and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://academicearth.org/
- 4. VTU EDUSAT PROGRAMME 20

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - IV					
Aerodynamics-I					
Course Code	Course Code 18AE42/18AS42 CIE Marks 40				
Teaching Hours/Week (L:T:P) (3:1:0) SEE Marks 60					
Credits	04	Exam Hours	03		

Course Learning Objectives:

- Understand the basics of fluid mechanics as a prerequisite to Aerodynamics
- Acquire knowledge on typical airfoil characteristics and two-dimensional flows over airfoil and study the incompressible over finite wings
- Assimilate the understanding of application of finite wing theory and high lift systems

Module-1

Review of Basic Fluid Mechanics

Continuity, momentum and energy equation, Control volume approach to Continuity, momentum and energy equation, Types of flow, pathlines, streamlines, and streaklines, units and dimensions, inviscid and viscous flows, compressibility, Mach number regimes. Vorticity, Angular velocity, Stream function, velocity potential function, Circulation, Numericals, Mach cone and Mach angle, Speed of sound.

Module-2

Airfoil Characteristics

Fundamental aerodynamic variables, Airfoil nomenclature, airfoil characteristics. wing planform geometry, aerodynamic forces and moments, centre of pressure, pressure coefficient, aerodynamic center, calculation of airfoil lift and drag from measured surface pressure distributions, typical airfoil aerodynamic characteristics at low speeds. Types of drag-Definitions.

Module-3

Two Dimensional Flows & Incompressible Flow Over Airfoil

Uniform flow, Source flow, Sink flow, Combination of a uniform flow with source and sink. Doublet flow. Non-lifting flow over a circular cylinder. Vortex flow. Lifting flow over a circular cylinder. Kutta-Joukowski theorem and generation of Lift, D'Alembert's paradox, Numericals,

Incompressible flow over airfoils: Kelvin's circulation theorem and the starting vortex, vortex sheet, Kutta condition, Classical thin airfoil theory for symmetric and cambered airfoils. Numericals.

Module-4

Biot-Savart law and Helmholtz's theorems, Vortex filament: Infinite and semi-infinite vortex filament, Induced velocity. Prandtl's classical lifting line theory: Downwash and induced drag. Elliptical and modified elliptical lift distribution. Lift distribution on wings. Limitations of Prandtl's lifting line theory. Extended lifting line theory- lifting surface theory, vortex lattice method for wings. Lift, drag and moment characteristics of complete airplane.

Module-5

Applications of Finite Wing Theory & High Lift Systems

Simplified horse-shoe vortex model, formation flight, influence of downwash on tail plane, ground effects. Swept wings: Introduction to sweep effects, swept wings, pressure coefficient, typical aerodynamic characteristics, Subsonic and Supersonic leading edges. Introduction to high-lift systems, flaps, leading-edge slats and typical high – lift characteristics. critical Mach numbers, Lift and drag divergence, shock induced separation, Effects of thickness, camber and aspect ratio of wings, Transonic area rule, Tip effects. Introduction to Source panel & vortex lattice method.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Evaluate typical airfoil characteristics and two-dimensional flows over airfoil
- 2. CO2 :Compute and analyse the incompressible flow over finite wings
- 3. CO3: Apply finite wing theory and design high lift systems from the aerodynamics view point

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s			
1	Fundamental of Aerodynamics	Anderson J.D	McGraw-Hill International Edition, New York	5th edition,2011
2	Aerodynamics for Engineering Students	E. L. Houghton, P.W. Carpenter	Elsevier, New York	5th edition,2010
Refe	rence Books	<u>.</u>		
3	Aerodynamics	Clancy L. J.	Sterling book house, New Delhi	2006
4	Theoretical Aerodynamics	Louis M. Milne- Thomson	Dover Publications, USA	Imported Edition,2011

Aircraft Propulsion				
Course Code	18AE43	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the basic principle and theory of aircraft propulsion.
- Understand the purpose of a centrifugal, axial compressors, axial and radial turbines
- Acquire knowledge of importance of nozzles & inlets and combustion chamber

Module-1

Introduction: Review of thermodynamic principles, Principles of aircraft propulsion, Types of power plants, Working principles of internal combustion engine, Two – stroke and four – stroke piston engines, Gas- turbine engines, Cycle analysis of reciprocating engines and jet engines, advantages and disadvantages.

Module-2

Propeller Theories & Jet propulsion Types of propeller, Propeller thrust: momentum theory, Blade element theories, propeller blade design, propeller selection.

Jet Propulsion: Illustration of working of gas turbine engine – The thrust equation – Factors affecting thrust – Effect of pressure, velocity and temperature changes of air entering compressor – Methods of thrust augmentation – Characteristics of turboprop, turbofan and turbojet – Performance characteristics.

Module-3

Inlets & Nozzles

Internal flow and Stall in Subsonic inlets, Boundary layer separation. Major features of external flow near a subsonic inlet. Relation between minimum area ratio and eternal deceleration ratio. Diffuser performance.

Supersonic inlets: Supersonic inlets, starting problem in supersonic inlets, Shock swallowing by area variation, External deceleration. Modes of inlet operation.

Nozzles: Theory of flow in isentropic nozzles, Convergent nozzles and nozzle choking, Nozzle throat conditions. Nozzle efficiency, Losses in nozzles. Over-expanded and under-expanded nozzles, Ejector and variable area nozzles, Thrust reversal.

Module-4

Gas Turbine Engine Compressors

Centrifugal compressors: Principle of operation of centrifugal compressors. Work done and pressure rise - Velocity diagrams, Diffuser vane design considerations. performance characteristics. Concept of Pre-whirl, Rotating stall.

Axial flow compressors: Elementary theory of axial flow compressor, Velocity triangles, Degree of reaction, three-dimensional flow. Air angle distribution for free vortex and constant reaction designs, Compressor blade design. Axial compressor performance characteristics.

Module-5

Combustion chambers and Turbines

Classification of combustion chambers, important factors affecting combustion chamber design, Combustion process, Combustion chamber performance Effect of operating variables on performance – Flame tube cooling – Flame stabilization – Use of flame holders

Axial Flow Turbines: Introduction, Turbine stage, Multi-staging of turbine, Exit flow conditions, Turbine cooling, Heat transfer in turbine cooling.

Radial turbine: Introduction, Thermodynamics of radial turbines, Losses and efficiency.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic principle and theory of aircraft propulsion.
- 2. CO2: Explain the functions of centrifugal, axial compressors, axial and radial turbines
- 3. CO3: Analyse the performance of nozzles & inlets and combustion chamber.

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textbook/s					
1	Aircraft propulsion	Bhaskar Roy	Elsevier	2011	
2	Gas Turbines	V. Ganesan	Tata McGraw-Hill	2010	
Refe	rence Books				
1	Mechanics & Thermodynamics of Propulsion	Hill, P.G. & Peterson, C.R	Addison – Wesley Longman INC,	1999	
2	Gas Turbine Theory	Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H	Longman	1989	
3	Gas Turbine Engine Technology	Irwin E. Treager	Tata McGraw Hill Publishing Co. Ltd.	7th Edition,2003	
4	Fundamentals of Compressible Flow with Aircraft and Rocket propulsion	S. M. Yahya	New Age International Publications, New Delhi	4th Edition,2014	
5	Aerodynamics	Clancy L. J.	Sterling book house, New Delhi	2006	

Mechanisms and Machine Theory					
Course Code	18AE44/18AS44	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

- Understand the theory of mechanisms including velocity, acceleration and static force analysis.
- Acquire knowledge of spur gears, gear train, balancing of rotating and reciprocating masses.
- Understand the concept of governors and gyroscope

Module-1

Introduction to Mechanisms:

Types of constrained motion, Link and its types, joints and its types, kinematic pair and its types, degrees of freedom, Grubler's criterion, Types of kinematic chains and inversions:

Inversions of Four bar chain: Beam engine, coupling rod of a locomotive, Watt's indicator mechanism. Inversions of Single Slider Crank Chain: Pendulum pump or Bull engine, Oscillating cylinder engine, Rotary internal combustion engine, Crank and slotted lever quick return motion mechanism, Whitworth quick return motion mechanism. Inversions of Double Slider Crank Chain: Elliptical trammels, Scotch yoke mechanism, Oldham's coupling. Straight line motion mechanisms: Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms: Geneva wheel mechanism and Ratchet and Pawl mechanism, Ackerman steering gear mechanism.

Module-2

Velocity, Acceleration and static force analysis of Mechanisms (Graphical Methods):

Velocity and acceleration analysis of Four Bar mechanism, slider crank mechanism and Simple Mechanisms by vector polygons.

Static force analysis: Introduction: Static equilibrium, Equilibrium of two and three force members. Members with two forces and torque. Free body diagrams, principle of virtual work. Static force analysis of four bar mechanism and slider-crank mechanism with and without friction.

Module-3

Spur Gears and Gear Trains

Spur Gears: Gear terminology, law of gearing, Path of contact, Arc of contact, Contact ratio of spur gear, Interference in involute gears, Methods of avoiding interference.

Gear Trains: Simple gear trains, Compound gear trains, Reverted gear trains, Epicyclic gear trains, Analysis of epicyclic gear train (Algebraic and tabular methods), torques in epicyclic trains.

Module-4

Balancing of Rotating and Reciprocating Masses

Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods).

Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi-cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods)

Module-5

Governors and Gyroscope

Governors: Types of governors; force analysis of Porter and Hartnell governors, Controlling force, stability, sensitiveness, isochronism, effort and power of Porter and Hartnell governors.

Gyroscopes: Vectorial representation of angular motion, gyroscopic couple, effect of gyroscopic couple on plane disc and aeroplane

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the theory of velocity, acceleration and static force analysis to design of mechanisms.
- 2. CO2: Design spur gears, gear train, balancing of rotating and reciprocating masses.
- 3. CO3: Apply governors and gyroscope

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s			<u>.</u>
1	Theory of Machines	Rattan S.S	Tata McGraw-Hill Publishing Company Ltd., New Delhi	3rd edition -2009
2	Theory of Machines & Mechanisms	J.J. Uicker, G.R. Pennock, J.E. Shigley	OXFORD	3rd Ed. 2009
Refe	rence Books			
1	Theory of Machines	R. S. Khurmi, J.K. Gupta	Eurasia Publishing House	2008
2	Design of Machinery	Robert L Norton	McGraw Hill	2001
3	Mechanism and Machine theory	Ambekar	PHI Learning Pvt. Ltd	2007

Aircraft Material Science

Aircrait Material Science				
Course Code	18AE45	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Acquire knowledge on aircraft materials- metallic and non-metallic
- Understand the properties of super alloys, ablative materials and high energy material.
- Study material corrosion and prevention

Module-1

Introduction to Aircraft Materials

General properties of materials, Definition of terms, Requirements of aircraft materials, Testing of aircraft materials, Inspection methods, Application and trends in usage in aircraft structures and engines, Selection of materials for use in aircraft.

Aircraft Metal Alloys

Aluminum alloys, Magnesium alloys, Titanium alloys, Plain carbon and Low carbon Steels, Corrosion and Heat resistant steels, Maraging steels, Copper alloys, Producibility and Surface treatments aspects for each of the above:

$Module-\overline{2}$

Super Alloys

General introduction to super alloys, Nickel based super alloys, Cobalt based super alloys, and Iron based super alloys, manufacturing processes associated with super alloys, Heat treatment and surface treatment of super alloys.

Composite Materials: Definition and comparison of composites with conventional monolithic materials, Reinforcing fibers and Matrix materials, Fabrication of composites and quality control aspects, Carbon-Carbon Composites production, properties and applications, inter metallic matrix composites, ablative composites based on polymers, ceramic matrix, metal matrix composites based on aluminum, magnesium, titanium and nickel based composites for engines.

Module-3

Polymers, Polymeric Materials & Plastics and Ceramics & Glass

Knowledge and identification of physical characteristics of commonly used polymeric material: plastics and its categories, properties and applications; commonly used ceramic, glass and transparent plastics, properties and applications, adhesives and sealants and their applications in aircraft.

Module-4

Ablative Materials

Ablation process, ablative materials and applications in aerospace.

Aircraft Wood, Rubber, Fabrics & Dope and Paint: Classification and properties of wood, Seasoning of wood, Aircraft woods, their properties and applications, Joining processes for wood, Plywood; Characteristics and definition of terminologies pertaining to aircraft fabrics and their applications, Purpose of doping and commonly used dopes; Purpose of painting, Types of aircraft paints, Aircraft painting process.

Module-5

Corrosion and its Prevention

Knowledge of the various methods used for removal of corrosion from common aircraft metals and methods employed to prevent corrosion.

High Energy Materials: Materials for rockets and missiles. Types of propellants and its general and desirable properties, insulating materials for cryogenic engines. Types of solid propellants: Mechanical characterization of solid propellants using uni-axial, strip-biaxial and tubular tests.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Identify appropriate aircraft materials for a given application.
- 2. CO2: Explain the properties of super alloys, ablative materials and high energy material.
- 3. CO3: Understand material corrosion process and apply prevention technique.

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
book/s			
Aircraft Material and Processes	Titterton G F	English Book Store, New Delhi	1998
Advanced Aerospace Material	H Buhl	Spring Berlin	1992
rence Books			
Handbook of Aircraft materials	C G Krishnadas	Interline publishers, Bangalore	1993
Aerospace material	Balram Gupta, S	Vol. 1,2,3 ARDB, Chand & Co	1996
Materials for Missiles and Space	Parker E R	John Wiley, McGraw-Hill	1963
Materials of Aircraft Construction	Hill E T	Pitman London	
	book/s Aircraft Material and Processes Advanced Aerospace Material rence Books Handbook of Aircraft materials Aerospace material Materials for Missiles and Space	Author/s book/s Aircraft Material and Processes Advanced Aerospace Material H Buhl rence Books Handbook of Aircraft materials Aerospace material Aerospace material Balram Gupta, S Materials for Missiles and Space Parker E R	Name of the Publisher

P. P. A. P. P. CALLA VINICAL A. P. L. CONTROLLO VINICAL DE LA CONTROLLO VINICAL DEL CONTROLLO VINICAL DE LA CONTROLLO VINICAL DEL CONTROLLO VINICAL DE LA CONTROLLO VINICAL DEL CONTROLLO VINICAL		
B.E AERONAUTICAL ENGINEERING		
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)		
choice Bused Credit System (CBCS) and Catecome Bused Education (CBE)		
SEMESTER - IV		
SEVIESTER - IV		
T		
Turbomachines		

Turbomachines			
Course Code	18AE46	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the basics of turbomachines, the energy transfer and energy transformation in them.
- Acquire the knowledge on design of centrifugal and axial turbomachines.
- Study hydraulic pumps and turbines.

Module-1

Introduction to turbomachines:

Classification and parts of a turbo machines; comparison with positive displacement machines; dimensionless parameters and their physical significance; specific speed; illustrative examples on dimensional analysis and model studies.

Energy transfer in turbomachines:

Basic Euler turbine equation and its alternate form; components of energy transfer; general expression for degree of reaction; construction of velocity triangles for different values of degree of reaction.

Module-2

Compression process:

Overall isentropic efficiency of compression; stage efficiency; comparison and relation between overall efficiency and stage efficiency; polytropic efficiency; pre heat factor.

Expansion process:

Overall isentropic efficiency for a turbine; stage efficiency for a turbine; comparison and relation between stage efficiency and overall efficiency, polytropic efficiency; reheat factor for expansion process.

Module-3

Design and performance analysis of Centrifugal compressors:

Types, design parameters, flow analysis in impeller blades, volutes and diffusers, losses, slip factor, characteristic curves, surging, choking. Construction details.

Design and performance analysis of axial fans and compressors:

Stage velocity diagrams, enthalpy-entropy diagrams, stage losses and efficiency, work done, simple stage design problems, performance characteristics, instability in axial compressors. Construction details.

Module-4

Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficiency, flow passage; subsonic, transonic and supersonic turbines, multi-staging of turbine; exit flow conditions; turbine cooling

Design and performance analysis of radial turbines:

Thermodynamics and aerodynamics of radial turbines; radial turbine characteristics; losses and efficiency; design of radial turbine.

Module-5

Hydraulic pumps:

Centrifugal and axial pumps. Manometric head, suction head, delivery head; manometric efficiency, hydraulic efficiency, volumetric efficiency, overall efficiency; multi stage pumps. Characteristics of pumps.

Hydraulic turbines:

Classification; Module quantities; Pelton wheel, Francis turbine, Kaplan turbine and their velocity triangles. Draft tubes and their function. Characteristics of hydraulic turbines.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Compute the energy transfer and energy transformation in turbomachines.
- 2. CO2: Analyze the design of turbomachine blades.
- 3. CO3: Apply hydraulic pumps and turbines for specific requirements

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Text	book/s				
1	Turbines, Compressors & Fans	S.M. Yahya	Tata-McGraw Hill Co	2 nd Edition (2002)	
2	Principles of Turbo Machinery	D.G. Shephered	The Macmillan Company	1964	
Refe	Reference Books				
1	An introduction to Energy conversion, Volume III, Turbo machinery	V.Kadambi and Manohar Prasad	Wiley Eastern Ltd	1977	
2	Turbomachines	Govinde Gowda and Nagaraj	MM Publishers	9 th Edition,2016	
3	Fundamentals of Turbomachinery	B.K.Venkanna	Prentice Hall India	2009	

MATERIAL TESTING LAB			
Course Code	18AEL47A	CIE Marks	40
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60
Credits	02	Exam Hours	03

Course Learning Objectives:

- Understand the relations among materials and their properties.
- Understand the formation, properties and significance of the alloys through different experiments.
- Understand the types, advantages and applications of various NDT methods.

Sl.	Experiments	
No.		
1	Hardness Testing – Vicker's, Brinell, Rockwell	
2	Tensile Test	
3	Flexural Test	
4	Tensional Test	
5	Impact Test	
6	Shear Test	
7	Fatigue Test	
8	Preparation of specimen for metallographic examination of different engineering materials. Identification	
9	Heat treatment: Annealing, normalizing, hardening and tempering of steel. Hardness studies of heat-	
10	To study the wear characteristics of ferrous, non-ferrous and composite materials for different parameters.	
11	Visual Testing Technique, Dye penetration testing. To study the defects of Cast and Welded specimens.	
12	Magnetic Particle Inspection.	
13	Ultrasonic Inspection.	
14	Eddy Current Inspection	

Course Outcomes: At the end of the course the student will be able to:

- Apply the relations among materials and their properties.
- Differentiate the formation, properties and significance of the alloys through different experiments.
- Understand the different types, advantages and applications of various NDT methods.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. ■

MEASUREMENTS AND METROLOGY LAB

WEASUREMENTS AND WETROLOGI LAD			
Course Code	18AEL47B	CIE Marks	40
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60
Credits	02	Exam Hours	03

Course Learning Objectives:

- Learn the concepts of mechanical measurements and metrology
- Use the concept of accuracy, error and calibration
- Use the basic metrological instruments

Sl.	Experiments	
No.		
1	Calibration of Pressure Gauge	
2	Calibration of Thermocouple	
3	Calibration of LVDT	
4	Calibration of Load cell	
5	Determination of modulus of elasticity of a mild steel specimen using strain gauges.	
6	Comparison and measurements using vernier caliper and micrometer	
7	Measurement of vibration parameters using vibration setup.	
8	Measurements using Optical Projector / Toolmaker Microscope.	
9	Measurement of angle using Sine Center / Sine bar / bevel protractor	
10	Measurement of alignment using Autocollimator / Roller set	
11	Measurement of Screw threads Parameters using Two-wire or Three-wire method.	
12	Measurements of Surface roughness, Using Tally Surf/Mechanical Comparator	
13	Measurement of gear tooth profile using gear tooth vernier /Gear tooth micrometer	
14	Calibration of Micrometer using slip gauges	

Course Outcomes: At the end of the course the student will be able to:

- CO1: Identify and classify different measuring tools related to experiments.
- CO2: Identify, define, and explain accuracy, resolution, precision, and some additional terminology.
- CO3: Conduct, Analyze, interpret, and present measurement data from measurements experiments.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. ■

B.E AERONAUTICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - IV

COMPUTER AIDED AIRCRAFT DRAWING

COM CIERTIDED MINORIA I DIRIVING			
Course Code	18AEL48/18ASL48	CIE Marks	40
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60
Credits	02	Exam Hours	03

Course Learning Objectives:

- Understand and interpret drawings of machine and aircraft components
- Prepare assembly drawings either manually or by using standard CAD packages.
- Familiarize with standard components and their assembly of an aircraft.

	Familiarize with standard components and their assembly of an aircraft.				
Sl. No.	<u> </u>				
	PART A				
1	Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on axis inclinations, spheres and hollow solids). True shape of sections.				
2	Orthographic Views: Conversion of pictorial views into orthographic projections of simple machine parts with or without section. (Bureau of Indian Standards conventions are to be followed for the				
	drawings) Hidden line conventions. Precedence of lines.				
	PART B				
3	Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External) BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.				
4	Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with				
	washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper				
	and split pin for locking, counter sunk head screw, grub screw, Allen screw.				
5	5 Keys & Joints:				
Parallel key, Taper key, Feather key, Gibhead key and Woodruff key					
6 Riveted Joints: Single and double riveted lap joints, butt joints with single/double cover str					
7 Couplings:					
	Split Muff coupling, protected type flanged coupling, pin (bush) type flexible coupling, Oldham's				
	coupling and universal coupling (Hooks' Joint)				
	PART C				
8	Modelling of propeller and hub assembly				
9	Modelling of wing assembly				
10	Modelling of fuselage assembly				
11	Modelling of Engine Mounts				
12	Modelling of main rotor blade assembly of helicopter				
13	Modelling of UAV assembly				
14	Modelling of Landing Gear Assembly				

Course outcomes:

At the end of the course the student will be able to:

- CO1 :Distinguish drawings of machine and aircraft components
- CO2 :Identify assembly drawings either manually or by using standard CAD packages.
- CO3 :Practice with standard components and their assembly of an aircraft.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. ■

B.E.(Common to all Programmes)

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - IV

ADDITIONAL MATHEMATICS – II

(Mandatory Learning Course: Common to All Programmes)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B.Tech. programmes)

Course Code	18MATDIP41	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:1:0)	SEE Marks	60
Credits	0	Exam Hours	03

Course Learning Objectives:

- To provide essential concepts of linear algebra, second & higher order differential equations along with methods to solve them.
- To provide an insight into elementary probability theory and numerical methods.

Module-1

Linear Algebra: Introduction - rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and Eigen vectors of a square matrix. Problems.

Module-2

Numerical Methods: Finite differences. Interpolation/extrapolation using Newton's forward and backward difference formulae (Statements only)-problems. Solution of polynomial and transcendental equations – Newton-Raphson and Regula-Falsi methods (only formulae)- Illustrative examples. Numerical integration: Simpson's one third rule and Weddle's rule (without proof) Problems.

Module-3

Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators. [Particular Integral restricted to $R(x) = e^{ax}$, $\sin ax / \cos ax$ for $f(D)_{y} = R(x)$.]

Module-4

Partial Differential Equations(PDE's):- Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Module-5

Probability: Introduction. Sample space and events. Axioms of probability. Addition & multiplication theorems. Conditional probability, Bayes's theorem, problems.

Course Outcomes:

At the end of the course the student will be able to:

CO1:Solve systems of linear equations using matrix algebra.

CO2: Apply the knowledge of numerical methods in modelling and solving engineering problems.

CO3: Make use of analytical methods to solve higher order differential equations.

CO4: Classify partial differential equations and solve them by exact methods.

CO5: Apply elementary probability theory and solve related problems.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book			
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	43 rd Edition, 2015
Refe	rence Books			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015
2	Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publishers	7th Edition, 2007
3	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015

MANAGEMENT AND ENTREPRENEURSHIP

WHIT WITCH THE PET TREET REPORTED			
Course Code	18AE51/18AS51	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the basic concepts of management, planning, organizing and staffing.
- Acquire the knowledge to become entrepreneur.
- Comprehend the requirements towards the small-scale industries and project preparation.

Module-1

Management: Definition, Importance – Nature and Characteristics of Management, Management Functions, Roles of Manager, Levels of Management, Managerial Skills, Management & Administration, Management as a Science, Art & Profession

Planning: Nature, Importance and Purpose Of Planning, Types of Plans, Steps in Planning, Limitations of Planning, Decision Making – Meaning, Types of Decisions- Steps in Decision Making.

Module-2

Organizing and Staffing: Meaning, Nature and Characteristics of Organization – Process of Organization, Principles of Organization, Departmentalisation, Committees – meaning, Types of Committees, Centralization Vs Decentralization of Authority and Responsibility, Span of Control (Definition only), Nature and Importance of Staffing, Process of Selection and Recruitment.

Directing and Controlling: Meaning and Nature of Directing-Leadership Styles, Motivation Theories Communication – Meaning and Importance, Coordination- Meaning and Importance, Techniques of Coordination. Controlling – Meaning, Steps in Controlling.

Module-3

Social Responsibilities of Business: Meaning of Social Responsibility, Social Responsibilities of Business towards Different Groups, Social Audit, Business Ethics and Corporate Governance.

Entrepreneurship: Definition of Entrepreneur, Importance of Entrepreneurship, concepts of Entrepreneurship, Characteristics of successful Entrepreneur, Classification of Entrepreneurs, Intrapreneur – An Emerging Class, Comparison between Entrepreneur and Intrapreneur, Myths of Entrepreneurship, Entrepreneurial Development models, Entrepreneurial development cycle, Problems faced by Entrepreneurs and capacity building for Entrepreneurship.

Module-4

Modern Small Business Enterprises: Role of Small Scale Industries, Concepts and definitions of SSI Enterprises, Government policy and development of the Small Scale sector in India, Growth and Performance of Small Scale Industries in India, Sickness in SSI sector, Problems for Small Scale Industries, Impact of Globalization on SSI, Impact of WTO/GATT on SSIs, Ancillary Industry and Tiny Industry (Definition only). Institutional Support for Business Enterprises: Introduction, Policies & Schemes of Central–Level Institutions, State-Level Institutions.

Module-5

Project Management: Meaning of Project, Project Objectives & Characteristics, Project Identification-Meaning & Importance; Project Life Cycle, Project Scheduling, Capital Budgeting, Generating an Investment Project Proposal, Project Report-Need and Significance of Report, Contents, Formulation, Project Analysis-Market, Technical, Financial, Economic, Ecological, Project Evaluation and Selection, Project Financing, Project Implementation Phase, Human & Administrative aspects of Project Management, Prerequisites for Successful Project Implementation.

New Control Techniques- PERT and CPM, Steps involved in developing the network, Uses and Limitations of PERT and CPM

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Explain about the management and planning.
- 2. CO2: Apply the knowledge on planning, organizing, staffing, directing and controlling.
- 3. CO3: Describe the requirements towards the small-scale industries and project preparation.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl.	Title of the Book	Name of the	Name of the Publisher	Edition and Year
No.	21010 01 0110 2 0 011	Author/s	1 (42220 01 0210 1 422222201	20101011 01101 2 001
Text	books			
1	Principles of Management	P.C.Tripathi, P.N.Reddy	Tata Mc Graw Hill	
2	Dynamics of Entrepreneurial Development & Management	Vasant Desai	Himalaya Publishing House	
3	Entrepreneurship Development	Poornima. M. Charantimath	Pearson Education	2006
Refe	rence Books			
1	Management Fundamentals- Concepts, Application, Skill Development	RobersLusier- Thomson		
2	Entrepreneurship Development	S.S. Khanka	S. Chand & Co	
3	Management	Stephen Robbins	Pearson Education	17 th Edition,2003

SEMESTER - V

AERODYNAMICS - II				
Course Code	18AE52/18AS52	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:1:0)	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Understand the concepts of compressible flow and shock phenomenon
- Acquire the knowledge of oblique shock and expansion wave formation.
- Appreciate the measurement in high speed flow.

Module-1

One Dimensional Compressible Flow: Energy, Momentum, continuity and state equations, velocity of sound, Adiabatic steady state flow equations, Flow through converging, diverging passages, Performance under various back pressures. Numericals.

Module-2

Normal Shock: Prandtl Meyer equation and Rankine – Hugonoit relation, Normal shock equations: Property ratios in terms of upstream Mach number, Numericals, Moving Normal Shock wave.

Module-3

Oblique shocks and Expansion waves: Prandtl equation and Rankine – Hugonoit relation, Normal shock equations, Pitot static tube, corrections for subsonic and supersonic flows, Oblique shocks and corresponding equations, Hodograph and pressure turning angle, shock polars, flow past wedges and concave corners, strong, weak and detached shocks, Flow past convex corners, Prandtl –Meyer expansion function, Reflection and interaction of shocks and expansion, waves, Families of shocks. Basics of Fanno and Rayleigh Flow.

Module-4

Differential Equations of Motion for Steady Compressible Flows:

Basic potential equations for compressible flow. Linearisation of potential equation-small perturbation theory. Methods for solution of nonlinear potential equation —Introduction, Method of characteristics, Boundary conditions, Pressure coefficient expression, small perturbation equation for compressible flow - Prandtl, Glauret and Geothert's rules - Ackert's supersonic airfoil theory, Von-Karman rule for transonic flow, Lift, drag pitching moment and center of pressure of supersonic profiles.

Module-5

Measurements in High speed Flow: Types of subsonic wind tunnels - Balances and measurements - Interference effects- transonic, Supersonic and hypersonic wind tunnels and characteristic features, their operation and performance - Shock tubes and shock tunnels - Free flight testing - Measurements of pressure, velocity and Mach number -Flow visualization methods of subsonic and supersonic flows.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Utilize the concepts of compressible flow and shock phenomenon
- 2. CO2: Apply knowledge of oblique shock and expansion wave formation.
- 3. CO3: Measure the parameters high speed flow.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textl	books			
1	Modern Compressible Flow	John D Anderson	Mc Graw Hill	3 rd edition, 2012
2	Gas Dynamics	Radhakrishnan, E	Prentice Hall of India	5 th edition,2014
Refe	rence Books			
1	Dynamics and Thermodynamics of Compressible fluid flow	Ascher. H. Saphiro	John Wiley & Sons	1 st edition,1977
2	Fundamentals of Compressible flow	Yahya, S.M	NEW AGE	2009
3	Elements of Gas Dynamics	H.W. Liepmann and A. Roshko	Dover Publications Inc	2003
4	Compressible Fluid Dynamics with Computer Application	Hodge B. K, Koenig K	Prentice Hall, New York	1 st edition,1995
5	Elements of gas dynamics	Zucrow, M.J. and Anderson, J.D	McGraw - Hill Book Co., New York	1989

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V AIRCRAFT STRUCTURES - I Course Code 18AE53 CIE Marks 40 Teaching Hours/Week (L:T:P) (3:1:0) SEE Marks 60

Exam Hours

03

Course Learning Objectives:

- Comprehend the basic concepts of stress and strain.
- Acquire the knowledge of types of loads on aerospace vehicles.

04

• Understand the theory of elasticity.

Module-1

Credits

Design for Static Strength

Introduction: Normal, shear, biaxial and tri-axial stresses, Stress tensor, Principal Stresses, Stress Analysis, Design considerations, Codes and Standards. Static Strength: Static loads and factor of safety, Theories of failure: Maximum normal stress theory, Maximum shear stress theory, Maximum strain theory, Strain energy theory, and Distortion energy theory, failure of brittle and ductile materials.

Module-2

Design for Impact and Fatigue Strength

Impact Strength: Introduction, Impact stresses due to axial, bending and torsional loads, effect of inertia. Fatigue Strength: Introduction, S-N Diagram, Low cycle fatigue, High cycle fatigue, Endurance limit, modifying factors: size effect, surface effect, Stress concentration and its effects, Fluctuating stresses, Goodman and Soderberg relationship, stresses due to combined loading, cumulative fatigue damage.

Module-3

Loads on Aircraft and Aircraft Materials

Loads on Aircraft: Structural nomenclature, Types of loads, load factor, Aerodynamics loads, Symmetric manoeuvre loads, Velocity diagram, Function of structural components.

Aircraft Materials: Metallic and non-metallic materials, Use of Aluminum alloy, titanium, stainless steel and composite materials. Desirable properties for aircraft application.

Module-4

Theory of Elasticity and Structures:

Theory of Elasticity: Concept of stress and strain, derivation of Equilibrium equations, strain displacement relation, compatibility conditions and boundary conditions. Plane stress and Plane strain problems in 2D elasticity. Principle Stresses and Orientation of Principle Directions.

Structures: Statically Determinate and Indeterminate structures, Analysis of plane truss, Method of joints, 3D Truss, Plane frames, Composite beam, Clapeyron's Three Moment Equation.

Module-5

Energy Methods and Columns

Energy Methods: Strain Energy due to axial, bending and Torsional loads. Castigliano's theorem, Maxwell's Reciprocal theorem.

Columns: Columns with various end conditions, Euler's Column curve, Rankine's formula, Column with initial curvature, Eccentric loading, south-well plot.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts of stress and strain analysis.
- 2. CO2: Compute the impact stress.
- 3. CO3: Identify appropriate materials for suitable application based on properties.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	books			
1	Aircraft Structures for Engineering Students	Megson, T.M.G	Edward Arnold	1995
2	Theory of Elasticity	Timoshenko and Goodier	McGraw Hill Co	
3	Design of Machine Elements	V.B. Bhandari	Tata McGraw Hill Publishing CompanyLtd., New Delhi	2nd Edition 2007
Refe	rence Books	1		
1	Machine Design	Robert L. Norton	Pearson Education Asia	2001
2	Analysis of Aircraft Structures – An Introduction	Donaldson, B.K	McGraw-Hill	1993
3	Strength of Materials	Timoshenko, S	Princeton D Von Nostrand Co	1990
4	Mechanical Engineering Design	Joseph E Shigley and Charles R.Mischke	McGraw Hill International	6th Edition 2009
5	Aircraft Structures	Peery, D.J., and Azar, J.J	McGraw, Hill	2nd edition,1993
6	Analysis and Design of Flight Vehicles Structures	Bruhn. E.H	Tri – state off set company, USA	1985

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V INTRODUCTION TO COMPOSITE MATERIALS

INTRODUCTION TO COMI OSITE MATERIALS			
Course Code	18AE54	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the advantages of composite materials compared to conventional materials
- Evaluate the properties of polymer matrix composites with fiber reinforcements
- Explain the manufacturing process and applications of composite materials

Module-1

Introduction to Composite Materials

Definition, classification of composite materials, classification of reinforcement - particulate, short fiber, whiskers, long fibers composites. matrix materials - metals, ceramics, polymers (including thermoplastics and thermosets), Carbon-Carbon Composites

Metal Matrix Composites:

MMC with particulate and short fiber reinforcement, liquid and solid state processing of MMC – stir casting, squeeze casting. Properties of MMCs, Applications of Al, Mg, Ti based MMC

Module-2

Processing of Polymer Matrix Composites: Thermoset Polymers, Hand layup Process, Vacuum Bagging Process, Post Curing Process, Filament winding, Pultrusion, Pulforming, Autoclave Process

Processing of Polymer Matrix Composites: Thermoplastic Polymers, Extrusion process, Injection Moulding Process, Thermo-forming process.

Post Processing of Composites – Adhesive bonding, drilling, cutting processes.

Module-3

Micro-Mechanical Behavior of a Lamina

Determination of elastic constants-Rule of mixtures, transformation of coordinates, micro-mechanics based analysis and experimental determination of material constants.

Macro-Mechanical Behavior of a Lamina:

Global and local axis for angle lamina, determination of global and local stresses and moduli, for 2D-UD lamina with different fiber orientation and different fiber materials glass, carbon and aramid fiber reinforcement.

Module-4

Failure Theory – Tsai-Hill, Tsai-Wu, Max Stress and Max Strain

Classical plate theory- Stress and strain variation in a laminate- Resultant forces and moments- A B & D matrices- Strength analysis of a laminate.

Module-5

Inspection & Quality Control: Destructive & Non-Destructive Testing, Tensile, Compression, Flexural, Shear, Hardness; ultrasonic testing – A-B-C scan

Applications of Composites Materials

Automobile, Aircrafts, missiles, Space hardware, Electrical and electronics, marine, recreational and Sports equipment, future potential of composites.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Explain the advantages of using composite materials as an alternative to conventional materials for specific applications
- 2. CO2: Describe the advanced fabrication and processing for producing composite parts.
- 3. CO3: Evaluate the micro- and macro-mechanical behavior of composite laminates

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textl	oooks			
1	Composite Materials- Science and Engineering	K.K Chawla	Springer Verlag	II edition,1998
2	Mechanics of Composites	Autar Kaw	CRC Press	II edition,2006
Refe	rence Books			•
1	Composite Materials Handbook	Mein Schwartz	Department of Defense, USA	2002
2	Non-Destructive Testing of Composite Materials	Ajay Kapadia	TWI Publications	2006
3	Mechanics of Composite Materials	R M Jones	Taylor & Francis	2 nd Edn,2015

AIRCRAFT SYSTEMS & INSTRUMENTATION

AIRCRAFT SYSTEMS & INSTRUMENTATION			
Course Code	18AE55/18AS55	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the aircraft control systems.
- Understand the aircraft systems.
- Acquire the knowledge of aircraft instruments.

Module-1

Airplane Control Systems: Conventional Systems, fully powered flight controls, Power actuated systems, Modern control systems, Digital fly by wire systems, Auto pilot system active control Technology.

Module-2

Aircraft Systems: Hydraulic systems, Study of typical workable system, components, Pneumatic systems, Advantages, Working principles, Typical Air pressure system, Brake system, Typical Pneumatic power system, Components, Landing Gear systems, Classification.

Module-3

Engine Systems: Fuel systems for Piston and jet engines, Components of multi engines. lubricating systems for piston and jet engines - Starting and Ignition systems - Typical examples for piston and jet engines.

Module-4

Auxiliary System: Basic Air cycle systems, Vapour Cycle systems, Evaporative vapour cycle systems, Evaporative air cycle systems, Fire protection systems, Deicing and anti-icing systems.

Module-5

Aircraft Instruments: Flight Instruments and Navigation Instruments, Gyroscope, Accelerometers, Air speed Indicators, TAS, EAS, Mach Meters, Altimeters, Principles and operation, Study of various types of engine instruments, Tachometers, Temperature gauges, Pressure gauges, Operation and Principles.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Distinguish the conventional and modern control systems.
- 2. CO2: Classify the aircraft systems.
- 3. CO3: Categorize different types of aircraft instruments.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textl	Textbooks				
1	Aircraft Systems: Mechanical, Electrical and Avionics-Subsystem Integration	Ian Moir and Allan Seabridge	Wiley India Pvt Ltd	3 rd edition, 2012	
2	Aircraft Instruments and Integrated Systems	Pallet, E.H.J	Longman Scientific and Technical	1996	

1	Aircraft Systems (Fundamentals of Flight Vol. IV)	Lalit Gupta and OP. Sharma	Himalayan Books	2006
2	Gas Turbine Technology	Treager. S	McGraw-Hill	3 rd edition,2013
3	TheaircraftEngineersHandbook,No4, Instruments	R.W. Sloley and W.H. Coulthard		6 th Edition,2005
4	Pneumatic Systems	SR. Majumdar	Tata McGraw Hill Publishing Co	1 st Edition,2001
5	Aircraft Hydraulic Systems	William A Neese	Himalayan Books	2007

THEORY OF VIBRATIONSCourse Code18AE56CIE Marks40Teaching Hours/Week (L:T:P)(3:0:0)SEE Marks60Credits03Exam Hours03

Course Learning Objectives:

- Understand the basic concepts of vibrations.
- Understand the working principle of vibration measuring instruments.
- Acquire the knowledge of numerical methods for multi-degree freedom systems.

Module-1

Introduction: Types of vibrations, S.H.M, principle of super position applied to Simple Harmonic Motions. Beats, Fourier theorem and simple problems.

Module-2

Undamped Free Vibrations: Single degree of freedom systems. Undamped free vibration, natural frequency of free vibration, Spring and Mass elements, effect of mass of spring, Compound Pendulum.

Damped Free Vibrations: Single degree of freedom systems, different types of damping, concept of critical damping and its importance, study of response of viscous damped systems for cases of under damping, critical and over damping, Logarithmic decrement.

Module-3

Forced Vibration: Single degree of freedom systems, steady state solution with viscous damping due to harmonic force. Solution by Complex algebra, reciprocating and rotating unbalance, vibration isolation, transmissibility ratio due to harmonic excitation and support motion.

Vibration Measuring Instruments & Whirling of Shafts: Vibration of elastic bodies – Vibration of strings – Longitudinal, lateral and torsional Vibrations.

Module-4

Systems with Two Degrees of Freedom: Introduction, principle modes and Normal modes of vibration, co-ordinate coupling, generalized and principal co-ordinates, Free vibration in terms of initial conditions. Geared systems. Forced Oscillations-Harmonic excitation. Applications: Vehicle suspension, Dynamic vibration absorber and Dynamics of reciprocating Engines.

Continuous Systems: Introduction, vibration of string, longitudinal vibration of rods, Torsional vibration of rods, Euler's equation for beams.

Module-5

Numerical Methods for Multi-Degree Freedom Systems:

Introduction, Influence coefficients, Maxwell reciprocal theorem, Dunkerley's equation. Orthogonality of principal modes, Method of matrix iteration-Method of determination of all the natural frequencies using sweeping matrix and Orthogonality principle. Holzer's method, Stodola method.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the principle of super position to Simple Harmonic Motions.
- 2. CO2: Determine the vibrations using vibration instruments.
- 3. CO3: Analyze the multi-degree freedom systems.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Theory of Vibration with Applications	W.T. Thomson and Marie Dillon Dahleh	Pearson Education	5 th edition, 2008
2	Mechanical Vibrations	V.P. Singh	DhanpatRai& Company Pvt. Ltd	2016
Referen	ce Books			
1	Mechanical Vibrations	S.S. Rao	Pearson Education Inc	4th Edition,2003
2	Mechanical Vibrations	S. Graham Kelly	Tata McGraw Hill	Special Indian edition, 2007
3	Theory & Practice of Mechanical vibrations	J.S. Rao & K. Gupta	New Age International Publications, New Delhi	2001
4	Elements of Vibrations Analysis	Leonanrd Meirovitch	Tata McGraw Hill	Special Indian edition, 2007

EDODVNAMICCIAD

	AERODYNAMICS LAB		
Course Code	18AEL57/18ASL57	CIE Marks	40
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60
Credits	02	Exam Hours	03

Course Learning Objectives:

- Be acquainted with basic principles of aerodynamics using wind tunnel.
- Acquire the knowledge on flow visualization techniques.
- Understand the procedures used for calculating the lift and drag.

Sl.	Experiments
No.	
1	Calibration of a subsonic wind tunnel: test section static pressure and total head distributions.
2	Smoke flow visualization studies on a two-dimensional circular cylinder at low speeds.
3	Smoke flow visualization studies on a two dimensional airfoil at different angles of incidence at low speeds
4	Smoke flow visualization studies on a two dimensional multi element airfoil with flaps and slats at different angles of incidence at low speeds
5	Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify zones of attached and separated flows.
6	Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.
7	Surface pressure distributions on a two-dimensional rough circular cylinder at low speeds and calculation of pressure drag.
8	Surface pressure distributions on a two-dimensional symmetric airfoil and estimation of center of
9	Surface pressure distributions on a two-dimensional cambered airfoil at different angles of incidence,
10	Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.
11	Calculation of total drag of a two-dimensional cambered airfoil at low speeds at incidence using pitot-static probe wake survey.
12	Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.
13	Calculation of aerodynamic coefficients and forces acting on a model aircraft at various Angle of Attack and speeds using wind tunnel balance (With and Without Yaw).
14	Pressure measurements on aerofoil for a case of reverse flow.
Com	are Outcomes. At the end of the course the student will be able to

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the flow visualization techniques.
- 2. CO2: Estimate the pressure distribution over the bodies.
- 3. CO3: Calculate the lift and drag.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. ■

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V					
ENERGY CONVERSION AND FLUID MECHANICS LAB					
Course Code	18AEL58	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60		
Credits	02	Exam Hours	03		

Course Learning Objectives:

- Familiarize with the flash point, fire point and viscosity of lubricating oils.
- Study IC engine parts, opening and closing of valves to draw the valve-timing diagram.
- Gain the knowledge of various flow meters and the concept of fluid mechanics.
- Understand the Bernoulli's Theorem.

Sl.	Experiments
No.	
1	Determination of Flash point and Fire point of lubricating oil using Abel Pensky and Pensky Martins
	Apparatus.
2	Determination of Calorific value of solid, liquid and gaseous fuels
3	Determination of Viscosity of lubricating oil using Torsion viscometer.
4	Valve Timing diagram of 4-stroke IC Engine
5	Calculation of work done and heat transfer from PV and TS diagram using Planimeter
6	Performance Test on Four stroke Petrol Engine and calculations of IP, BP, Thermal efficiencies,
	SFC, FP and to draw heat balance sheet.
7	Performance Test on Four stroke Multi-cylinder Engine and calculations of IP, BP, Thermal
	efficiencies, SFC, FP and to draw heat balance sheet.
8	Calibration of Venturimeter
9	Determination of Coefficient of discharge for a small orifice by a constant head method.
10	Determination of Viscosity of a Fluid
11	Calibration of contracted Rectangular Notch
12	Verification of Bernoulli's equation.
13	Pipe friction apparatus with loss of head on pipe fittings
14	Determination of Coefficient of loss of head in a sudden contraction and friction factor.

Course outcomes:

At the end of the course the student will be able to:

- 1. CO1 :Operate the instrument and measure the BP, FP, IP and AF ratio.
- 2. CO2: Find the efficiency of the engine and Estimate the calorific value of the given fuel.
- 3. CO3: Verify the Bernoulli's equation.
- 4. CO4: Evaluate the viscosity of fluid.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. ■

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – V

ENVIRONMENTAL STUDIES

Course Code	18CIV59	CIE Marks	40
Teaching Hours / Week (L:T:P)	(1:0:0)	SEE Marks	60
Credits	01	Exam Hours	02

Module - 1

Ecosystems (Structure and Function): Forest, Desert, Wetlands, Riverine, Oceanic and Lake.

Biodiversity: Types, Value; Hot-spots; Threats and Conservation of biodiversity, Forest Wealth, and Deforestation.

Module - 2

Advances in Energy Systems (Merits, Demerits, Global Status and Applications): Hydrogen, Solar, OTEC, Tidal and Wind.

Natural Resource Management (Concept and case-studies): Disaster Management, Sustainable Mining, Cloud Seeding, and Carbon Trading.

Module - 3

Environmental Pollution (Sources, Impacts, Corrective and Preventive measures, Relevant Environmental Acts, Case-studies): Surface and Ground Water Pollution; Noise pollution; Soil Pollution and Air Pollution.

Waste Management & Public Health Aspects: Bio-medical Wastes; Solid waste; Hazardous wastes; E-wastes; Industrial and Municipal Sludge.

Module - 4

Global Environmental Concerns (Concept, policies and case-studies):Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology.

Module - 5

Latest Developments in Environmental Pollution Mitigation Tools (Concept and Applications): G.I.S. & Remote Sensing, Environment Impact Assessment, Environmental Management Systems, ISO14001; Environmental Stewardship- NGOs.

Field work: Visit to an Environmental Engineering Laboratory or Green Building or Water Treatment Plant or Waste water treatment Plant; ought to be Followed by understanding of process and its brief documentation.

Course Outcomes: At the end of the course, students will be able to:

- CO1: Understand the principles of ecology and environmental issues that apply to air, land, and water issues on a global scale,
- CO2: Develop critical thinking and/or observation skills, and apply them to the analysis of a problem or question related to the environment.
- CO3: Demonstrate ecology knowledge of a complex relationship between biotic and abiotic components.
- CO4: Apply their ecological knowledge to illustrate and graph a problem and describe the realities that managers face when dealing with complex issues.

- The Question paper will have 100 objective questions.
- Each question will be for 01 marks
- Student will have to answer all the questions in an OMR Sheet.
- The Duration of Exam will be 2 hours.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			

1	Environmental Studies	Benny Joseph	Tata Mc Graw – Hill.	2 nd Edition, 2012
2.	Environmental Studies	S M Prakash	Pristine Publishing House, Mangalore	3 rd Edition, 2018
3	Environmental Studies – From Crisis to Cure	R Rajagopalan	Oxford Publisher	2005
Referen	ce Books			
1	Principals of Environmental Science and Engineering	Raman Sivakumar	Cengage learning, Singapur.	2 nd Edition, 2005
2	Environmental Science – working with the Earth	G.Tyler Miller Jr.	Thomson Brooks /Cole,	11 th Edition, 2006
3	Text Book of Environmental and Ecology	Pratiba Sing, Anoop Singh& Piyush Malaviya	Acme Learning Pvt. Ltd. New Delhi.	1 st Edition

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI

AIRCRAFT PERFORMANCE Course Code 18AE61 CIE Marks 40 Teaching Hours/Week (L:T:P) (3:2:0) SEE Marks 60 Credits 04 Exam Hours 03

Course Learning Objectives:

- Understand the aircraft performance in steady unaccelerated and accelerated flight.
- Understand the airplane performance parameters.
- Acquire the knowledge on aircraft maneuver performance.

Module-1

The Equations of Motion Steady Unaccelerated Flight

Introduction, four forces of flight, General equation of motion, Power available and power required curves. Thrust available and thrust required curves. Conditions for power required and thrust required minimum. Thrust available and maximum velocity, Power available and maximum velocity, Altitude effects on power available and power required; thrust available and thrust required.

Module-2

Steady Performance - Level Flight, Climb & Glide

Performance: Equation of motion for Rate of climb- graphical and analytical approach -Absolute ceiling, Service ceiling, Time to climb – graphical and analytical approach, climb performance graph (hodograph diagram); maximum climb angle and rate of climb Gliding flight, Range during glide, minimum rate of sink and shallowest angle of glide.

Module-3

Fundamental Airplane Performance Parameters

The fundamental Parameters: Thrust – to – weight ratio, Wing loading, Drag polar, and lift-to – drag ratio. Minimum velocity. Aerodynamic relations associated with lift-to-drag ratio.

Range and Endurance:

Propeller driven Airplane: Physical consideration, Quantitative formulation, Breguet equation for Range and Endurance, Conditions for maximum range and endurance.

Jet Airplane: Physical consideration, Quantitative formulation, Equation for Range and Endurance, Conditions for maximum range and endurance, Effect of head wind tail wind.

Module-4

Aircraft Performance in Accelerated Flight

Take-off Performance: Calculation of Ground roll, Calculation of distance while airborne to clear obstacle, Balanced field length

Landing Performance and Accelerated Climb: Calculation of approach distance, Calculation of flare distance, Calculation of ground roll, ground effects. Acceleration in climb.

Module-5

Maneuver Performance

Turning performance: Level turn, load factor, Constraints on load factor, Minimum turn radius, Maximum turn rate. Pull-up and Pull-down maneuvers: (Turning rate, turn radius). Limiting case for large load factor. The V-n diagram. Limitations of pull up and push over.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic airplane performance parameters.
- 2. CO2: Differentiate the aircraft performance in steady unaccelerated and accelerated flight.
- 3. CO3: Explain the aircraft maneuver performance.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
ok/s			•
Aircraft Performance and Design	John D. Anderson, Jr	McGraw-Hill International	Aerospace Science/ Technology Editions, 1999
Introduction to flight	John D. Anderson, Jr	McGraw-Hill International	Aerospace Science/ Technology Editions, 2000
ce Books			
Airplane Performance stability and Control	Perkins, C.D., and Hage, R.E	John Wiley Son Inc, New York	1988
Aerodynamics, Aeronautics, and Flight Mechanics	Barnes W. McCormick	John Wiley Son Inc, New York	1995
	Aircraft Performance and Design Introduction to flight ce Books Airplane Performance stability and Control Aerodynamics, Aeronautics,	Author/s ok/s Aircraft Performance and Design Introduction to flight Cee Books Airplane Performance stability and Control Aerodynamics, Aeronautics, Barnes W.	Author/s ok/s Aircraft Performance and Design John D. Anderson, Jr Introduction to flight John D. Anderson, Jr McGraw-Hill International McGraw-Hill International McGraw-Hill International Perkins, C.D., John Wiley Son Inc, New York Aerodynamics, Aeronautics, Barnes W. John Wiley Son Inc, New

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VI

A	AIRCRAFT	STRUCT	TURES - II	
	40 1 77 60			CIT

AIRCRAFT STRUCTURES - II			
Course Code	18AE62	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:2:0)	SEE Marks	60
Credits	04	Exam Hours	03

Course Learning Objectives:

- Understand the concepts of open and closed thin walled beams.
- Acquire the knowledge of buckling of plates, joints and fittings.
- Comprehend the stress analysis on wings and fuselage.

Module-1

Bending of Open and Closed Thin Walled Beams

Symmetrical bending, unsymmetrical bending, direct stress distribution due to bending, position of the neutral axis, load intensity, shear force, and bending moment relationships, deflection due to bending, calculation of section properties, approximation for thin-walled sections.

Module-2

Shear and Torsion of Open and Closed Thin Walled Beams- General stress, strain, and displacement relationship for open and single-cell closed section thin-walled beams, shear of open section beams, shear centre, shear of closed section beams. Torsion of close section beam, and displacement associated with the Bredt-Batho shear flow. Torsion of open section beam. Combined bending, shear, torsion.

Module-3

Buckling of Plates, Joints and Fittings

Buckling of Isotropic flat plates in compression, ultimate compressive strength of Isotropic flat sheet, plastic buckling of flat sheet, columns subjected to local crippling failure, Needham & Gerard method for determining crippling stress, curved sheets in compression, elastic buckling of curved rectangular plates. Pure tension field beams, angle of diagonal tension in web.

Joints and Fittings- bolted or riveted joints, accuracy of fitting analysis, eccentrically loaded connections, welded joints, and concept of effective width.

Module-4

Design Criteria and Structural Idealization

Design Criteria, Safety Factor, Design life criteria, Analysis method, Life Assessment procedures, Design Principle, Two bay crack criteria, Widespread Fatigue damage.

Structural Idealization

Structural idealization Principle, Idealization of apanel, effect of idealization on the analysis of open and closed section beams. Bending of open and closed section idealized beams, she arofopen section and closed section idealized beams. Deflection of open and closed section idealized beams.

Module-5

Stress Analysis in Wing Spars and Box beams

Tapered wing spar, open and closed section beams, beams having variable stringer areas, three-boom shell, torsion and shear, tapered wings, cut-outs in wings.

Stress Analysis in Fuselage Frames

Bending, shear, torsion, cut-outs in fuselages, principles of stiffeners construction, fuselage frames, shear flow distribution.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Utilize the concepts of thin walled beams.
- 2. CO2: Calculate the buckling of plates.
- 3. CO3: Analysis the stress in wings and fuselage frames.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Aircraft Structures for Engineering Students	Megson, T. H. G	Edward Arnold	1995
2	Aircraft Structures	Peery D J & Azar J J	McGraw Hill N.Y	2 nd edition,1993
Referen	ice Books			
1	Analysis & Design of Flight Vehicles Structures	Bruhn E. F	Tri-State offset Co, USA	1985
2	Introduction to Aircraft Structural Analysis	Megson, T. H.	Elsevier	2 nd Edition, 2014
3	Analysis of Aircraft Structures	Bruce K Donaldson	Cambridge Aerospace Series	1992

B.E AERONAUTICAL ENGINEERING					
	Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI				
FINITE ELEMENT METHOD					
Course Code		18AE63/18AS63	CIE Marks	40	

SEE Marks

Exam Hours

60

Course Learning Objectives:

Teaching Hours/Week (L:T:P)

• Understand the importance of discretisation of domain using different finite elements

(3:2:0)

04

- Acquire the knowledge of different loading and boundary conditions
- Understand the governing methods of finite element analysis

Module-1

Credits

Introduction: Basic Concepts, Background Review: Stresses and Equilibrium, Plane stress, Plane strain, Potential energy and Equilibrium. Rayleigh - Ritz Method, Galerkin's Method, Simple applications in structural Analysis. Construction or discrete models - sub domains and nodes - simple elements for the FEM - Simplex, complex and multiples elements Polynomial selection -illustrative examples Elements and shape functions and natural coordinates, Use of local and natural coordinates, compatibility and convergence requirements of shape functions.

Module-2

Fundamentals of Finite Element Method: Construction of shape functions for bar element and beam element, Bar elements, uniform bar elements, uniform section, mechanical and thermal loading, varying section, truss analysis, Frame element, Beam element, problems for various loadings and boundary conditions.

Module-3

Analysis of Two and Three dimensional Elements: Shape functions of Triangular, Rectangular and Quadrilateral elements, different types of higher order elements, constant and linear strain triangular elements, stiffness matrix Four-Noded Tetrahedral Element (TET 4), Eight-Noded Hexahedral Element (HEXA 8), Tetrahedral elements, Hexahedral elements: Serendipity family, Hexahedral elements: Lagrange family.

Module-4

Theory of Isoparametric Elements and Axisymmetric: Isoparametric, sub parametric and super-parametric elements, characteristics of Isoparametric quadrilateral elements, structure of computer program for FEM analysis, description of different modules, pre and post processing, Axisymmetric formulation finite element modeling of triangular and quadrilateral element.

Module-5

Field Problems: Heat transfer problems, Steady state fin problems, 1D heat conduction governing equation, Derivation of element matrices for two dimensional problems, Dynamic consideration-Formulation-Hamilton's principle, Element mass matrices.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply discretisation technique for domain decomposition.
- 2. CO2 :Evaluate the effects of different loading and boundary conditions
- 3. CO3: Analyze the governing equations of finite element analysis

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Finite Elements in engineering	Chandrupatla T. R	PHI	3 rd edition, 2002
2	Finite element Analysis	Bhavikatti	New Age International	3 rd edition,2015
Referen	ce Books	1		1
1	Finite element analysis in engineering design	Rajasekharan. S	Wheeler Publishers	
2	Finite Element Procedures	Bathe. KJ	PHI Pvt. Ltd., New Delhi	1996
3	The Finite Element Method	Zienkiewicz. O.C	Elsevier	7 th edition,2013
4	Finite Elements Method in Engineering	Rao S. S	Elsevier	5 th edition, 2008
5	Finite Element analysis - Theory and Programming	C.S. Krishnamurthy	Tata McGraw Hill Co. Ltd, New Delhi	2 nd edition,2011

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VI

AIRCRAFT TRANSPORTATION SYSTEMS			
Course Code	18AE641	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the air transport systems.
- Acquire the knowledge of aircraft characteristics, airlines and airport.
- Understand the navigation and environmental systems.

Module-1

Air Transport Systems –Introduction

Environment, transport and mobility. Systematic description and current challenges. Development of aircraft design driver-speed and range. Development of Airport, Airlines, ICAO, Regulatory Frame work and Market Aspects.

Module-2

Aircraft Characteristics and Manufacturers

Classification of flight vehicles, cabin design, basics of flight physics- structures, mass and balance. Flight performance and mission. Aircraft manufacturers, development process, production process, supply chain.

Module-3

Airlines, Airport and Infrastructure

Airline types, Network management. Flight strategy and aircraft selection, flight operations, MRO. Role of Airport, Regulatory Issues, Airport operation and services. Airport planning - infrastructure.

Module-4

Air Navigation System & Environmental Systems

Principle of operation- Role of Air Navigation services. Air space structures, Airspace and Airport capacity, Aircraft separation. Flight guidance system. Communication system. Integrated air traffic management and working system. Environmental aspects-emission, noise, and sound.

Module-5

Managerial Aspects of Airlines

Airline passenger marketing, forecasting methods, pricing and demand. Air cargo-market for air freight. Principles of airline scheduling. Fleet planning.

Course outcomes: At the end of the course the student will be able to:

- CO1: Explain the air transport systems.
- CO2: Describe the aircraft characteristics, airlines and airport operation.
- CO3: Apply the Air Navigation System & Environmental Systems.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			

1	Air Transport System	Dieter Shmitt, and ValkerGollnick	Springer	2016
2	Air Transportation-A Management Prospective	Jhon G Wensveen	Ashgate Publishing Ltd	2011
Referen	ce Books			
1	The Air Transportation System	Mike Hirst	Woodhead Publishing Ltd, England	2008

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI

IMEDICAL METHOL

	NUMERICAL METHODS		
Course Code	18AE642	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Comprehend the basic concepts of numerical methods.
- Acquire the knowledge of interpolation and approximation.
- Understand about the curve fitting, root finding and optimization.

Module-1

Numerical Computation

Motivation and Objectives/ Number Representation/ Machine Precision/ Round-of Error/ Truncation Error/ Random Number Generation.

Linear Algebraic Systems:

Motivation and Objectives/ Gauss-Jordan Elimination/Gaussian Elimination/LU Decomposition/ III- Conditioned Systems/ Iterative Methods.

Module-2

Interpolation and Approximation

Lagrangian Polynomials - Divided differences Interpolating with a cubic spline - Newton's forward and backward difference formulas.

Eigen Values and Eigenvectors

Motivation and Objectives/ The characteristics Polynominal/ Power Methods / Jacobi's Method/ Householder Transformation/ QR Method/ Danilevsky's Method/ Polynominal Roots.

Module-3

Numerical Differentiation and Integration

Derivative from difference tables - Divided differences and finite differences - Numerical integration by trapezoidal and Simpson's 1/3 and 3/8 rules - Two and Three point Gaussian quadrature formulas - Double integrals using trapezoidal and Simpson's rules.

Module-4

Curve Fitting

Motivation and objectives/ Interpolation/ Newton's Difference Formula/ Cubic Splines/ Least Square/ Two-Dimensional Interpolation.

Module-5

Root Finding

Motivation and Objectives/ Bracketing methods/ Contraction Mapping Method/ Secant Method/ Muller's Method/ Newton's Method/ Polynomial Roots/ Nonlinear Systems of Equations.

Optimization

Motivation and Objectives/ Local and Global Minima/ Line Searches/ Steepest Descent Method/ Conjugate-Gradient Method/ Quasi-Newton Methods/ Penalty Functions/ Simulated Annealing.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts of numerical methods.
- 2. CO2: Compute the Eigen values, Eigen vectors, numerical differentiation and integration.
- 3. CO3: Perform the curve fitting and root finding.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbool	x/s			
1	Applied Numerical methods for Engineers Using Mat Lab and C	Robert Schilling and Sandra Harris	Thomson Learning	2002
2	Applied Numerical Analysis	Gerald and Wheatley	Pearson Education	2002
Reference	e Books	1		
1	Numerical Methods: For Scientific and Engineering Computation	Mahinder Kumar Jain	New Age Publishers	2012
2	Numerical Methods for Engineering and Science	Rajesh Srivastava and SaumyenGuha	Oxford University Press	2010
3	Numerical Methods	P. Kandasamy, K. Thilagavathy and K. Gunavathi	Chand Publishers	2006

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VI

SEVIESTER - VI				
ARTIFICIAL INTELLIGENCE& EXPERT SYSTEMS				
Course Code	18AE643	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the basic techniques of artificial intelligence.
- Understand the Non-monotonic reasoning and statistical reasoning.
- Acquire the knowledge on filler structures, and understanding.

Module-1

AI: The AI Problems, The Underlying Assumption, What Is An AI Techniques, The Level Of The Model, Criteria For Success, Some General References, One Final Word.

Problems, State Space Search & Heuristic Search Techniques: Defining The Problems As A State Space Search, Production Systems, Production Characteristics, Production System Characteristics, And Issues In The Design Of Search Programs, Additional Problems. Generate-And-Test, Hill Climbing, Best-First Search, Problem Reduction, Constraint Satisfaction, Means-Ends Analysis

Module-2

Knowledge Representation Issues: Representations And Mappings, Approaches To Knowledge Representation.

Using Predicate Logic : Representation Simple Facts In Logic, Representing Instance And Isa Relationships, Computable Functions And Predicates, Resolution

Representing Knowledge Using Rules: Procedural Versus Declarative Knowledge, Logic Programming, Forward Versus Backward Reasoning.

Module-3

Symbolic Reasoning Under Uncertainty: Introduction To Nonmonotonic Reasoning, Logics For Nonmonotonic Reasoning. Turning performance limitations. Drag estimation. Take-off and landing - methods, procedures and data reduction.

Statistical Reasoning: Probability And Bays' Theorem, Certainty Factors And Rule-Base Systems, Bayesian Networks, DempsterShafer Theory, Fuzzy Logic.

Module-4

Weak Slot-and-Filler Structures: Semantic Nets, Frames.

Strong Slot-and-Filler Structures: Conceptual Dependency, Scripts, CYC.

Game Playing: Overview, And Example Domain : Overview, MiniMax, Alpha-Beta Cut-off, Refinements, Iterative deepening, The Blocks World, Components Of A Planning System, Goal Stack Planning, Nonlinear Planning Using Constraint Posting, Hierarchical Planning, Reactive Systems, Other Planning Techniques

Module-5

Understanding: What is understanding?, What makes it hard?, As constraint satisfaction.

Natural Language Processing: Introduction, Syntactic Processing, Semantic Analysis, Semantic Analysis, Discourse And Pragmatic Processing, Spell Checking.

Connectionist Models: Introduction: Hopfield Network, Learning In Neural Network, Application Of Neural Networks, Recurrent Networks, Distributed Representations, Connectionist AI And Symbolic AI

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic techniques of artificial intelligence.
- 2. CO2: Distinguish Non-monotonic reasoning and statistical reasoning.
- 3. CO3: Evaluate the natural language processing and connectionist models.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s	<u>.</u>		
1	Artificial Intelligence	Elaine Rich And Kevin Knight	Tata Mcgraw-Hill	3 rd edition,2008
2	Artificial Intelligence- A Modern Approach	Stuart Russel, Peter Norvig	PEI	3 rd edition,2015
Referen	ice Books			•
1	Introduction to Prolog Programming	Carl Townsend		
2	PROLOG Programming For Artificial Intelligence	Ivan Bratko(Addison- Wesley)	PEI	3 rd edition,2002
3	Programming with PROLOG	Clocksin and Mellish	Springer	5th edition, 2003

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI

GAS TURBINE TECHNOLOGY

GIIS TERBIT (E TECHT (GEGGT				
Course Code	18AE644	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Comprehend the types of engines and its applications.
- Understand the materials required for engine manufacturing.
- Acquire the knowledge of engine performance and testing.

Module-1

Types, Variation & Applications: Types of engines showing arrangement of parts. Operating parameters. Energy distribution of turbojet, turboprop and turbofan engines. Comparison of thrust and specific fuel consumption. Thrust, pressure and velocity diagrams.

Engine Parts: Compressor assembly, types of burners: advantages and disadvantages. Influence of design factors on burner performance. Effect of operating variables on burner performance. Performance requirements of combustion chambers. Construction of nozzles. Impulse turbine and reaction turbine. Exhaust system, sound suppression. Thrust reversal: types, design & systems. Methods of thrust augmentation, after burner system.

Module-2

Materials and Manufacturing: Criteria for selection of materials. Heat ranges of metals, high temperature strength. Surface finishing. Powder metallurgy. Use of composites and Ceramics. Super alloys for Turbines.

Systems: Fuel systems and components. Sensors and Controls. FADEC interface with engine. Typical fuel system. Oil system components. Typical oil system. Starting systems. Typical starting characteristics. Various gas turbine starters.

Module-3

Engine Performance: Design & off-design Performance. Surge margin requirements, surge margin stack up. Transient performance. Qualitative characteristics quantities. Transient working lines. Starting process & Wind milling of Engines. Thrust engine start envelope. Starting torque and speed requirements Calculations for design and off-design performance from given test data— (case study for a single shaft Jet Engine). Engine performance monitoring.

Module-4

Compressor: Compressor MAP. Surge margin, Inlet distortions. Testing and Performance Evaluation. **Combustor:** Combustor MAP, Pressure loss, combustion light up test. Testing and Performance Evaluation. **Turbines:** Turbine MAP. Turbine Testing and Performance Evaluation. **Inlet duct &nozzles:** Ram pressure recovery of inlet duct. Propelling nozzles, after burner, maximum mass flow conditions. Testing and Performance Evaluation

Module-5

Engine Testing: Proof of Concepts: Design Evaluation tests. Structural Integrity. Environmental Ingestion Capability. Preliminary Flight Rating Test, Qualification Test, Acceptance Test. Reliability figure of merit. Durability and Life Assessment Tests, Reliability Tests. Engine testing with simulated inlet distortions and, surge test. Estimating engine - operating limits. Methods of displacing equilibrium lines.

Types of engine testing's: Normally Aspirated Testing, Open Air Test Bed, Ram Air Testing, Altitude Testing, Altitude test facility, Flying Test Bed, Ground Testing of Engine Installed in Aircraft, Flight testing. Jet thrust measurements in flight. Measurements and Instrumentation. Data Acquisition system, Measurement of Shaft speed, Torque, Thrust, Pressure, Temperature, Vibration, Stress, Temperature of turbine blading etc. Engine performance trends: Mass and CUSUM plots. Accuracy and Uncertainty in Measurements. Uncertainty analysis. Performance Reduction Methodology.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Select the suitable materials for engine manufacturing.
- 2. CO2: Evaluate the performance of the engine.
- 3. CO3: Test the engine using several types of engine testing methods.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			1
1	Gas Turbine Engine Technology	Irwin E. Treager	McGraw Hill Education	3 rd edition,2013
2	Gas Turbine Performance	P. P Walshand P. Peletcher	Blackwell Science	1998
Referen	ce Books			1
1	Advanced Aero-Engine Testing	A. W. Morley Jean Fabri	Pergamon	1959
2	Military Specifications: Engine, Aircraft, Turbo Jet &Turbofan General Specification for Advance Aero Engine testing			1973
3	Experimental methods for Engineers	JP Holman	Tata Mc Graw Hill	7 th edition,2007
4	Turbomachinery Dynamics- Design and operations	A SRangawala	McGraw-Hill	2005
5	Aircraft Power Plant	Michael J. Kores, and Thomas W. Wild	Tata Mc Graw Hill Publishing Co. Ltd	7 th Edition,2002

B.E AERONAUTICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI
AIRCRAFT PROPULSION LAB

AIRCRAFT PROPULSION LAB					
Course Code	18AEL66	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60		
Credits	02	Exam Hours	03		

Course Learning Objectives:

- Understand how to do the heat transfer
- Comprehend the cascade testing of axial compressor and axial turbine blade row.
- Study the performance of propeller and jet engines.

- CI	T			
Sl.	Experiments			
No.				
1	Study of an aircraft piston engine. (Includes study of assembly of sub systems, various components,			
	their functions and operating principles)			
2	Study of an aircraft jet engine (Includes study of assembly of sub systems, various components, their			
	functions and operating principles)			
3	Study of forced convective heat transfer over a flat plate.			
4	Cascade testing of a model of axial compressor blade row.			
5	Cascade testing of a model of axial Turbine blade row			
6	Study of performance of a propeller.			
7	Determination of heat of combustion of aviation fuel.			
8	Study of free and wall jet			
9	Measurement of burning velocity of a premixed flame.			
10	Study of the flame lift up and fall back phenomenon for varied Air/Fuel ratio.			
11	Measurement of nozzle flow.			
12	Performance studies on a scaled jet engine			
13	Investigation of pressure distribution and relationship between inlet pressure/outlet pressure and mass			
	flow rate in a convergent-divergent nozzle when working over a variety of overall pressure ratios			
	including under-expanding and over-expanding conditions.			
14	Investigation of pressure distribution and relationship between inlet pressure/outlet pressure and mass			
	flow rate in a convergent-divergent nozzle under choked conditions.			

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Analyze the cascade testing of axial compressor and axial turbine blade row.
- 2. CO2: Evaluate the performance of a jet engine.
- 3. CO3: Perform the measurement of a flame and nozzle flow.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. □

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VI

AIRCRAFT STRUCTURES LAB				
Course Code	18AEL67	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60	
Credits	02	Exam Hours	03	

Course Learning Objectives:

- Learn about the simply supported beam, cantilever beam.
- Understand the Maxwell's theorem and Poisson ration.
- Acquire the knowledge about buckling load, shear failure and shear centre.

Sl. No.	Experiments	
1	Deflection of a Simply Supported Beam.	
2	Deflection of a cantilever Beam	
3	Beam with combined loading by using superposition theorem	
4	Verification of Maxwell's Reciprocal Theorem for beam with	
	a). Constant cross section b). Varying Cross section	
5	Determination of Young's Modulus using strain gages.	
6	Poisson Ratio Determination	
7	Buckling load of slender Eccentric Columns and Construction of Southwell Plot	
8	Shear Failure of Bolted and Riveted Joints	
9	Bending Modulus of sandwich Beam	
10	Tensile, Compressive and Flexural testing of a composite material plate.	
11	Determination of natural frequency and mode shapes of a cantilever beam for the following cases.	
	a. Constant cross section	
	b. Varying cross section	
	c. Constant cross section and varying stiffness	
12	Determination of shear centre for following cases through deflection measurements.	
	a. Close section – Symmetrical bending	
	b. Open section – Unsymmetrical bending	
13	Determination of shear flow for following cases.	
	a. Close section – Symmetrical bending	
1.4	b. Open section – Unsymmetrical bending	
14	Determining of Shear centre through shear flow measurement for following cases.	
	a. Close section – Symmetrical bending	
Cor	b. Open section – Unsymmetrical bending	

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Compute the deflection of simply supported beam and cantilever beam.
- 2. CO2: Verify the Maxwell's theorem.
- 3. CO3: Determine the buckling load, shear failure and shear centre.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. □

Open Electives

B.E AERONAUTICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI

Open Elective - A

HISTORY OF FLIGHT & TECHNOLOGY FORECAST					
Course Code	18AE651/18AS651	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

- Study the basic concepts of flying.
- Understand about the aircraft structures and materials.
- 3. Acquire the knowledge of aircraft power plants.

Module-1

Introduction

Early Developments – Ornithopters, Balloon Flight, Sir George Cayley – The true inventor of Airplane, the Interregnum, Otto Lilienthal – The Glider Man, Percy Pilcher – Extending the Glider Tradition.

Module-2

Wilbur and Orville Wright – Inventors of First Practical Airplane, Aeronautical Triangle – Langley, Wrights and Glenn Curtiss, Problem of Propulsion, Faster and Higher, biplanes and monoplanes, Developments in aerodynamics, materials, structures and propulsion over the years.

Module-3

Aircraft Configurations:

Different types of flight vehicles, classifications. Components of an airplane and their functions. Conventional control, Powered control, Basic instruments for flying - Typical systems for control actuation.

Module-4

Airplane Structures and Materials:

General types of construction, Monocoque, semi-monocoque and geodesic constructions, Typical wing and fuselage structure. Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials. Stresses and strains – Hooke's law – Stress - strain diagrams - elastic constants.

Module-5

Power Plants:

Basic ideas about piston, turboprop and jet engines - Use of propeller and jets for thrust production - Comparative merits, Principles of operation of rocket, types of rockets and typical applications, Exploration into space.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Identify the aspects of aircrafts.
- 2. CO2: Classify the aircraft materials.
- 3. CO3: Describe the instruments and power plants used in airplanes.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Introduction to Flight	Anderson, J.D	McGraw-Hill	1995
2	Introduction to Aeronautics: A design perspective	Stephen. A. Brandt	AIAA Education Series	2nd Edition,2004
Referen	ce Books			
1	Mechanics of Flight	Kermode, A.C	Himalayan Book	1997
2	Flight without Formula	Kermode, A.C	Pearson	2009

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI

Open Elective - A

ELEMENTS OF JET PROPULSION SYSTEMS

ELECTION OF GETTINGS CESSOS OF STREET				
Course Code	18AE652/18AS652	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the basic principle and theory of aircraft propulsion.
- Understand the purpose of a centrifugal, axial compressors, axial and radial turbines
- Acquire knowledge of importance of nozzles & inlets and combustion chamber

Module-1

Introduction: Review of thermodynamic principles, Principles of aircraft propulsion, Types of power plants, Working principles of internal combustion engine, Two – stroke and four – stroke piston engines, Gas- turbine engines, Cycle analysis of reciprocating engines and jet engines, advantages and disadvantages.

Module-2

Propeller Theories & Jet propulsion Types of propeller, Propeller thrust: momentum theory, Blade element theories, propeller blade design, propeller selection.

Jet Propulsion: Illustration of working of gas turbine engine – The thrust equation – Factors affecting thrust – Effect of pressure, velocity and temperature changes of air entering compressor – Methods of thrust augmentation – Characteristics of turboprop, turbofan and turbojet – Performance characteristics.

Module-3

Inlets & Nozzles

Internal flow and Stall in Subsonic inlets, Boundary layer separation. Major features of external flow near a subsonic inlet. Relation between minimum area ratio and eternal deceleration ratio. Diffuser performance.

Supersonic inlets: Supersonic inlets, starting problem in supersonic inlets, Shock swallowing by area variation, External deceleration. Modes of inlet operation.

Nozzles: Theory of flow in isentropic nozzles, Convergent nozzles and nozzle choking, Nozzle throat conditions. Nozzle efficiency, Losses in nozzles. Over-expanded and under-expanded nozzles, Ejector and variable area nozzles, Thrust reversal.

Module-4

Gas Turbine Engine Compressors

Centrifugal compressors: Principle of operation of centrifugal compressors. Work done and pressure rise - Velocity diagrams, Diffuser vane design considerations. performance characteristics. Concept of Pre-whirl, Rotating stall.

Axial flow compressors: Elementary theory of axial flow compressor, Velocity triangles, Degree of reaction, three dimensional flow. Air angle distribution for free vortex and constant reaction designs, Compressor blade design. Axial compressor performance characteristics.

Module-5

Combustion chambers and Turbines

Classification of combustion chambers, important factors affecting combustion chamber design, Combustion process, Combustion chamber performance Effect of operating variables on performance – Flame tube cooling – Flame stabilization – Use of flame holders

Axial Flow Turbines: Introduction, Turbine stage, Multi-staging of turbine, Exit flow conditions, Turbine cooling, Heat transfer in turbine cooling.

Radial turbine: Introduction, Thermodynamics of radial turbines, Losses and efficiency.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic principle and theory of aircraft propulsion.
- 2. CO2: Explain the functions of centrifugal, axial compressors, axial and radial turbines
- 3. CO3: Analyse the performance of nozzles & inlets and combustion chamber

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Aircraft propulsion	Bhaskar Roy	Elsevier	2011
2	Gas Turbines	V. Ganesan	Tata McGraw-Hill, New Delhi	2010
Referen	nce Books			•
1	Mechanics & Thermodynamics of Propulsion	Hill, P.G. & Peterson, C.R	Addison –Wesley Longman INC	1999
2	Gas Turbine Theory	Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H	Longman	1989
3	Gas Turbine Engine Technology	Irwin E. Treager	Tata McGraw Hill Publishing Co. Ltd	7th Edition,2003
4	Fundamentals of Compressible Flow with Aircraft and Rocket propulsion	S. M. Yahya	New Age International Publications, New Delhi	4th Edition,2014

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER –VI

Open Elective - A

	BASICS	OF	ROCKETS	& MISSILES
--	--------	----	---------	------------

Course Code	18AE653/18AS653	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the types of space launch vehicles and missiles.
- Study the solid and liquid rocket motors.
- Acquire the knowledge on launch vehicle dynamics, attitude control, rocket testing and materials.

Module-1

Introduction: Space launch Vehicles and military missiles, function, types, role, mission, mission profile, thrust profile, propulsion system, payload, staging, control and guidance requirements, performance measures, design, construction, operation, similarities and differences. Some famous space launch vehicles and strategic missiles.

Module-2

Solid Propellant Rocket Motor Systems: Solid Propellant rocket motors, principal features, applications. Solid propellants, types, composition, properties, performance. Propellant grain, desirable properties, grain configuration, preparation, loading, structural design of grain. Liners, insulators and inhibitors, function, requirements, materials. Rocket motor casing – materials. Nozzles, types, design, construction, thermal protection. Igniters, types, construction. Description of modern solid boosters I) Space Shuttle SRB, II)the Arienne SRB

Liquid Propellant Rocket Motor Systems: Liquid propellants, types, composition, properties, performance. Propellant tanks, feed systems, pressurization, turbo-pumps, valves and feed lines, injectors, starting and ignition. Engine cooling, support structure. Control of engine starting and thrust build up, system calibration, integration and optimisation – safety and environmental concerns. Description of the space shuttle main engine. Propellant slosh, propellant hammer, geysering effect in cryogenic rocket engines.

Module-3

Aerodynamics of Rockets and Missiles: Classification of missiles. Airframe components of rockets and missiles, Forces acting on a missile while passing through atmosphere, method of describing aerodynamic forces and moments, lateral aerodynamic moment, lateral damping moment, longitudinal moment of a rocket, lift and drag forces, drag estimation, body upwash and downwash in missiles. Rocket dispersion, re-entry body design considerations.

Module-4

Launch Vehicle Dynamics: Tsiolskovsky's rocket equation, range in the absence of gravity, vertical motion in the earth's gravitational field, inclined motion, flight path at constant pitch angle, motion in the atmosphere, the gravity turn – the culmination altitude, multi staging. Earth launch trajectories – vertical segment, the gravity turn, constant pitch trajectory, orbital injection. Actual launch vehicle trajectories, types. Examples, the Mu 3-S-II, Ariane, Pegasus launchers. Reusable launch vehicles, future launchers, launch assist technologies.

Attitude Control of Rockets and Missiles: Rocket Thrust Vector Control – Methods of Thrusts Vector Control for solid and liquid propulsion systems, thrust magnitude control, thrust termination; stage separation dynamics, separation techniques.

Module-5

Rocket Testing: Ground Testing and Flight Testing, Types of Tests facilities and safeguards, monitoring and control of toxic materials, instrumentation and data management. Ground Testing, Flight Testing, Trajectory monitoring, post -accident procedures. Description of a typical space launch vehicle launch procedure.

Materials: Criteria for selection of materials for rockets and missiles, requirements for choice of materials for propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures, requirements of materials at extremely high temperatures, requirements of materials for thermal protection and for pressure vessels.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Identify the types of space launch vehicles and missiles.
- 2. CO2: Distinguish the solid and liquid propellant motors.
- 3. CO3: Classify different types of materials used for rockets and missies.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	Textbook/s					
1	Rocket Propulsion Element	George P Sutton and Oscar Biblarz	John Wiley and Sons Inc	7 th edition, 2010		
2	Missile Aerodynamics	Jack N Neilson	AIAA	1 st edition, 1988		
Referen	ce Books			•		
1	Missile Configuration Design	SS. Chin	McGraw Hill	1961		
2	Rocket Propulsion and Space- Flight Dynamics	Cornelisse, J.W, Schoyer H.F.R. and Wakker, K.F	Pitman	1979		
3	Rocket and Spacecraft propulsion	Turner, M.J.L	Springer	3 rd edition, 2010		
4	Space Vehicle Dynamics	Ball, K.J., Osborne, G.F	Oxford University Press	1967		
5	Materials for Missiles and Spacecraft	Parker, E.R	McGraw Hill	1982		

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

AIRCRAFT STABILITY AND CONTROL

Course Code	18AE71	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the basics of aircraft static stability and control.
- Understand the EOMs and stability parameters.
- Acquire the knowledge on dynamic longitudinal, lateral and directional stability.

Module-1

Static Longitudinal Stability and Control-Stick Fixed

Definition, stability criteria, Contribution of airframe components: Wing contribution, Tail contribution, Fuselage contribution, Power effects- Propeller airplane and Jet airplane Introduction, Trim condition. Static margin. stick fixed neutral points. Longitudinal control, Elevator power, Elevator angle versus equilibrium lift coefficient, Elevator required for landing, Restriction on forward C.G. range.

Module-2

Static Longitudinal Stability and Control-Stick free

Introduction, Hinge moment parameters, Control surface floating characteristics and aerodynamic balance, Estimation of hinge moment parameters, The trim tabs, Stick-free Neutral point, Stick force gradient in unaccelerated flight, Restriction on aft C.G.

Module-3

Static Directional and Lateral Stability and Control

Static directional stability- rudder fixed, Contribution of airframe components, Directional control. Rudder power, Stick-free directional stability, Requirements for directional control, Rudder lock, Dorsal fin. One engine inoperative condition. Weather cocking effect.

Static Lateral stability. Estimation of dihedral effect. Effect of wing sweep, flaps, and power. Lateral control, Estimation of lateral control power, Aileron control forces, Balancing the aileron. Coupling between rolling and yawing moments. Adverse yaw effects. Aileron reversal.

Module-4

Equations of Motions

Derivation of rigid body equations of motion, Orientation and position of the airplane, gravitational and thrust forces, Small disturbance theory. Aerodynamic force and moment representation, Derivatives due to change in forward speed, Derivatives due to the pitching velocity, Derivatives due to the time rate of change of angle of attack, Derivatives due to rolling rate, Derivatives due to yawing rate.

Module-5

Dynamic Stability

Dynamic longitudinal stability. Types of modes of motion: phugoid motion, short period motion. Routh's stability criteria. Factors affecting period and damping of oscillations. Flying qualities in pitch. Cooper-Harper Scale. Dynamic lateral and directional stability. Response to aileron step-function, side-slip excursion. Dutch roll and Spiral instability. Auto- rotation and spin. Stability derivatives for lateral and directional dynamics.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the concepts of aircraft static stability and control.
- 2. CO2: Formulate EOMs and analyse stability parameters.
- 3. CO3: Apply the knowledge of dynamic stability

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textbo	Textbook/s				
1	Airplane Performance stability and Control	Perkins, C.D., and Hage, R.E	John Wiley , New York	1998	
2	Flight Stability and Automatic Control	Nelson, R.C	McGraw-Hill Book Co	2007	
Refere	nce Books		•		
1	Performance, Stability, Dynamics and Control of Airplanes	Bandu N. Pamadi	AIAA	2 nd Edition,2004	
2	Introduction to flight	John D. Anderson, Jr	McGraw-Hill	Aerospace Science Technology Editions, 2000	
3	The Principles of the Control and Stability of Aircraft	W.J. Duncan	Cambridge University Press	2016	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VII

COMPUTATIONAL FLUID DYNAMICS					
Course Code	18AE72	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

- Know the basic equations of fluid dynamics, boundary layer and discretization.
- Understand the source and vortex panel method.
- Know about FDM, FVM and FEM.

Module-1

Introduction: CFD Applications. Need for Parallel Computers in CFD algorithms. Models of flows. Substantial derivative, Divergence of velocity. Continuity, Momentum, and Energy Equations-Derivation in various forms. Integral versus Differential form of equations. Comments on governing equations. Physical boundary conditions. Forms of equations especially suitable for CFD work. Shock capturing, and shock fitting.

Module-2

Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification. Hyperbolic, parabolic, and elliptic forms of equations. Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow, steady boundary layer flow, and unsteady thermal conduction, steady subsonic inviscid flow.

Module-3

Grid Generation and Adaptive Grids: Need for grid generation and Body-fitted coordinate system. Structured Grids-essential features. Structured Grid generation techniques- algebraic and numerical methods. Unstructured Grids-essential features. Unstructured Grid generation techniques- Delaunay-Voronoi diagram, advancing front method. Surface grid generation, multi-block grid generation, and meshless methods. Grid quality and adaptive grids. Structured grids adaptive methods and unstructured grids adaptive methods.

Module-4

Discretisation & Transformation:

Discretisation: Finite differences methods, and difference equations. Explicit and Implicit approaches. Unsteady Problem -Explicit versus Implicit Scheme. Errors and stability analysis. Time marching and space marching. Reflection boundary condition. Relaxation techniques. Alternating direction implicit method. Successive over relaxation/under relaxation. Second order Lax-Wendroff method, mid-point Leap frog method, upwind scheme, numerical viscosity, and artificial viscosity.

Transformation: Transformation of governing partial differential equations from physical domain to computational domain. Matrices and Jacobians of transformation. Example of transformation. Generic form of the Governing flow equations in Strong Conservative form in the Transformed Space.

Module-5

Finite Volume Technique and Some Applications: Spatial discretisation- cell centered and cell vertex techniques (overlapping control volume, duel control volume). Temporal discretisation- Explicit time stepping, and implicit time stepping. Time step calculation. Upwind scheme and high resolution scheme. Flux vector splitting, approximate factorisation. Artificial dissipation and flux limiters. Unsteady flows and heat conduction problems. Upwind biasing.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Differentiate the FDM, FVM and FEM
- 2. CO2: Perform the flow, structural and thermal analysis.
- 3. CO3: Utilize the discretization methods according to the application.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook/s				
1	Applied Computational Fluid Dynamics	Gupta S.C	Wiley, India	2019
2	Computational Fluid Dynamics	John D. Anderson	McGraw Hill	2013
Refere	ence Books			
1	Computational Fluid Dynamics-An Introduction	John F. Wendt	Springer	3 rd Edition, 2013
2	Numerical Computation of Internal and External Flows	Charles Hirsch	Elsevier	1 st edition,2007
3	Computational Fluid Dynamics for Engineers	Klaus A Hoffmann and SteveT. Chiang		1993
4	Fundamentals of CFD	Tapan K. Sengupta	Universities Press	2004

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII

FATIGUE AND FRACTURE MECHANICS

Course Code	18AE731	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the basics of fatigue of structures.
- Comprehend the fracture mechanics.
- Acquire the knowledge of fatigue design and testing.

Module-1

Fatigue of Structures: S.N. curves, Endurance limit, Effect of mean stress, Goodman, Gerber and Soderberg relations and diagrams, Notches and stress concentrations, Neuber's stress concentration factors, plastic stress concentration factors – Notched S-N curves.

Module-2

Statistical Aspects of Fatigue Behaviour: Low cycle and high cycle fatigue, Coffin-Manson's relation, Transition life, Cyclic Strain hardening and softening, Analysis of load histories, Cycle counting techniques, Cumulative damage, Miner's theory, other theories.

Module-3

Physical Aspects of Fatigue: Phase in fatigue life, Crack initiation, Crack growth, Final fracture, Dislocations, Fatigue fracture surfaces.

Module-4

Fracture Mechanics: Strength of cracked bodies, potential energy and surface energy, Griffith's theory, Irwin – Orwin extension of Griffith's theory to ductile materials, Stress analysis of cracked bodies, Effect of thickness on fracture toughness, Stress intensity factors for typical geometries.

Module-5

Fatigue Design and Testing: Safe life and fail safe design philosophies, Importance of Fracture Mechanics in aerospace structure, Application to composite materials and structures.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Evaluate the fatigue of structures.
- 2. CO2: Determine the strength of cracked bodies.
- 3. CO3: Distinguish the safe life and fail safe design.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			
1	Elementary Engineering Fracture Mechanics	D. Brock	Noordhoff International Publishing Co., London	1994
2	Fundamentals of Fracture Mechanics	J.F.Knott	Butterworth & Co., Publishers Ltd., London	1983

Reference Books				
1	Fatigue of Aircraft Structures	W. Barrois and L. Ripley	Pergamon Press	1983
2	Mechanics of Fracture	C. G. Sih	Sijthoff and Noordhoff International Publishing Co., Netherland	1989

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII				
CONTROL ENGINEERING				
Course Code	18AE732	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the basic concepts of control systems and mathematical models.
- Acquire the knowledge on block diagrams and signal flow graphs.
- Understand the frequency response analysis and various types of plots.

Module-1

Introduction to Control Systems and Mathematical Models

Introduction: Concept of controls, Open loop and closed loop systems with examples, Concepts of feedback and basic structure of feedback control system, requirements of an ideal control system.

Mathematical Models: Transfer function models of mechanical systems, electrical circuits, DC and AC motors in control systems, Analogous systems: Force voltage and Force current analogy.

Module-2

Block Diagrams and Signal Flow Graphs

Transfer functions definition and its properties, block representation of control systems and terminologies, block diagram algebra and reduction of block diagrams, Signal flow graph method, Mason's gain formula and its applications

Transient and Steady State Response Analysis

Introduction, type and order of systems, time response specifications, first order and second order system response to step, ramp and impulse inputs, concepts of time constant and its importance in speed of response.

Module-3

System stability analysis using Routh's – Hurwitz Criterion

Root Locus Plots

Definition of root loci, General rules for constructing root loci, Analysis using root locus plots, Determination of desired gain, limit gain, gain margin and conditional stability.

Frequency Response Analysis Using Bode Plots:

Bode attenuation diagrams for first and second order systems, Simplified Bode diagrams, Stability analysis using Bode plots and determination of phase margin and gain margin and gain

Module-4

Frequency Response Specification and Analysis using Polar plots:

Specification: Frequency response definition, frequency response specifications and its relationship with time response specifications.

Analysis: Polar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain margin and phase margin, M&N circles.

Module-5

Feedback control systems:

Types of controllers – Proportional, Integral, Derivative controllers, Proportional – Integral – Derivative controllers; Compensation methods – Series and feedback compensation, Lead, Lag and Lead-Lag Compensators.

State Variable Characteristics of Linear Systems:

Introduction to concepts of states and state variable representation of linear systems, Advantages and Disadvantages over conventional transfer function representation, state equations of linear continuous data system. Matrix representation of state equations, Solution of state equation, State transition matrix and its properties, controllability and observability, Kalman and Gilberts test.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the concepts of control systems.
- 2. CO2: Reduce the block diagrams and signal flow graphs.
- 3. CO3: Determine the frequency response analysis by using various types of plots.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

k/s				
Control Engineering	U.A. Bakshi and V.U. Bakshi	Technical Publications		
Control Systems Engineering	A. NagoorKani	RBA Publications	2014	
Reference Books				
Modern Control Engineering	Katsuhiko Ogatta	Pearson Education	2004	
Control Systems Engineering	I.J. Nagrath and M. Gopal	New Age Publishers	2017	
Modern Control Systems	Richard. C. Dorf and Robert.H. Bishop	Addison Wesley	1999	
Control Systems Engineering	N.S. Nise	Wiley	6 th Edition,2012	
	Modern Control Engineering Control Systems Engineering Modern Control Systems	Control Systems Engineering Bakshi A. NagoorKani Books Modern Control Engineering Control Systems Engineering I.J. Nagrath and M. Gopal Modern Control Systems Richard. C. Dorf and Robert.H. Bishop	Control Systems Engineering A. NagoorKani RBA Publications e Books Modern Control Engineering Katsuhiko Ogatta Control Systems Engineering I.J. Nagrath and M. Gopal Modern Control Systems Richard. C. Dorf and Robert.H. Bishop	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

HYDRAULICS & PNEUMATICSCourse Code18AE733CIE Marks40Teaching Hours/Week (L:T:P)(3:0:0)SEE Marks60Credits03Exam Hours03

Course Learning Objectives:

- Understand the basic concepts of Hydraulic systems.
- Acquire the knowledge on control components, Hydraulic Circuit design and analysis.
- Understand the Pneumatic control and its systems.

Module-1

Introduction to Hydraulic Power: Definition of hydraulic system, advantages, limitations, applications, Pascal's law, structure of hydraulic control system, problems on Pascal's law.

The source of Hydraulic Power: Pumps Classification pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps, fixed and variable displacement pumps, Pump performance characteristics, pump Selection factors, problems on pumps.

Hydraulic Actuators and Motors: Classification cylinder and hydraulic motors, Linear Hydraulic Actuators [cylinders], single and double acting cylinder, Mechanics of Hydraulic Cylinder Loading, mounting arrangements, cushioning, special types of cylinders, problems on cylinders, construction and working of rotary actuators such as gear, vane, piston motors, Hydraulic Motor Theoretical Torque, Power and Flow Rate, Hydraulic Motor Performance, problems, symbolic representation of hydraulic actuators (cylinders and motors).

Module-2

Control Components in Hydraulic Systems: Classification of control valves, Directional Control Valves-Symbolic representation, constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, check valves, Pressure control valves- types, direct operated types and pilot operated types. Flow Control Valves- compensated and non-compensated FCV, needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV, symbolic representation.

Module-3

Hydraulic Circuit Design And Analysis: Control of Single and Double Acting Hydraulic Cylinder, Regenerative circuit, Pump Unloading Circuit, Double Pump Hydraulic System, Counter balance Valve Application ,Hydraulic Cylinder Sequencing Circuits, Automatic cylinder reciprocating system, Locked Cylinder using Pilot check Valve, Cylinder synchronizing circuit using different methods, factors affecting synchronization, Hydraulic circuit for force multiplication, Speed Control of Hydraulic Cylinder, Speed Control of Hydraulic Motors, Safety circuit, Accumulators, types, construction and applications with circuits.

Module-4

Maintenance of Hydraulic System: Hydraulic Oils-Desirable properties, general type of Fluids, Sealing Devices, Reservoir System, Filters and Strainers, wear of Moving Parts due to solid-particle Contamination, temperature control (heat exchangers), Pressure switches, trouble shooting.

Introduction to Pneumatic Control: Definition of pneumatic system, advantages, limitations, applications, Choice of working medium. Characteristic of compressed air. Structure of Pneumatic control System, fluid conditioners and FRL unit.

Pneumatic Actuators: Linear cylinder-Types, Conventional type of cylinder- working, End position cushioning, seals, mounting arrangements-Applications. Rod-Less cylinders types, working, advantages, Rotary cylinders-types construction and application, symbols.

Module-5

Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols. Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders – supply air throttling and Exhaust air throttling and Exhaust air throttling.

Signal Processing Elements: Use of Logic gates-OR and AND gates in pneumatic applications. Practical Examples involving the use of logic gates, Pressure dependant controls-types-construction-practical

applications, Time dependent controls principle. Construction, practical applications

Electro-Pneumatic Control: Principles-signal input and output, pilot assisted solenoid control of directional control valves, Use of relay and contactors. Control circuitry for simple signal cylinder application.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the concepts of hydraulic systems.
- 2. CO2: Design and analyze the hydraulic circuits.
- 3. CO3: Familiarize the student in the area of Pneumatic systems, Signal Processing and Controls.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textbo	ok/s					
1	Fluid Power with Applications	Anthony Esposito	Pearson Education, Inc	Sixthedition,2000		
2	Pneumatics and Hydraulics	Andrew Parr	Jaico Publishing Co			
Referen	Reference Books					
1	Oil Hydraulic systems	S. R. Majurr	Tata McGraw Hill Publishing Company Ltd	2001		
2	Industrial Hydraulics	Pippenger, Hicks	Mc Graw Hill, NewYork			
3	Hydraulic &Pneumatic Power for Production	Harry L. Stewart				
4	Pneumatic Systems	S. R. Majumdar	Tata McGraw Hill Publish	1995		
5	Power Hydraulics	Michael J Pinches & John G Ashby	Prentice Hall			

B.E AERONAUTICAL ENGINEERING				
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
SEMESTER - VII				
HEAT & MASS TRANSFER				
Professional Elective - 2				
Course Code	18AE734/18AS734	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	

Course Learning Objectives:

- Understand the different modes of heat transfer.
- Understand the free convection and forced convection.
- Acquire the knowledge of heat transfer problems in combustion chambers.

03

Module-1

Credits

Fundamentals: Different modes of heat transfer and mass and momentum transfer, elements of mass diffusion and boundary layer theory. Mass transfer definition and terms used in mass transfer analysis, Fick's First law of diffusion.

Exam Hours

03

Module-2

Conduction: Derivation of general three dimensional conduction equation in Cartesian coordinate, special cases, discussion on 3-D conduction in cylindrical and spherical coordinate systems. Effect of variation of thermal conductivity on heat transfer in solids - Heat transfer problems in infinite and semi-infinite solids - Extended surfaces. One dimensional transient heat conduction: Systems with negligible internal resistance, Significance of Biot and Fourier Numbers, Chart solutions of transient conduction systems.

Module-3

Convection: Concepts of Continuity, Momentum and Energy Equations. Dimensional analysis-Buckingham's Pi Theorem - Application for developing non-dimensional correlation for convective heat transfer

Free Convection: Development of Hydrodynamic and thermal boundary layer along a vertical plate, Use of empirical relations for Vertical plates and pipes.

Forced Convection: External Flows, Concepts of hydrodynamic and thermal boundary layer and use of empirical correlations for Flat plates and Cylinders. Internal Flows, Concepts about Hydrodynamic and Thermal Entry Lengths, use of empirical correlations for Horizontal Pipe Flow and annulus flow.

Module-4

Radiation & Heat Exchangers Design: Radiation: Introduction to physical mechanism - Radiation properties - Radiation shape factors - Heat exchange between non-black bodies - Radiation shields

Heat Exchangers: Classification of heat exchangers; overall heat transfer coefficient, fouling and fouling factor; LMTD, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problems.

Module-5

Heat and Mass Transfer Problems in Aerospace Engineering: Heat transfer problems in gas turbine combustion chambers - Rocket thrust chambers - Aerodynamic heating -Ablative heat transfer. Heat transfer problems in turbine and nozzle blades.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Describe the fundamental of heat and mass transfer.
- 2. CO2: Familiarize the student in the area of conduction, convection and radiation.
- 3. CO3: Analyze the problems due to heat transfer in several areas.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	Heat transfer-A basic approach	Ozisik	Tata McGraw Hill	2002
2	Heat Transfer	Holman, J.P	McGraw Hill Book Co., Inc., New York	8th edition,1996
Refere	ence Books		1	_ L
1	Fundamentals of Engineering Heat and Mass Transfer	Sachdeva, S.C	Wiley Eastern Ltd., New Delhi	1981
2	Rocket Propulsion Elements	Sutton, G.P	John Wiley and Sons	5th Edn.1986
3	Gas Turbine and Jet and Rocket Propulsion	Mathur, M.and Sharma, R.P	Standard Publishers, New Delhi	1988
4	Heat transfer	P.K. Nag	Tata McGraw Hill	2002
5	Heat transfer, a practical approach	Yunus A- Cengel	Tata McGraw Hill	3 rd edition, 2007

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII

HIGH PERFORMANCE COMPUNTING

III OH I EM ORIVIANCE COM CITINO			
Course Code	18AE741/18AS741	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the concepts of high performance computing
- Acquire the knowledge of various algorithms required for parallel computing.
- Understand the concepts of architecture.

Module-1

Computational Science and Engineering Introduction: Computational Science and Engineering Applications; characteristics and requirements, Review of Computational Complexity, Performance: metrics and measurements, Granularity and Partitioning, Locality: temporal/spatial/stream/kernel, Basic methods for parallel programming, Real-world case studies (drawn from multi-scale, multi-discipline applications)

Module-2

High-End Computer Systems: Memory Hierarchies, Multi-core Processors: Homogeneous and Heterogeneous, Shared-memory Symmetric Multiprocessors, Vector Computers, Distributed Memory Computers, Supercomputers and Petascale Systems, Application Accelerators / Reconfigurable Computing, Novel computers: Stream, multithreaded, and purpose-built.

Module-3

Parallel Algorithms: Parallel models: ideal and real frameworks, Basic Techniques: Balanced Trees, Pointer Jumping, Divide and Conquer, Partitioning, Regular Algorithms: Matrix operations and Linear Algebra, Irregular Algorithms: Lists, Trees, Graphs, Randomization: Parallel Pseudo-Random Number Generators, Sorting, Monte Carlo techniques.

Module-4

Parallel Programming: Revealing concurrency in applications, Task and Functional Parallelism, Task Scheduling, Synchronization Methods, Parallel Primitives (collective operations), SPMD Programming (threads, Open MP, MPI), I/O and File Systems, Parallel Matlabs (Parallel Matlab, Star-P, Matlab MPI), Partitioning Global Address Space (PGAS) languages (UPC, Titanium, Global Arrays).

Module-5

Achieving Performance: Measuring performance, identifying performance bottlenecks, Restructuring applications for deep memory hierarchies, Partitioning applications for heterogeneous resources, Using existing libraries, tools, and frameworks.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the concepts of high performance computing
- 2. CO2: Develop various algorithms required for parallel computing.
- 3. CO3: Compare architectures for high performance computing.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			

1	An Introduction to Parallel Computing, Design and Analysis of Algorithms	Grama, A. Gupta, G. Karypis, V. Kumar	Pearson Education India	2 nd edition, 2004
2	Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation	G.E. Karniadakis, R.M. Kirby II	Cambridge University Press	2003
Refere	ence Books			
1	Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers	Wilkinson and M. Allen	Pearson	2 nd edition, 2006
2	Parallel Programming in C with MPI and Open MP	M.J. Quinn	McGraw-Hill	1 st edition,2003
3	Highly Parallel Computing	G.S. Almasi and A. Gottlieb	Addison-Wesley	1994
4	The Sourcebook of Parallel Computing	J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon	Morgan Kaufmann	2002

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER – VII

Professional Elective - 3

WIND TUNNEL TECHNIQUES				
Course Code	18AE742/18AS742	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the basic of wind tunnel testing.
- Understand the types and functions of wind tunnel.
- Acquire the knowledge on conventional measurement techniques and special wind tunnel techniques.

Module-1

Principles Of Model Testing: Buckingham Theorem, Non dimensional numbers, Scale effect, Geometric Kinematic and Dynamic similarities.

Types And Functions Of Wind Tunnels: Classification and types, special problems of testing in subsonic, transonic, supersonic and hypersonic speed regions, Layouts, sizing and design parameters.

Module-2

Calibration Of Wind Tunnels: Test section speed, Horizontal buoyancy, Flow angularities, Flow uniformity & turbulence measurements, Associated instrumentation, Calibration of subsonic & supersonic tunnels.

Module-3

Conventional Measurement Techniques: Force measurements and measuring systems, Multi component internal and external balances, Pressure measurement system, Steady and Unsteady Pressure, single and multiple measurements, Velocity measurements, Intrusive and Non-intrusive methods, Flow visualization techniques, surface flow, oil and tuft, flow field visualization, smoke and other optical and nonintrusive techniques.

Module-4

Special Wind Tunnel Techniques: Intake tests, store carriage and separation tests, Unsteady force and pressure measurements, Non-Intrusive Flow Diagnostics, Laser – Doppler Anemometry. Particle Image Velocimetry. Laser Induced Fluorescence

Module-5

Fundamentals of wind tunnel design – introduction, general considerations, general design procedure, main design criteria, wind tunnel component specification, design of various components of wind tunnel - test chamber, contraction, settling chamber, diffuser, power plant, turning vane, fan and drive system, safety net design

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the principles and procedures for model testing in the wind tunnel.
- 2. CO2: Classify the types and functions of wind tunnel.
- 3. CO3: Distinguish the conventional measurement techniques and special wind tunnel techniques.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
---------	-------------------	-------------------------	-----------------------	---------------------

1	Low Speed Wind Tunnel Testing	Rae, W.H. and Pope, A.	John Wiley Publication	3rd edition, 2010
2	High Speed Wind Tunnel Testing	Pope, A., and Goin, L	John Wiley	1985
Refer	rence Books			
1	Instrumentation, Measurements, and Experiments in Fluids	E. Rathakrishnan	CRC Press	2007
2	Experimental Fluid Mechanics	Bradsaw	Pergamon Press	2nd Revised edition,1970
3	Wind Tunnel Designs and their Diverse Engineering Applications	Noor Ahmed		2013
4	Advanced Flow diagnostic techniques			
5	Experimental Aerodynamics			

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER -VII

GUIDANCE, NAVIGATION & CONTROL			
Course Code	18AE743/18AS743	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Comprehend the basic concepts of navigation, guidance and control.
- Acquire the knowledge of radar systems and other guidance systems.
- Understand the missile guidance and control system.

Module-1

Introduction

Concepts of navigation, guidance and control. Introduction to basic principles. Air data information.

Radar Systems

Principle of working of radar. MTI and Pulse Doppler radar. Moving target detector. Limitation of MTI performance. MTI from a moving platform (AMTI).

Module-2

Tracking with Radar

Mono pulse tracking. Conical scan and sequential lobbing. Automatic tracking with surveillance radar (ADT).

Other Guidance Systems

Gyros and stabilized platforms. Inertial guidance and Laser based guidance. Components of Inertial Navigation System. Imaging Infrared guidance. Satellite navigation. GPS.

Module-3

Transfer Functions

Input-output Transfer function. Basic altitude reference. Concepts of Open loop and Close Loop.

Missile Control System

Guided missile concept. Roll stabilization. Control of aerodynamic missile. Missile parameters for dynamic analysis. Missile autopilot schematics. Acceleration command and root locus.

Module-4

Missile Guidance

Proportional navigation guidance; command guidance. Comparison of guidance system performance. Bank to turn missile guidance

Module-5

Integrated Flight/Fire Control System

Director fire control system. Tracking control laws. Longitudinal flight control system. Lateral flight control system. Rate of change of Euler angle, Auto Pilot.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts of navigation, guidance and control.
- 2. CO2: Compare the different types of missile guidance system performance.
- 3. CO3: Integrate the flight and fire control system.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			•
1	Fundamentals of Aerospace Navigation and Guidance	P.T. Kabamba and A.R. Girard	Cambridge Aerospace Series	2014
2	Automatic control of Aircraft & Missiles	John H Blakelock	Wile –Inter SciencePublication	2 nd edition, May 1990
Refere	nce Books			
1	Navigation	R.B. Underdown& Tony Palmer	Black Well Publishing	2001
2	Introduction to Radar Systems	Merrilh I. Skolnik	Tata Mc Graw Hill	3 rd edition,2001
3	Missile Guidance and Control Systems	George M. Siouris	Springer	2004
		•		

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -VII

Professional Elective - 3

OPERATIONS RESEARCH				
Course Code	18AE744	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the basic of operations research.
- Comprehend the PERT-CPM techniques, queuing theory and game theory.
- Acquire the knowledge on sequencing.

Module-1

Introduction: Evolution of OR, definition of OR, scope of OR, application areas of OR, steps (phases) in OR study, characteristics and limitations of OR, models used in OR, linear programming (LP) problem-formulation and solution by graphical method.

Solution Of Linear Programming Problems: The simplex method-canonical and standard form of an LP problem, slack, surplus and artificial variables, big M method and concept of duality, dual simplex method.

Module-2

Transportation Problem: Formulation of transportation problem, types, initial basic feasible solution using different methods, optimal solution by MODI method, degeneracy in transportation problems, application of transportation problem concept for maximization cases. Assignment Problem-formulation, types, application to maximization cases and travelling sales man problem.

Module-3

Integer Programming: Pure and mixed integer programming problems, solution of Integer programming problems-Gomory's all integer cutting plane method and mixed integer method, branch and bound method, Zero-One programming.

Pert-CPM Techniques: Introduction, network construction -rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method to find the expected completion time of a project, floats; PERT for finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.

Module-4

Queuing Theory: Queuing systems and their characteristics, Pure-birth and Pure-death models (only equations), empirical queuing models—M/M/1 and M/M/C models and their steady state performance analysis. **Game Theory:** Formulation of games, types, solution of games with saddle point, graphical method of solving mixed strategy games, dominance rule for solving mixed strategy games.

Module-5

Sequencing: Basic assumptions, sequencing 'n' jobs on single machine using priority rules, sequencing using Johnson's rule-'n' jobs on 2 machines, 'n' jobs on 3 machines, 'n' jobs on 'm' machines. Sequencing 2 jobs on 'm' machines using graphical method.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic of operations research.
- 2. CO2: Classify the PERT-CPM techniques, queuing theory and game theory.
- 3. CO3: Identify the sequencing techniques.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	Operations Research	P K Gupta and D S Hira	Chand Publications, New Delhi	Revised edition, 2007
2	Operations Research	Taha H A	Pearson Education	9 th edition,2014
Refere	nce Books	·		
1	Operations Research	A P Verma	S K Kataria & Sons	2012
2	Operations Research	Paneerselvan	PHI	2 nd edition,2009
3	Operations Research	A M Natarajan, P Balasubramani	Pearson Education	1 st edition,2011
4	Introduction to Operations Research	Hillier and Liberman	Mc Graw Hill	8 th Ed
5	Operations Research	S. D. Sharma	Kedarnath Ramanath & Co	2012

	E AERONAUTICAL EN. lit System (CBCS) and Ou SEMESTER - V	tcome Based Education (OB	E)					
MODELING & ANALYSIS LAB								
Course Code	18AEL76	CIE Marks	40					
Teaching Hours/Week (L·T·P)	(1:0:2)	SEE Marks	60					

Course Learning Objectives:

Credits

• Understand the procedure to draw the geometric models of symmetric, cambered aerofoil, nozzle, wing and other structures.

Exam Hours

03

- Acquire the knowledge of types of meshing.
- Understand the basics of flow and stress analysis.

Sl.	Experiments
No.	
1	Modeling of Symmetrical/Cambered Aerofoil Geometry , and Generation of Body Fitting Adaptive
	Mesh.
2	Modeling of 2-D Incompressible and Invisicd Flow over Symmetrical/Cambered Aerofoil, and Plotting
	of Pressure distribution and Velocity vectors for Subsonic/Supersonic Mach numbers.
3	Modeling of 2-D Compressible and Viscid Flow over Symmetrical/Cambered Aerofoil, and Plotting of
	Pressure distribution and Velocity vectors for Subsonic Mach numbers.
4	Isentropic Flow Analysis in a 2-D Subsonic Diffuser and a Subsonic Nozzle.
5	Isentropic Flow Analysis in a 2-D Supersonic Diffuser and a Supersonic Nozzle.
6	Geometric Modeling and Mesh Generation of a 2-D Convergent-Divergent Nozzle and Analyses of flow
	for Adiabatic Conditions (Fanno Flow).
7	Geometric Modeling and Mesh Generation of a 2-D Pipe and Modeling of Steady/Unsteady Heat
	Convection and Conduction (Rayleigh Flow).
8	Structural Modeling of Sandwich Beam of Rectangular Cross-section and Analyses for Stress for
9	Structural Modeling and Stress Analysis of a Torsion Box of a Wing.
10	Structural Modeling and Stress Analysis of a Fuselage Frame.
11	Structural Modeling and Stress Analysis of a Tapered I-Section Spar.
12	Determine the Natural frequency and Mode shapes of a Cantilever beam under UDL.
13	A Plate fixed at one end has a hole in centre and has varying thickness, Determine stresses developed
	due to applied static loads in vertical direction.
14	A Tapered Plate fixed at one end has a hole in centre and has varying thickness, determine stresses
	developed due to applied static loads in vertical direction.

Course Outcomes: At the end of the course the student will be able to:

- Draw the geometric models of symmetric, cambered aerofoil, nozzle, wing and other structures.
- Apply different types of meshing.
- Perform the flow and stress analysis.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. □

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII								
FLIGHT SIMULATION LAB								
Course Code	18AEL77	CIE Marks	40					
Teaching Hours/Week (L:T:P) (1:0:2) SEE Marks 60								
Credits								

Course Learning Objectives:

- Understand the root locus and bode plot.
- Understand the spring mass damper system and the servo mechanism system with feedback.
- Acquire the knowledge to use computational tools to model aeronautical vehicle dynamics.

- CI	T
Sl.	Experiments
No.	
1	Draw Pole-Zero map of dynamic system model with plot customization option
2	Plot root locus with variables in transfer function through MATLAB
3	Plot root locus for a dynamic system though MATLAB
4	Draw Bode plot from a transfer function in MATLAB and explain the gain and phase margins
5	Simulate a spring- mass- damper system with and without a forcing function though SIMULINK
6	Simulate a simple servo-mechanism motion with feedback- in the time domain, and in `s` domain
7	Simulate a bomb drop from an aircraft on a moving tank in pure pursuit motion
8	Develop a straight and level flight simulation program using MATLAB
9	Simulate aircraft Take-off and Landing with trajectory tracing
10	Simulate stall of aircraft and show the effect of variation in static margin on stalling characteristics
11	Simulate aircraft longitudinal motion and demonstrate the effect of static margin variation for a pulse input in pitch that is intended to bleed the airspeed.
10	
12	Simulate aircraft longitudinal motion and demonstrate the effect of static margin variation for a doublet
	input in pitch.
13	Given a Quartic characteristic equation, determine two quadratics that shall result in poles of short-
	period oscillations and poles of Phugoid. Vary the coefficients of polynomial to study the movement of
	poles.
14	Given a Quartic characteristics equitation, determine Poles and Time constants for Roll mode, Spiral
	motion, and Dutch roll. Vary the coefficients of polynomial to study the movement of poles.
~	

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Plot the root locus and bode plot.
- 2. CO2: Calculate the dynamics response of aircraft.
- 3. CO3: Use computational tools to model aircraft trajectory.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. □

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -VII

Open Elective - B

1/21221 (1221 (1221 (122)	11111 (121 (111 (122) 0 (121 111 11 11 11 11 11 11 11 11 11 11 11				
Course Code	18AE751/18AS751	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

- Comprehend the fundamentals of maintenance and certification.
- Acquire the knowledge of documentation for maintenance.
- Understand the Aircraft Maintenance, safety and trouble shooting.

Module-1

Fundamentals of Maintenance & Certification

Types of maintenance, Redesign, Failure rate pattern, Other maintenance considerations.

Aviation industry certification requirements, Type certificate (FAA form 8110.9), Airworthiness certificate (FAA form 8100-2), Aviation maintenance certifications, General, Airframe, Power plant, Avionics courses.

Module-2

Documentation for Maintenance

Manufacturers documentation, Airplane maintenance manual, Fault insulation manual, Illustrated parts catalogue, structural repair manual, wiring diagram manual, Master minimum equipment, Federal Aviation regulation (FAR), Advisory circulars, Airworthiness direction ATA document standards, Technical policies and procedure manuals (TPPM).

Module-3

Aircraft Management Maintenance

Structure, Role of aviation management, Line supervisory management, Management areas of concern in airlines, Manager of overhaul shops, Line maintenance control centre flight line (preflight& post flight), Aircraft Logbook, Maintenance crew skill requirements

Module-4

Hanger Maintenance (on Aircraft) & Material Support

Introduction, organization of hanger maintenance, Non- routine item, parts availability, cannibalization, Types of shops- sheet metal shop, Aircraft interior shop, Engine shop, Avionics shop, ground support equipment, outsourcing of shop maintenance work, operation of overhaul shops, Material support, Material management inventory control, Support functions of material, Parts ordering, Storage, Issue, control and handling, Parts receiving quality control, calibration program, stock level adjustments, shelf life, exchanges, warranty & modifications of parts.

Module-5

Maintenance Safety & Trouble shooting

Safety regulations, occupational safety and health standards maintenance safety program, Airlines safety management, General safety rules, Accident & injury reporting, Hazardous materials storage and handling aircraft furnishing practices trouble shooting, Knowledge of malfunctions.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Maintain the aircraft maintenance manual and logbook.
- 2. CO2: Do the quality control and calibration.
- 3. CO3: Incorporate the safety regulations and rules.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ook/s			•
1	Aviation Maintenance Management	Harry A Kinnison, Tariq Siddiqui	Mc Graw Hill education (India) Private Ltd	2013
2	Aircraft maintenance and repair	Kroes, Watkins, Delp	Mc Graw Hill	2013
Refere	ence Books			
1	Aircraft Repair Manual	Larry Reithmaier	Palmar Books, Marquette	1992
2	Aircraft Maintenance	Brimm. DJ, Bogges, HE	Pitman publishing corp, London	1952

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

FUNDAMENTALS OF AERODYNAMIC THEORY

1 01 1211	T CT DIMINED OF THE CONTROL THE CONTROL				
Course Code	18AE752/18AS752	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

- Understand the basics of fluid mechanics as a prerequisite to Aerodynamics
- Acquire knowledge on typical airfoil characteristics and two-dimensional flows over airfoil and study the incompressible over finite wings
- Assimilate the understanding of application of finite wing theory and high lift systems

Module-1

Review of Basic Fluid Mechanics

Continuity, momentum and energy equation, Control volume approach to Continuity, momentum and energy equation, Types of flow, pathlines, streamlines, and streaklines, units and dimensions, inviscid and viscous flows, compressibility, Mach number regimes. Vorticity, Angular velocity, Stream function, velocity potential function, Circulation, Numericals, Mach cone and Mach angle, Speed of sound.

Module-2

Airfoil Characteristics

Fundamental aerodynamic variables, Airfoil nomenclature, airfoil characteristics. wing planform geometry, aerodynamic forces and moments, centre of pressure, pressure coefficient, aerodynamic center, calculation of airfoil lift and drag from measured surface pressure distributions, typical airfoil aerodynamic characteristics at low speeds. Types of drag-Definitions.

Module-3

Two Dimensional Flows & Incompressible Flow Over Airfoil

Uniform flow, Source flow, Sink flow, Combination of a uniform flow with source and sink. Doublet flow. Non-lifting flow over a circular cylinder. Vortex flow. Lifting flow over a circular cylinder. Kutta-Joukowski theorem and generation of Lift, D'Alembert's paradox, Numericals,

Incompressible flow over airfoils: Kelvin's circulation theorem and the starting vortex, vortex sheet, Kutta condition, Classical thin airfoil theory for symmetric and cambered airfoils. Kutta-Joukowski theorem and generation of Lift, Numericals.

Module-4

Incompressible Flow Over Finite Wings

Biot-Savart law and Helmholtz's theorems, Vortex filament: Infinite and semi-infinite vortex filament, Induced velocity. Prandtl's classical lifting line theory: Downwash and induced drag. Elliptical and modified elliptical lift distribution. Lift distribution on wings. Limitations of Prandtl's lifting line theory. Extended lifting line theory- lifting surface theory, vortex lattice method for wings. Lift, drag and moment characteristics of complete airplane.

Module-5

Applications of Finite Wing Theory & High Lift Systems

Simplified horse-shoe vortex model, formation flight, influence of downwash on tail plane, ground effects. Swept wings: Introduction to sweep effects, swept wings, pressure coefficient, typical aerodynamic characteristics, Subsonic and Supersonic leading edges. Introduction to high-lift systems, flaps, leading-edge slats and typical high – lift characteristics. critical Mach numbers, Lift and drag divergence, shock induced separation, Effects of thickness, camber and aspect ratio of wings, Transonic area rule, Tip effects. Introduction to Source panel & vortex lattice method.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1 :Evaluate typical airfoil characteristics and two-dimensional flows over airfoil
- 2. CO2 :Compute and analyse the incompressible flow over finite wings

3. CO3: Apply finite wing theory and design high lift systems from the aerodynamics view point

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ook/s			
1	Fundamental of Aerodynamics	Anderson J.D	McGraw-Hill International Edition, New York	5th edition,2011
2	Aerodynamics for Engineering Students	E. L. Houghton, P.W. Carpenter	Elsevier, New York	5th edition,2010
Refer	ence Books	•		1
1	Aerodynamics	Clancy L. J.	Sterling book house, New Delhi	2006
2	Theoretical Aerodynamics	Louis M. Milne-Thomson	Dover Publications, USA	Imported Edition,2011

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -VII

Open Elective - B

UNMANNED AERIAL VEHICLES				
Course Code	18AE753/18AS753	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Comprehend the basic aviation history and UAV systems.
- Acquire the knowledge of basic aerodynamics, performance, stability and control.
- Understand the propulsion, loads and structures.

Module-1

Introduction

Aviation History and Overview of UAV systems, Classes and Missions of UAVs, Definitions and Terminology, UAV fundamentals, Examples of UAV systems-very small, small, Medium and Large UAV

Module-2

The Air Vehicle

Basic Aerodynamics:

Basic Aerodynamics equations, Aircraft polar, the real wing and Airplane, Induced drag, the boundary layer, Flapping wings, Total Air-Vehicle Drag.

Performance:

Overview, climbing flight, Range and Endurance – for propeller-driven aircraft, range- a jet-driven aircraft, Guiding Flight.

Module-3

Stability and Control

Overview, Stability, longitudinal, lateral, dynamic stability, Aerodynamics control, pitch control, lateral control, Autopilots, sensor, controller, actuator, airframe control, inner and outer loops, Flight-Control Classification, Overall Modes of Operation, Sensors Supporting the Autopilot.

Module-4

Propulsion

Overview, Thrust Generation, Powered Lift, Sources of Power, The Two-Cycle Engine, The Rotary Engine, The Gas Turbine, Electric Motors, and Sources of Electrical Power.

Loads and Structures

Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcing Materials, Resin Materials, Core Materials, Construction Techniques.

Module-5

Mission Planning and Control: Air Vehicle and Payload Control, Reconnaissance/Surveillance Payloads, Weapon Payloads, Other Payloads, Data-Link Functions and Attributes, Data-Link Margin, Data-Rate Reduction, Launch Systems, Recovery Systems, Launch and Recovery Tradeoffs

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts of UAV systems.
- 2. CO2: Explain the basic aerodynamics, performance, stability and control required for UAV.
- 3. CO3: Select the propulsion system and materials for structures.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Introduction to UAV Systems	Paul Gerin Fahlstrom, Thomas James Gleason	Wiley Publication	4th Edition,2012
2	Unmanned Aerial Vehicle	Landen Rosen	Alpha Editions	
Referen	ce Books			
1	Unmanned Aerial Vehicles: DOD's Acquisition Efforts		Alpha Editions	
2	Unmanned Aerial Vehicles	Valavanis, Kimon P	Springer	2011
	Handbook of Unmanned Aerial Vehicles	Valavanis, K.,Vachtsevano s, George J	Springer	2015

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VIII							
	FLIGHT VEHICL	E DESIGN					
Course Code	Course Code 18AE81 CIE Marks 40						
Teaching Hours/Week (L:T:P) (3:0:0) SEE Marks 60							
Credits	03	Exam Hours	03				

Course Learning Objectives:

- Comprehend the flight vehicle design process.
- Acquire the knowledge of vehicle configuration and structural components.
- Understand the stability & control and subsystems.

Module-1

Overview of Design Process: Introduction, Requirements, Phases of design, Conceptual Design Process, Initial Sizing, Take-off weight build up, Empty weight estimation, Fuel fraction estimation, Take- off weight calculation.

Thrust to Weight Ratio & Wing Loading: Thrust to Weight Definitions, Statistical Estimate of T/W. Thrust matching, Spread sheet in design, Wing Loading and its effect on Stall speed, Take-off Distance, Catapult take-off, and Landing Distance. Wing Loading for Cruise, Loiter, Endurance, Instantaneous Turn rate, Sustained Turn rate, Climb, & Glide, Maximum ceiling.

Module-2

Configuration Layout & loft: Conic Lofting, Conic Fuselage Development, Conic Shape Parameter, Wing-Tail Layout & Loft. Aerofoil Linear Interpolation. Aerofoil Flat-wrap Interpolation. Wing aerofoil layout-flap wrap. Wetted area determination. Special considerations in Configuration Layout: Aerodynamic, Structural, Detectability. Crew station, Passenger, and Payload arrangements.

Design of Structural Components: Fuselage, Wing, Horizontal & Vertical Tail. Spreadsheet for fuselage design. Tail arrangements, Horizontal & Vertical Tail Sizing. Tail Placement. Loads on Structure. V-n Diagram, Gust Envelope. Loads distribution, Shear and Bending Moment analysis.

Module-3

Engine Selection & Flight Vehicle Performance

Turbojet Engine Sizing, Installed Thrust Correction, Spread Sheet for Turbojet Engine Sizing. Propeller Propulsive System. Propeller design for cruise. Take-off, Landing & Enhanced Lift Devices: Ground Roll, Rotation, Transition, Climb, Balanced Field Length, Landing Approach, Braking, Spread Sheet for Take-off and Landing. Enhanced lift design -Passive & Active. Spread Sheet.

Module-4

Static Stability & Control

Longitudinal Static Stability, Pitch Trim Equation. Effect of Airframe components on Static Stability. Lateral stability. Contribution of Airframe components. Directional Static stability. Contribution of Airframe components. Aileron Sizing, Rudder Sizing. Spread Sheets. Flying qualities. Cooper Harper Scale. Environmental constraints, Aerodynamic requirements.

Module-5

Design Aspects of Subsystems

Flight Control system, Landing Gear and subsystem, Propulsion and Fuel System Integration, Air Pressurization and Air Conditioning System, Electrical & Avionic Systems, Structural loads, Safety constraints, Material selection criteria.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Calculate the thrust to weight ratio and wing loading.
- 2. CO2: Compute the flight vehicle performance.
- 3. CO3: Select the subsystems as per vehicle design.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Aircraft Design - A Conceptual Approach	Daniel P. Raymer	AIAA Education Series	IV Edition, 2006
2	Design of Aircraft	Thomas C Corke	Pearson Edition. Inc.	2003
Referen	ce Books			
1	Aeroplane Design	J Roskam		
2	Introduction to Aircraft Design	John Fielding	Cambridge University Press	2009
3	Standard Handbook for Aeronautical & Astronautical Engineers	Editor Mark Davies	Tata McGraw Hill	2010

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VIII

	AVIONICS		
Course Code	18AE821	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the need for avionics in civil, military and space systems.
- Appreciate the use of microprocessors, data buses and avionics system architectures.
- Acquire the knowledge of display technologies, communication and navigation systems.

Module-1

Power Distribution System: Bus Bar, split bus bar system, special purpose cables. Electrical diagram and identification scheme. Circuit controlling devices. Power utilization-typical application to avionics. Need for Avionics in civil and military aircraft.

Module-2

Inertial Navigation System: Gyroscopic versus Inertial platform. Structure of stable platform. Inertial Navigation units. Inertial alignment. Inertial interface system. Importance of Compass swing.

Electronic Flight Control System: Fly-by-wire system:-basic concept and features. Pitch and Roll rate:-command and response. Control Laws. Frequency response of a typical FBW actuator. Cooper Harper scale. Redundancy and failure survival. Common mode of failures and effects analysis.

Module-3

Electronic Flight Instrument Systems: Display-units, presentation, failure, and annunciation. Display of air data.

Introduction to Avionics Sub Systems and Electronic Circuits: Typical avionics sub systems. Amplifier, oscillator, aircraft communication system, transmitter, receiver, antenna.

Module-4

Principles of Digital Systems: Digital Computers, Microprocessors, Memories.

Flight Deck and Cockpits: Control and display technologies CRT, LED, LCD, EL and plasma panel, Touch screen, Direct voice input (DVI)-Civil cockpit and military cockpit: MFDS, HUD, MFK, and HOTAS.

Module-5

Avionics Systems Integration: Avionics equipment fit. Electrical data bus system. Communication Systems, Navigation systems, Flight control systems, Radar, Electronic Warfare, and fire control system. Avionics system architecture, Data buses, MIL–STD1553B.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Select the suitable data bus based on the application.
- 2. CO2: Identify the suitable navigation systems.
- 3. CO3: Distinguish the avionics system architecture.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			

1	Introduction to Avionics Systems	R.P.G. Collinson	Springer	3 rd edition, 2011
2	Aircraft Systems: Mechanics, Electrical and Avionics Subsystems Integration	Ian Moir, Allan Seabridge	Wiley	3 rd Edition, 2012
Referen	ice Books			
1	Avionics Systems, Longman Scientific and Technical	Middleton, D.H., Ed	Longman Group UK Ltd., England	1989
2	Digital Avionic Systems	Spitzer, C. R	McGraw-Hill Inc., US	2nd edition, 1992
3	Aircraft Communications and Navigation Systems	Mike Tooley and David Wyatt	Butterworth Heinemann	2007
4	Introduction to Avionics	D.R. Cundy and R.S. Brown	Pearson	2010
		•		•

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -VIII

Professional Elective - 4

BOUNDARY LAYER THEORY				
Course Code	18AE822	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Comprehend the basic concepts and equations of viscous flow.
- Acquire the knowledge of laminar boundary layer and its equations.
- Understand the turbulence, instrumentation and measurements.

Module-1

Preliminary Concepts

Some examples of viscous flow phenomena: - aerofoil, cylinder, circular pipe. Boundary conditions for viscous flow problems. The kinematics properties of viscous flow.

Fundamental Equations of Viscous Flow

Conservation of mass, momentum and energy equations. Mathematical characterisation of basic equations. Dimensionless parameters in viscous flow.

Module-2

Solutions of Viscous Flow Equations

Classification of solutions. Couette flow, stability of Couette flow. Poiseuille steady flow through duct. Unsteady duct flow between plates with bottom injection and top suction. Plane stagnation flow-differential equation free of parameters.

Module-3

Introduction to Laminar Boundary Layer

Laminar boundary layer equations. Flat plate Integral analysis. Displacement thickness, Momentum and Energy thicknesses for two dimensional flows; Shape factor. Some insight into boundary layer approximations. Discussion of Navier Stokes equations. Concept of thermal boundary layer.

Module-4

Laminar Boundary Layer Equations

Dimensionless variables. Laminar boundary layer equations. Similarity solutions for steady two-dimensional flow. Blasius solution for flat- plate flow, wall shear stress. Flat plate heat transfer for constant wall temperature. Some examples of Falkner-Skan potential flows. Reynolds analogy as a function of pressure gradient.

Module-5

Transition to Turbulence

Stability of laminar flows - concept of small disturbance stability. Temporal instability and Spatial instability. Stability of Blasius and Falkner-Skan profiles. Effect of wall temperature. Transition to turbulence. Affecting parameters

Incompressible Turbulent Mean Flow

Physical and mathematical description of turbulence. Fluctuations and time averaging. Turbulent flow in pipes and channels. Free turbulence: - jets, wakes and mixing layers.

Instrumentation and Measurements:

Hot wire and Hot film anemometer for turbulence measurements. Schlieren methods for flow visualization. Pressure probes, Interferometer and Smoke method.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts and equations of viscous flow.
- 2. CO2: Discuss the importance of Navier Stokes equation.
- 3. CO3: Measure the turbulence.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

H. Schlichting Frank White	McGraw- Hill, New York McGraw Hill	1979 1991
	·	
Frank White	McGraw Hill	1991
.P. Hollman and W.J. Gajda, r	McGraw- Hill	5 th Edition,1989
,	John Wiley & Sons	1984
	r Ronald L., Panton	Ronald L., John Wiley & Sons

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VIII

Professional Elective - 4

HELICOPTER DYNAMICS				
Course Code	18AE823	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- 1. CO1: Comprehend the basic concepts of helicopter dynamics.
- **2.** CO2: Acquire the knowledge of critical speed and rotor bearing system.
- **3.** CO3: Understand the turborotor system and blade vibration.

Module-1

Introduction: History of helicopter flight. Fundamentals of Rotor Aerodynamics; Momentum theory analysis in hovering flight. Disk loading, power loading, thrust and power coefficients. Figure of merit, rotor solidity and blade loading coefficient. Power required in flight. Axial climb, descent, and autorotation.

Blade Element Analysis: Blade element analysis in hovering and forward flight. Rotating blade motion. Types of rotors. Concept of blade flapping, lagging and coning angle. Equilibrium about the flapping hinge, lead/lag hinge, and drag hinge.

Module-2

Basic Helicopter Performance: Forces acting on helicopters in forward flight. Methods of achieving translatory flight. Controlling cyclic pitch: Swash-plate system. Lateral tilt with and without conning. Lateral and longitudinal asymmetry of lift in forward flight. Forward flight performance- total power required, effects of gross weight, effect of density altitude. Speed for minimum power, and speed for maximum range. Factors affecting forward speed, and ground effects.

Module-3

Rotor Airfoil Aerodynamics: Rotor airfoil requirements, effects of Reynolds number and Mach number. Airfoil shape definition, Airfoil pressure distribution. Pitching moment. Maximum lift and stall characteristics, high angle of attack range.

Rotor Wakes and Blade Tip Vortices: Flow visualization techniques, Characteristics of rotor wake in hover, and forward flight. Other characteristics of rotor wake.

Module-4

Helicopter Stability and Control. Introductory concepts of stability. Forward speed disturbance, vertical speed disturbance, pitching angular velocity disturbance, side-slip disturbance, yawing disturbance. Static stability of helicopters: longitudinal, lateral-directional and directional. Dynamic stability aspects. Main rotor and tail rotor control. Flight and Ground Handling Qualities-General requirements and definitions. Control characteristics, Levels of handling qualities.

Flight Testing- General handing flight test requirements and, basis of limitations.

Module-5

Standards and Specifications: Scope of requirements. General and operational requirements. Military derivatives of civil rotorcraft. Structural strength and design for operation on specified surfaces. Rotorcraft vibration classification.

Conceptual Design of Helicopters: Overall design requirements. Design of main rotors-rotor diameter, tip speed, rotor solidity, blade twist and aerofoil selection, Fuselage design, Empennage design, Design of tail rotors, High speed rotorcraft.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts of helicopter dynamics.
- **2.** CO2: Compute the critical speed by using various methods.
- **3.** CO3: Distinguish the turborotor system stability by using transfer matrix and finite element formulation.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Principles of Helicopter Aerodynamics	J. Gordon Leishman	Cambridge University Press	2002
2	Dynamics of Helicopter Flight	George H. Saunders	John Wiley & Sons, Inc, NY	1975
Referen	nce Books			
1	Rotary Wing Aerodynamics	W Z Stepniewski and C N Keys	Dover Publications,Inc, New York.	1984
2	Helicopter Dynamics	ARS Bramwell, George Done, and David Balmford	Butterworth-Heinemann Publication	2nd Edition,2001
3	Basic Helicopter Aerodynamics	John, M. Seddon and Simon Newman	Wiley	2011
4	Helicopter Flight Dynamics	Gareth D. Padfield	Wiley	2 nd Edition,2011

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -VIII

FLIGHT TESTING				
Course Code	18AE824	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Comprehend the basic concepts of flight test instrumentation.
- Acquire the knowledge of performance flight testing and stability control.
- Understand the flying qualities.

Module-1

Introduction: Sequence, Planning and governing regulations of flight testing. Aircraft weight and center of gravity, flight testing tolerances. Method of reducing data uncertainty in flight test data -sources and magnitudes of error, avoiding and minimizing errors.

Flight test instrumentation: Planning flight test instrumentation, Measurement of flight parameters. Onboard and ground based data acquisition system. Radio telemetry.

Module-2

Performance flight testing - range, endurance and climb: Airspeed – in flight calibration. Level flight performance for propeller driven aircraft and for Jet aircraft - Techniques and data reduction. Estimation of range, endurance and climb performance.

Performance flight testing -take-off, landing, turning flight: Maneuvering performance estimation. Take-off and landing -methods, procedures and data reduction.

Module-3

Stability and control - longitudinal and maneuvering

Static & dynamic longitudinal stability: - methods of flight testing and data reduction techniques. Stick free stability methods. Maneuvering stability methods & data reduction.

Module-4

Stability and control - lateral and directional

Lateral and directional static & dynamic stability: - Coupling between rolling and yawing moments. Steady heading slide slip. Definition of Roll stability. Adverse yaw effects. Aileron reversal. Regulations, test techniques and method of data reduction.

Module-5

Flying qualities: MIL and FAR regulations. Cooper-Harper scale. Pilot Rating. Flight test procedures. **Hazardous flight testing:** Stall and spin- regulations, test and recovery techniques. Test techniques for flutter, vibration and buffeting.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Measure the flight parameters.
- 2. CO2: Estimate the performance of flight.
- 3. CO3: Apply the FAR regulations.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Flight Testing of Fixed Wing Aircraft	Ralph D Kimberlin	AIAA educational Series	2003
2	Flight Testing- Conventional and Jet Propelled Airplanes	Benson Hamlin	Mac Millan	1946
Referen	ce Books	•		
1	Flight Test Manual	AGARD		
2	Small Unmanned fixed-wing Aircraft Design	A.J. Keane, A. Sobester	Wiley	2017
3	Flight Performance of Fixed and Rotary Wing Aircraft	A. Filippone	AIAA Series	2006