
HDL LAB MANUAL 18ECL58 

Acs college of engineering, Bangalore 
Dept. of ECE 

1 

 

 

 

Department of Electronics and Communication 

Engineering 

HARDWARE DISCRIPTION LABORATORY 

MANUAL 
 

Subject: Practical Components of IPCC(21EC32 

Prepared by  

Mrs. Vijaya Dalawai 
Assistant Professor, Dept. Of ECE 

 

 

                                        Dr. H B Bhuvaneswari 

                                       HOD, Dept. Of ECE 

 

Affiliated to Visvesvaraya Technological 

University, Belagavi, Karnataka - 590018 

2021-22 

 
 



HDL LAB MANUAL 18ECL58 

Acs college of engineering, Bangalore 
Dept. of ECE 

2 

 

 

 

CONTENTS 

Sl. NO Title 

1 Syllabus 

2 Cycles of  Experiments 

3 Overview of HDL lab 

4 Introduction  to FPGA 

4 

 

5 

PART A - Combinational & Sequential Circuits 

Programs 

PART B  -Interfacing Programs 

6 Viva Questions 



HDL LAB MANUAL 18ECL58 

Acs college of engineering, Bangalore 
Dept. of ECE 

3 

 

 

 
 

PROGRAM OUTCOMES (POS) 
 

Engineering Graduates will be able to: 

 

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

 

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

 

PO3. Design/development of solutions: Design solutions for complex engineering problems and 

design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and 

environmental considerations. 

 

PO4. Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions. 

 

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 

 

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent responsibilities 

relevant to the professional engineering practice. 

 

PO7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and 

need for sustainable development. 

 

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice. 

 

PO9. Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings. 

 

PO10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give 

and receive clear instructions. 

 

PO11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member 

and leader in a team, to manage projects and in multidisciplinary environments. 

 

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of technological 



HDL LAB MANUAL 18ECL58 

Acs college of engineering, Bangalore 
Dept. of ECE 

4 

 

 

change. 



HDL LAB MANUAL 18ECL58 

Acs college of engineering, Bangalore 
Dept. of ECE 

5 

 

 

PROGRAM SPECIFIC OUTCOMES (PSOS) 
 

 

 

At the end of graduation the student will be able, 

 
 To comprehend the fundamental ideas in Electronics and Communication Engineering 

and apply them to identify, formulate and effectively solve complex engineering 

problems using latest tools and techniques.

 To work successfully as an individual pioneer, team member and as a leader in assorted 

groups, having the capacity to grasp any requirement and compose viable solutions.

 To be articulate, write cogent reports and make proficient presentations while yearning 

for continuous self-improvement.

 To exhibit honesty, integrity and conduct oneself responsibly, ethically and legally; 

holding the safety and welfare of the society paramount.

 
Program Educational Objectives (PEOs) 

 

 

 

 Graduates will have a successful professional career and will be able to pursue higher 

education and research globally in the field of Electronics and Communication 

Engineering thereby engaging in lifelong learning.

 Graduates will be able to analyse, design and create innovative products by adapting to 

the current and emerging technologies while developing a conscience for environmental/ 

societal impact.

 Graduates with strong character backed with professional attitude and ethical values will 

have the ability to work as a member and as a leader in a team.

 Graduates with effective communication skills and multidisciplinary approach will be 

able to redefine problems beyond boundaries and develop solutions to complex problems 

of today’s society.



HDL LAB 18ECL58 

Department of ECE, ATMECE, Mysuru Page 6 

 

 

HDL LABORATORY (18ECL58) 
 
 

Subject Code : 18ECL58 I.A. Marks : 40 

Hours/Week : 03 Exam Hours : 03 

Total Hours : 36 Exam Marks : 60 

 

VTU SYLLABUS 

 

PART A 

1 Write a Verilog program for the following combinational designs 
a. 2 to 4 decoder 

b. 8 to 3 (encoder without priority & with priority) 

c. 8 to 1 multiplexer. 
4 bit binary to gray converter 

2 Model in Verilog for a full adder and add functionality to perform logical operations of XOR, 

XNOR, AND and OR gates. Write test bench with appropriate input patterns to verify the 

modeled behaviour. 

3 Write a Verilog code to model 32 bit ALU using the schematic diagram shown Below 
 

 

 
 

 
 

 ALU should use combinational logic to calculate an output based on the four bit op-code 

input. 

 ALU should pass the result to the out bus when enable line in high, and tri-state the out 

bus when the enable line is low. 

 ALU should decode the 4 bit op-code according to the example given below. 

 OPCODE ALU 

Operation 

 

1. A+B 

2. A-B 

3. A 

Complement 

4. A*B 

5. A AND B 



HDL LAB 18ECL58 

Department of ECE, ATMECE, Mysuru Page 7 

 

 

  6. A OR B  

7. A NAND B 

8. A XOR B 

4 Write Verilog code for SR, D and JK and verify the flip flop. 

5 Write Verilog code for 4-bit BCD synchronous counter. 

6 Write Verilog code for counter with given input clock and check whether it works asclock 
divider performing division of clock by 2, 4, 8 and 16. Verify the functionality of the code. 

 PART-B 

7 Write a Verilog code to design a clock divider circuit that generates 1/2, 1/3rd and 1/4thclock from a 

given input clock. Port the design to FPGA and validate the functionality through oscilloscope. 

8 Interface a DC motor to FPGA and write Verilog code to change its speed and direction. 

9 Interface a Stepper motor to FPGA and write Verilog code to control the Stepper motor rotation which in 

turn may control a Robotic Arm. External switches to be used for different controls like rotate the Stepper 

motor (i) +N steps if Switch no.1 of a Dip switch is closed (ii) +N/2 steps if Switch no. 2 of a Dip switch 
is closed (iii) –N steps if Switch no. 3 of a Dip switch is closed etc. 

10 Interface a DAC to FPGA and write Verilog code to generate Sine wave of frequency F KHz (eg. 200 

11 KHz) frequency. Modify the code to down sample the frequency to F/2 KHz. Display the Original and 

12 Down sampled signals by connecting them to an oscilloscope. 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 1 

 

 

Introduction to HDL 

 

An HDL is a programming language used to describe electronic circuit essentially digital 

logic circuits. It can be used to describe the operation, design and organization of a digital 

circuit. It can also be used to verify the behaviour by means of simulations. The principle 

difference between HDL and other programming languages is that HDL is a concurrent 

language whereas the others are procedural i.e. single threaded. HDL has the ability to 

model multiple parallel processes like adders, flip-flops etc which execute automatically and 

independently of each other. It is like building many circuits that can operate independently 

of each other. 

The two widely used HDLs are: 

VHDL: Very High Speed Integrated Circuits HDL 

Verilog HDL 

 

VHDL (VHSIC Hardware Description Language) is a hardware description language 

used in electronic design automation to describe digital and mixed-signal systems such as 

field-programmable gate arrays and integrated circuits. VHDL can also be used as a general 

purpose parallel programming language. 

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to 

model electronic systems. It is most commonly used in the design and verification of digital 

circuits at the register-transfer level of abstraction. It is also used in the verification of 

analog circuits and mixed-signal circuits, as well as in the design of genetic circuits. 

 

Difference between Verilog and VHDL 

 
1. VHDL is based on Pascal and ADA while Verilog is based on C language. 

2. VHDL is strongly typed i.e., does not allow the intermixing, or operation of variables, 

with different classes whereas Verilog is weakly typed. 

3. VHDL is case insensitive and Verilog is case sensitive. 

4. Verilog is easier to learn compared to VHDL. 

5. Verilog has very simple data types, while VHDL allows users to create more complex 

data types. 

6. Verilog lacks the library management, like that of VHDL. 

 

FPGA DESIGN FLOW 
1. Design Entry – the first step in creating a new design is to specify it's structure and 

functionality. This can be done either by writing an HDL model using some text editor or 

drawing a schematic diagram using schematic editor. 

 

2. Design Synthesis – next step in the design process is to transform design specification 

into a more suitable representation that can be further processed in the later stages in the 

design flow. This representation is called the netlist. Prior to netlist creation synthesis tool 

checks the model syntax and analyse the hierarchy of your design which ensures that your 

design is optimized for the design architecture you have selected. The resulting netlist is 

saved to a Native Generic Circuit (NGC) file (for Xilinx® Synthesis Technology (XST) 

compiler) or an Electronic Design Interchange Format (EDIF) file (for Precision, or 

Synplify/Synplify Pro tools). 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 2 

 

 

3. Design Implementation 
Implementation step maps netlist produced by the synthesis tool onto particular device's 

internal structure. It consists from three steps: 

 Translate step – merges all incoming netlists and constraints into a Xilinx Native 

Generic Database (NGD) file. 

 Map step - maps the design, specified by an NGD file, into available resources on 

the target FPGA device, such as LUTs, Flip-Flops, BRAMs,... As a result, an Native 

Circuit Description (NCD) file is created. 

 Place and Route step - takes a mapped Native Circuit Description (NCD) file, 

places and routes the design, and produces an NCD file that is used as input for bit 

stream generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: FPGA Design Flow 

 

4. Design Verification – is very important step in design process. Verification is 

comprised of seeking out problems in the HDL implementation in order to make it compliant 

with the design specification. A verification process reduces to extensive simulation of the 

HDL code. Design Verification is usually performed using two approaches: Simulation and 

Static Timing Analysis. 

 

There are two types of simulation: 

Functional (Behavioral) Simulation – enables you to simulate or verify a code syntax 

and functional capabilities of your design. This type of simulation tests your design 

decisions before the design is implemented and allows you to make any necessary 

changes early in the design process. In functional (behavioral) simulation no timing 

information is provided. 
 

Timing Simulation – allows you to check does the implemented design meet all 

functional and timing requirements and behaves as you expected. The timing simulation 

uses the detailed information about the signal delays as they pass through various logic 

and memory components and travel over connecting wires. Using this information it is 

possible to accurately simulate the behaviour of the implemented design. This type of 

simulation is performed after the design has been placed and routed for the target PLD, 

because accurate signal delay information can now be estimated. A process of relating 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 3 

 

 

accurate timing information with simulation model of the implemented design is called 

Back-Annotation. 

 Static Timing Analysis – helps you to perform a detailed timing analysis on mapped, 

placed only or placed and routed FPGA design. This analysis can be useful in evaluating 

timing performance of the logic paths, especially if your design doesn't meet timing 

requirements. This method doesn't require any type of simulation. 

 

5. Generate Programming File – this option runs BitGen, the Xilinx bitstream generation 

program, to create a bitstream file that can be downloaded to the device. 

 

6. Programming – iMPACT Programmer uses the output from the Generate Programming File 

process to configure your target device. 

 

7. Testing – after configuring your device, you can debug your FPGA design using the Xilinx 

ChipScope Pro tool or some external logic analyzer. 

 

8. Estimate Power – after implementation, you can use the XPower Analyzer for estimation 

and power analysis. XPower Analyzer is delivered with ISE Design Suite. With this tool you 

can estimate power, based on the logic and routing resources of the actual design. 
 

ABOUT XILINX ISE SOTWARE 
 

Xilinx ISE (Integrated Synthesis Environment) is a software tool produced by Xilinx 

for synthesis and analysis of HDL designs, enabling the developer to synthesize ("compile") 

their designs, perform timing analysis, examine RTL diagrams, simulate a design's reaction to 

different stimuli, and configure the target device with the programmer. 

Xilinx ISE is a design environment for FPGA(Field programmable gate arrays) 

products from Xilinx, and is tightly-coupled to the architecture of such chips, and cannot be 

used with FPGA products from other vendors. The Xilinx ISE is primarily used for circuit 

synthesis and design, while ISIM or the ModelSim logic simulator is used for system-level 

testing 

 

STEPS TO EXECUTE A PROGRAM 
 

1) Starting the ISE software 

Start _ program _ XILINX ISE 7 _ Project Navigator 
 

2) Creating a New Project in ISE 

A project is a collection of all files necessary to create and to download a design to a 

selected FPGA or CPLD devices. 

Project name: 
Project location: 

Top-Level Source Type: HDL 
Click Next to move to the project properties page. 

 

3) Fill in the properties in the table as shown below 

Device Family: Spartan 3 

Device: XC3S50 

Package: PQ208Speed 

Speed: -5 

https://en.wikipedia.org/wiki/Xilinx
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Static_timing_analysis
https://en.wikipedia.org/wiki/Register_transfer_level
https://en.wikipedia.org/wiki/Programmer_%28hardware%29
https://en.wikipedia.org/wiki/ModelSim


HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 4 

 

 

Top-Level Module Type: HDL 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 5 

 

 

HDL Synthesis Tool: XST(VHDL/VERILOG) 

Simulator: ISE Simulator (VHDL/ Verilog) 

 

4) Creating an HDL Source 

Create a top-level HDL file for the design. Determine the language that you wish to 

use(Verilog module or VHDL module). 

This simple AND Gate design has two inputs: A and B. This design has one output called C 

Click New Source in the New Project Wizard to add one new source to your project. 
 

a) Select VERILOG MODULE as the source type in the New Source dialog box. 

 

b) Type in the file name for ex: and_gate 

 

c) Verify that the Add to project checkbox is selected. 

 

d) Click Next. 

e) Define the ports for your Verilog source. 

In the Port Name column, type the port names on three separate rows: A, B and C. 

In the Direction column, indicate whether each port is an input, output, or inout. 

For A and B, select in from the list. For C, select out from the list. 

 

5) Click next in the Define Verilog Source dialog box. 

 

6) Click Finish in the New Source Information dialog box to complete the new source file 

template. Click Next in the New Project Wizard. Click next again. 

 

7) Click Finish in the New Project Information dialog box. 

ISE creates and displays the new project in the Sources in Project window and adds the 

and_gate.v file to the project. 

 

8) Double-click on the and_gate.v file in the Sources in Project window to open the Verilog 

file in the ISE Text Editor. 

The and_gate.v file contains: 

Module name with the inputs and outputs declared. 

 

9) Add the relationship between input and output after the input and output declared in 

module. Save the file by selecting File > Save. 

10) When the source files are complete, the next step is to check the syntax of the 

design. Syntax errors and typos can be found using this step. 

a) Select the counter design source in the ISE Sources window to display the 

related processes in the Processes for Source window. 

b) Click the “+”next to the Synthesize-XST process to expand the hierarchy. 

c) Double-click the Check Syntax process. 

 

11) When an ISE process completes, you will see a status indicator next to the process name. 

a) If the process completed successfully, a green check mark appears. 

b) If there were errors and the process failed, a red X appears. 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 6 

 

 

c) A yellow exclamation point means that the process completed successfully, but 

some Warnings occurred. 

d) An orange question mark means the process is out of date and should be run again. 

e) Look in the Console tab of the Transcript window and read the output and 

status messages produced by any process that you run. 

Caution! You must correct any errors found in your source files. If you continue 

without valid syntax, you will not be able to simulate or synthesize your design. 

 

12) After the successful check syntax in the process Examine RTL diagrams. 

 

13) To Create Testbench waveform, Right click on file name in source window, and_gate.v 

and add source. 

 

14) Add testbench waveform source with a new file name and click next. 

 

15) A timing window pops up. Click on combinatorial and click next. 

 

16) A graphical window of input and output appears. Make changes according to the truth 

table and save. 

 

17) <file_name>.tb file is added to the project. 

 

18) In source window change implementation to behavioral simulation. 

 

19) In process window click on Xilix ISE simulator and RUN. Output window appears. 

Analyze the waveforms according to the truth table. 

 

20) Double-click the Assign Package Pins process found in the User Constraints process 

group. ISE runs the Synthesis and Translate step and automatically creates a User Constraints 

File(UCF). You will be prompted with the following message. 

21) Click  
Yes to add the UCF file to your project. The file is added to your project and is visible in 

the Sources in Project. 

 

22) Now the Xilinx Pin out and Area Constraints Editor (PACE) opens. 

 

23) You can see your I/O Pins listed in the Design Object List window. Enter a pin location 

for each pin in the Loc column as specified below 

A: P1, B:P2, C:P3 

 

24) Click on the Package View tab at the bottom of the window to see the pins you just 

added. Put your mouse over grid number to verify the pin assignment. 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25) Close PACE 

Creating Configuration Data 

The Program File is a encoded file that is the equivalent of the design in a form that can be 

downloaded into the CPLD device. 

The final phase in the software flow is to generate a program file and configure the device 

 

Generating a Program File 
 

The Program File is created. It is written into a file called andgate.jed This is the actual 

configuration data 

1. Double Click the Generate Programming File process located near the bottom of the 

Processes for Source window. 

This section provides simple instructions for configuring a Spartan-3 xc3s200 device 

connected to your PC. 

Note: Your board must be connected to your PC before proceeding. If the device on your 

board does not match the device assigned to the project, you will get errors. Please refer to 

the IMPACT Help for more information. To access the help, select Help > Help Topics 

To configure the device: 

1. Click the “+” sign to expand the Generate Programming File processes. 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 8 

 

 

2. Double click on the Configure device IMPACT 

3. In the Configure Devices dialog box, verify that Boundary-Scan Mode is selected and 

Click Next 

4. Verify that Automatically connect to cable and identify Boundary-Scan chain is selected 

and click Finish. 

 

 

 

 

 

 

 

 
5. If you get a message saying that there was one device found, click OK to continue 

 

 

6. The iMPACT will now show the detected device, right click the device and select New 

Configuration File. 

 

7. The Assign New Configuration File dialog box appears. Assign a configuration file to 

each device in the JTAG chain. Select the andgate.jed file and click Open 

8. Right-click on the counter device image, and select Program... to open the Program 

Options dialog box. 

9. Click OK to program the device. ISE programs the device and displays Programming 

Succeeded if the operation was successful 

10. Close IMPACT without saving 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 9 

 

 

BASIC 

PROGRAM – 

ALL LOGIC 

GATES 
 

Aim: Write Verilog code to realize all the logic gates 

 

Learning Objective: To study the Verilog code for all the logic gates 

 

Algorithm: 
 

 Start 

 Initialize Input & output ports. . 

 Construct the truth table and extract the expression. 

 Write the Verilog code using a dataflow modeling style. 

 verify the functionality of design with the truth table 

 observe the timing diagram and verify 

 End the program. 

 

Logic Gates and Truth Table: 
 

 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 10 

 

 

VERILOG CODE : 

1. AND gate 

module and_gate (a,b,c); 

input a; 
input b; 

output c; 

assign c= a&b; 

endmodule 

2. OR gate 

module or_gate (a,b,c); 

input a; 

input b; 

output c; 

assign c= a|b; 

endmodule 

3. NOT gate 

 

module not_gate (a,c); 

input a; 

output c; 

assign c= ~a; 

endmodule 

4. NAND gate 

module nand_gate (a,b,c); 

input a; 

input b; 

output c; 

assign c= ~(a&b); 

endmodule 

5. NOR gate 

module nor_gate (a,b,c); 

input a; 

input b; 

output c; 

assign c= ~(a|b); 

endmodule 

6. XOR gate 

module xor_gate (a,b,c); 

input a; 

input b; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 11 

 

 

output c; 

assign c= a^b; 

endmodule 

7. XNOR gate 

module xnor_gate (a,b,c); 

input a; 

input b; 

output c; 

assign c= ~(a^b); 

endmodule 

 

VERILOG CODE 
 

module gates(a_in, b_in, not_op,and_op,nand_op,or_op,nor_op,xor_op,xnor_op); 

input a_in, b_in; 

output not_op,  and_op, nand_op, or_op, nor_op, xor_op, xnor_op; 
 

assign not_op= ~a_in; 

assign and_op=a_in&b_in; assign nand_op=~(a_in&b_in); 

assign or_op=a_in|b_in; 

assign nor_op=~(a_in|b_in); assign xor_op=a_in^b_in; 

assign xnor_op=~(a_in^b_in); 

endmodule 

 

Result: The Simulation has carried out and verified with respect to truth table. 

 

Outcomes: Familiar with Verilog HDL Program, usage of Xilinx software and understand 

ISE Simulator. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 12 

 

 

PROGRAM - 2 ADDERS 
 

AIM: Write a Verilog code to describe the functions of a Full Adder . 

Learning Objective: To study the working and writing HDL code for Adders. 

Algorithm: 

 Start 
 Initialize Input & output ports. . 

 Construct the truth table and extract the expression also draw the logic circuit. 

 Write the Verilog code using a dataflow, behavioral and structural modeling styles 

with respect to the truth table, expression and logic circuit. 

 verify the functionality of design referring to truth table 

 observe the timing diagram 

 End the program. 

 

Block Diagram: 

 

 
CODE : 

 

i) Verilog - Data Flow Style : 
 

module fulladder(a_in, b_in, c_in, sum, carry); 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 13 

 

 

input a_in, b_in,c_in; 

output sum, carry; 

assign sum = a_in ^ b_in ^ c_in; 

assign carry = (a_in & b_in) | (b_in & c_in) | (a_in & c_in); 

endmodule 

 

ii) Verilog - Behavioral Style: 
 

module fulladder(a,b,c, sum, carry); 

input [2:0] a,b,c; 

output sum,carry; 

reg sum,carry; 

always@(a,b,c) 

begin 

 

 

 

 

 

 

 

 

 

 

 
endmodule 

 

 

 

 

 

 

 

 

 

 
end 

case ({a,b,c}) 

3‟b000:{sum,carry}=2‟b00; 

3‟b001:{sum,carry}=2‟b10; 

3‟b010:{sum,carry}=2‟b10; 

3‟b011:{sum,carry}=2‟b01; 

3‟b100:{sum,carry}=2‟b10; 

3‟b101:{sum,carry}=2‟b01; 

3‟b110:{sum,carry}=2‟b01; 

3‟b111:{sum,carry}=2‟b11; 

default: {sum,carry}=2‟bxx; 

endcase 

 

 

 
 

 

 

iii) Verilog - Structural Style 
 

module full_adder (a,b,c,sum,carry); 

input a,b,c; 

output sum,carry; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 14 

 

 

wire s1,c1,c2,c3; 

xor(s1,a,b); 

xor(s,c,s1); 

and(c1,a,b); 

and(c2,s1,cin); 

or(carry,c1,c2); 

endmodule 

 

(Extra Stuff) 

iv) Verilog - Structural Style (Using two half adders) : 
 

module fulladder (a_in, b_in, c_in, sum, carry); 

input a_in, b_in, c_in; 

output sum, carry; 

wire temp1, temp2, temp3; 

halfadder ha1 (a_in, b_in, temp1, temp2); 

halfadder ha2 (c_in, temp1, sum, temp3); 

or g3 (carry,temp3,temp1); 

endmodule 

 

module halfadder(a, b, s, c); 

input a, b; 

output s, c; 

xor g1 (s, a, b); 

and g2 (c, a, b); 

endmodule 

 

Result: The Simulation has carried out and verified with respect to truth table. 

 

Outcomes: Be able to design a model in three modeling style such as dataflow, behavioral 

and structural. 
 

 

 

 

 

 

 

PROGRAM 3 - ARITHMETIC 

LOGIC UNIT 
 

AIM: Write a Verilog code to a model for 32 bit ALU for given schematic diagram. 

 

Learning Objective: Design of ALU unit and knowing the operation of ALU. 

 

OP-CODE ALU OPERATION 

1. A+B 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 15 

 

 

2. A-B 

3. A Complement 

4. A*B 

5. A AND B 

6. A OR B 

7. A NAND B 

8. A XOR B 

 

Algorithm: 
 

 Start 

 Initialize Input & output ports. . 

 Write the Verilog code using a behavioral modeling style for a given opcode 

 verify the functionality of design referring to truth table 

 observe the timing diagram 

 End the program. 

 

VERILOG CODE: 
module alu(a, b, opcode,en,y,y_mul); 

input [31:0] a; 

input [31:0] b; 

input en; 

input [2:0] opcode; 

output [31:0] y; 

output[63:0]y_mul; 

reg [31:0] y; 

reg [63:0] y_mul; 

always @(a, b , opcode) 

begin 

if (en==1) 
case (opcode) 

3'b000:y=a+b; 

3'b001:y=a-b; 

3'b010:y=~a; 

3'b011:y_mul=a*b; 

3'b100:y= a&b; 

3'b101:y=a|b; 

3'b110:y=~(a&b); 

3'b111:y=a^b; 

default:begin end 

endcase 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 16 

 

 

 

 

 

 

 
 

endmodule 

 

 

 

 
 

end 

else  
begin 

end 

 

 
y=32‟bz; 

y_mul=64‟bz 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 17 

 

 

 

Result: The Simulation has carried out and verified with respect to truth table. 

 

Outcomes: Be able to design a small digital circuit and functional verification is learned. 
 

 

4 BIT BINARY TO GRAY 
Logic Diagram : 

 

Truth Table : 

 

Binary Inputs (b_in) Gray Outputs (g_op) 

b_in[3] b_in[2] b_in[1] b_in[0] g_op[3] g_op[2] g_op[1] g_op[0] 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 1 0 0 0 1 1 

0 0 1 1 0 0 1 0 

0 1 0 0 0 1 1 0 

0 1 0 0 0 1 1 1 

0 1 1 1 0 1 0 1 

0 1 1 0 0 1 0 0 

1 0 0 1 1 1 0 0 

1 0 0 0 1 1 0 1 

1 0 1 0 1 1 1 1 

1 0 1 1 1 1 1 0 

1 1 0 0 1 0 1 0 

1 1 0 1 1 0 1 1 

1 1 1 0 1 0 0 1 

1 1 1 1 1 0 0 0 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 18 

 

 

 
K-MAP FOR G3: 

 

 
Equation for G3= B3 

K-MAP FOR G2: 
 

 
Equation for G2= B3‟ B2 + B3 B2‟ 

 

G2= B3 XOR B2 
 

 

K-MAP FOR G1: 

 

 

 
Equation for G1= B1‟ B2 + B1 B2‟ 

 

G1= B1 XOR B2 

K-MAP FOR G0: 

 

 
Equation for G0= B1‟ B0 + B1 B0‟ 

 

G0= B1 XOR B0 

 

 

VERILOG CODE: 
 

module binary_gray(b_in, g_op); 

input [3:0] b_in; 

output [3:0] g_op; 

assign g_op[3] = b_in[3]; 

assign g_op[2] = b_in[3] ^ b_in[2]; 

assign g_op[1] = b_in[2] ^ b_in[1]; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 19 

 

 

assign g_op[0] = b_in[1] ^ b_in[0]; 

endmodule 

 

Result: The Simulation has carried out and verified with respect to truth table. 

 
 

Outcomes: Be able to model digital systems at several levels of abstractions and also able to 

write the Verilog HDL code for different combinational circuits by using truth table in 

dataflow and behavioral model. 

 

 

 

8:3 Encoder [Without Priority] 
 
VERILOG CODE : 

 

module encoder8_3(en, a_in, y_op); 

input en; 

input [7:0] a_in; 

output [2:0] y_op; 

reg [2:0] y_op; 

always @ (a_in,en) 

begin 

if(en==1 ) 

y_op =3‟bzzz; 

else 

case (a_in) 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 20 

 

 

 

 

 

 

 

 

 

 

 

 
endmodule 

 

 

 

 

 

 

 

 

 
end 

8'b00000001: y_op = 3'b000; 

8'b00000010: y_op = 3'b001; 

8'b00000100: y_op = 3'b010; 

8'b00001000: y_op = 3'b011; 

8'b00010000: y_op = 3'b100; 

8'b00100000: y_op = 3'b101; 

8'b01000000: y_op = 3'b110; 

8'b10000000: y_op = 3'b111; 

default: y_op =3'bxxx; 

endcase 

 

ii b) 8:3 Encoder [With Priority] 
 

VERILOG CODE: 
 

module prio_enco(en, a_in, y_op); 

input en; 

input [7:0] a_in; 

output [2:0] y_op; 

reg [2:0] y_op; 

always @ (a_in,en) 

begin 

if(en==1) y_op = 3‟bzzz; 

if(a_in[7] == 1) y_op = 3‟b000; 

if(a_in[6] == 1) y_op = 3‟b001; 

if(a_in[5] == 1) y_op = 3‟b010; 

if(a_in[4] == 1) y_op = 3‟b011; 

if(a_in[3] == 1) y_op = 3‟b100; 

if(a_in[2] == 1) y_op = 3‟b101; 

if(a_in[1] == 1) y_op = 3‟b110; 

if(a_in[0] == 1) y_op = 3‟b111; 

default: y_op=3'bxxx; 

end 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 21 

 

 

endmodule 

 

iii) 8:1 MULTIPLEXER 
 
 

VERILOG CODE : 
module mux8_1(en,i_in, sel, y_out); 

input en; 

input [7:0] a_in; 
input [2:0] sel; 

output y_out; 

reg y_out; 

always@ (i_in,sel ) 

begin 

if(en==1) 
y_out=1‟bz; 

else  

case (sel) 

3'b000:y_out=i_in[0]; 

3'b001: y_out=i_in[1]; 

3'b010: y_out=i_in[2]; 

3'b011: y_out=i_in[3]; 

3'b100: y_out=i_in[4]; 

3'b101: y_out=i_in[5]; 

3'b110: y_out=i_in[6]; 

3'b111: y_out=i_in[7]; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 22 

 

 

 

 

 
endmodule 

 
end 

2 to 4 decoder 
 

 

 

 

 
Figure: 2 to 4 Decoder 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 23 

 

 

 

 
 

VERILOG CODE : Structural code for 2 to 4 decoder 

 

module 2to4dec( input [1:0] d_in, output [3:0] d_op); 

wire d0_bar, d1_bar; 

not a1(d0_bar, d_in[0]); 

not a2(d1_bar, d_in[1]); 

and a3(d_op[0],d1_bar,d0_bar); 

and a4(d_op[1],d1_bar,d_in[0]); 

and a5(d_op[2],d_in[1],d0_bar); 

and a6(d_op[3],d_in[1],d_in[0]); 

 

endmodule 
 

 

PROGRAM 4 - FLIP FLOPS 
 

AIM: Develop the Verilog code for the following Flip-Flops: 

a. SR FF 

b. D FF 

c. JK FF 

d. T FF 

 

Learning Objective: To Study and write the Verilog code for mention Flip-Flops 

 

Algorithm: 
 

 Start 

 Initialize Input & output ports. . 

 Construct the truth table. 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 24 

 

 

 Write the Verilog code using a behavioral modeling style with respect to the truth 

table 

 verify the functionality of design referring to truth table 

 observe the timing diagram 

 End the program. 

 

Note: The same Algorithm follows for all types of flip flops. 

 

a. JK FLIP-FLOP 
 

 
VERILOG CODE : 

 

module jk_ff(jk, clk, rst, q, qb); 

input [1:0]jk; 

input rst, clk; 

output q,qb; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 25 

 

 

reg q,qb; 

always @ (posedge clk) 

begin 

if (rst==1) 

begin 

 
 

end 

 
 

q=0; 

qb=1; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

endmodule 

else 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

end 

 

case (jk) 

2'b00: begin 

q=q; qb=qb; 

end 

2'b01: begin 

q=0; qb=1; 

end 

2'b10: begin 

q=1; qb=0; 

end 

2'b11: begin 

q=~q; qb=~qb; 

end 

default:begin end 

endcase 

 

b. SR FLIPFLOP 
 

 
VERILOG CODE : 

 

module sr_ff(sr, clk, rst, q, qb); 

input [1:0]sr; 

input rst, clk; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 26 

 

 

output q,qb; 

reg q,qb; 

always @ (posedge clk) 

begin 

if (rst==1) 

begin 

 

 

 

 

 

 

 

 

 

 
endmodule 

 

c. T-

FLIPFLOP 

 

end 

else 

 

 

 

 

 

 
end 

q=0; qb=1; 

 
 

case (sr) 

2'b00: begin q=q; qb=qb; end 

2'b01: begin q=0; qb=1; end 

2'b10: begin q=1; qb=0; end 

2'b11: begin q=1'bx; qb=1'bx; end 

default:begin end 

endcase 

 

 
 

 

 

Algorithm: 

Start 

Initialize T is reset and CLK as input ,a and qn as ouput 

If clk=‟1‟ and an event on the positive pulse 

If t=0 then q=1 else q=0 qb=1 

Stop 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 27 

 

 

VERILOG CODE : 
 

module tff (t,clk,rst, q,qb); 

input t,clk,rst; 

output q,qb; 

reg q,qb; 

reg temp=0; 

always@(posedge clk,posedge rst) 

begin 

if (rst==0) 

begin 

case(t)  

1‟b0:q=q; 

1‟b1:q= ~q; 

 

 

endmodule 

 

D-FLIPFLOP 

 
 

end 

 

qb=~q; 

endcase 

 

 
 

VERILOG CODE : 
 

module d_ff(d, rst, clk, q, qb); 

input d; 

input rst; 

input clk; 

output q; 

output qb; 

reg q,qb; 

always@(posedge clk) 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 28 

 

 

begin  
if (rst==1) 

begin 

 

end 

 

 

 
q=0; qb=1; 

 

 

 

end 

else  

begin 

end 

 
 

q=d; qb=~d; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 29 

 

 

endmodule 

 

Result: The Simulation has carried out and verified with respect to truth table. 

 

Outcomes: Be able to model a memory system with clock. 

 

 

PROGRAM 5 - COUNTERS 
 

 

AIM: Design 4 bit binary, BCD Counter (Synchronous reset and Asynchronous reset) and 

“any sequence” Counters. 

 

Learning Objective: To study and write the code for Sequential circuits. 

 

Algorithm: 
 

 Start 

 Initialize Input & output ports. . 

 Construct the truth table. 

 Write the Verilog code using a behavioral modeling style with respect to the truth 

table 

 verify the functionality of design referring to truth table 

 observe the timing diagram 

 End the program. 

 
 

A. BINARY COUNTER 
 

module binary_counter (clk, rst, bin_count); 

input clk, rst; 

output [3:0] bin_count; 

reg [3:0] bin_count; 

initial 

bin_count = 4‟b0000; 

always @ (posedge clk) 

begin 

if (rst) 

bin_count = 3'b0000; 

else 

bin_count = bin_count + 1'b1; 

end 

endmodule 

 

B. BCD COUNTER 
 

module BCD_Counter ( clk ,reset ,dout ); 

input clk ; 

input reset ; 

output [3:0] dout ; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 30 

 

 

reg [3:0] dout ; 

initial 

dout = 0 ; 

always @ (posedge clk) 

begin 

if (reset) 
dout = 0; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 31 

 

 

else 

if (dout<=9) 

dout = dout + 1; 

else  

if (dout==9) begin 

dout <= 0; 

 
 

endmodule 

 

Synchronous Counter 

end 

end 

 

 

C. SYNCHRONOUS With Reset - UP COUNTER 

module syn_up_counter (clk ,rst ,enable ,up_ count); 

input clk ; 

input rst ; 

input enable ; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 32 

 

 

output [3:0] up_count; 

wire clk ; 

wire rst ; 

wire enable ; 

reg [3:0] up_count; 

always @ (posedge clock) 

begin 

if (reset == 1'b1) 

begin 

 

end 

up_count <= 4'b0000; 

 

else 

if (enable == 1'b1) 

begin 

 

 

endmodule 

 
 

end 

 

end 

up_count <= up_count+ 1; 

 

D. SYNCHRONOUS With Reset– DOWNCOUNTER 

module syn_dwn_counter (clk ,rst ,enable ,dwn_ count); 

input clk ; 

input rst ; 

input enable ; 

output [3:0] dwn_count; 

wire clk ; 

wire rst ; 

wire enable ; 

reg [3:0] dwn_count; 

always @ (posedge clock) 

begin 

if (reset == 1'b1) 

begin 

 

end 

dwn_count <= 4'b0000; 

 

else 

if (enable == 1'b1) 

begin 

 

 

endmodule 

 
 

end 

 

end 

dwn_count <= dwn_count- 1; 

 

E. SYNCHRONOUS With Clear – UP-DOWN COUNTER 
 

module sync_up_dwn_counter(cnt,clk,up_dwn,clr); 

input clk,clr; 

input up_dwn; 

output [3:0] cnt; 

reg [3:0]cnt; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 33 

 

 

 

initial cnt = 1'd0; 

always @(posedge clk) 

begin 

case(clr) 

1'b1 : cnt = 1'd0; 

default : begin 

case(up_dwn) 

1'b0 : cnt = cnt - 4'b0001; 

default : cnt = cnt + 1'b1; 

endcase 

 

 

endmodule 

 
 

end 

 

endcase 

end 

 

ASynchronous Counter 
 
 

F. ASYNCHRONOUS With Reset - UP COUNTER 
 

module counter (clk, clr, enable, asy_up); 

input clk, clr, enable; 

output [3:0] asy_up; 

reg [3:0] tmp; 

 

always @(posedge clk or posedge clr) 

begin 

if (clr) 

tmp = 4'b0000; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 34 

 

 

else 

if (enable) 

tmp = tmp + 1'b1; 

end 

assign asy_up = tmp; 

endmodule 

 
 

G. ASYNCHRONOUS With Reset – DOWNCOUNTER 
 

module counter (clk, clr, enable, asy_dwn); 

input clk, clr, enable; 

output [3:0] asy_dwn; 

reg [3:0] tmp; 

 

always @(posedge clk or posedge clr) 

begin 

if (clr) 

tmp = 4'b0000; 

else 

if (enable) 

tmp = tmp - 1'b1; 

end 

assign asy_dwn = tmp; 

endmodule 

 

H. ASYNCHRONOUS With Clear – UP-DOWN COUNTER 
 

module async_up_dwn_counter (clk,cnt,up_dwn,clr); 

input up_dwn,clr,clk; 

output [3:0]cnt; 

reg [3:0]cnt; 

always @(posedge clk) 

begin 

if(clr == 1'b1) 

cnt = 4'b0000; 

else  

begin 

case(up_dwn) 

1'b0 : begin 

if(cnt[1:0] == 2'b10) 

cnt[1:0] = 2'b01; 

else if(cnt[2:0] == 3'b100) 

cnt[2:0] = 3'b011; 

else if(cnt[3:0] == 4'b1000) 

cnt[3:0] = 4'b0111; 

else if(cnt[3:0] == 4'b0000) 

cnt[3:0] = 4'b1111; 

else 

cnt[0] = ~cnt[0]; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 35 

 

 

end 

1'b1 : begin 

 

 

 

 

 

 

 

 

 

 

 

 
 

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 
end 

 

 

 

 

 

 

 

 

 

 

 
end 

 

 

 

 

 

 

 

 

 

 
endcase 

if(cnt[1:0] == 2'b01) 

cnt[1:0] = 2'b10; 

else if(cnt[2:0] == 3'b011) 

cnt[2:0] = 3'b100; 

else if(cnt[3:0] == 4'b0111) 

cnt[3:0] = 4'b1000; 

else if(cnt[3:0] == 4'b1111) 

cnt[3:0] = 4'b0000; 

else 

cnt[0] = ~cnt[0]; 

end 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 36 

 

 

PROGRAM 3 – GENERATION OF DIFFERENT WAVEFORM 
 

AIM: Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) 

using DAC - change the frequency. 

 

Learning Objective: To Study and write HDL code to generate different wave forms (sine, 

square, triangle, ramp) using DAC change the frequency and amplitude 
 

 

Sine Wave 
module sinewave (clk,rst,dac_out); 

 

input clk; 

input rst; 

output reg [7:0] dac_out; 

 

reg [7:0] counter [33:0]; 

reg [15:0] div; 

reg  flag; 

wire clkdiv; 

integer i=0; 
 

initial begin 
counter[0]= 8'd128; // 128+128sin(theta) * Theta in Degree give as 0,15,30,45,60,75 . .upto 

34values 

counter[1]= 8'd161; 

counter[2]= 8'd192; 

counter[3]= 8'd218; 

counter[4]= 8'd232; 

counter[5]= 8'd244; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 37 

 

 

counter[6]= 8'd251; 

counter[7]= 8'd255; 

counter[8]= 8'd255; 

counter[9]= 8'd251; 

counter[10]= 8'd244; 

counter[11]= 8'd232; 

counter[12]= 8'd218; 

counter[13]= 8'd192; 

counter[14]= 8'd182; 

counter[15]= 8'd161; 

counter[16]= 8'd139; 

counter[17]= 8'd116; 

counter[18]= 8'd94; 

counter[19]= 8'd73; 

counter[20]= 8'd54; 

counter[21]= 8'd37; 

counter[22]= 8'd23; 

counter[23]= 8'd11; 

counter[24]= 8'd4; 

counter[25]= 8'd4; 

counter[26]= 8'd11; 

counter[27]= 8'd23; 

counter[28]= 8'd37; 

counter[29]= 8'd54; 

counter[30]= 8'd73; 

counter[31]= 8'd94; 

counter[32]= 8'd116; 

counter[33]= 8'd128; 

end 

 

always @(posedge clk) 

begin 

if (clk == 1'b1) 

begin 

div <= div + 1'b 1; 

end 

end 

assign clkdiv = div[8]; 

always @(posedge(clkdiv)) 

begin 
if(i>34)  

begin 

end 

 

i=0; 

dac_out <= counter[i]; 

i = i + 1; 

end 

endmodule 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 38 

 

 

 

//Extra Stuff 
 

Square 
 

module sqwave (clk,rst,dac_out); 

 

input clk; 

input rst; 

output reg [7:0] dac_out; 

 

//reg [7:0] dac_out; 

reg [7:0] counter; 

reg [15:0] div; 

wire  clkdiv; 

 

always @(posedge clk) 

begin 

if (clk == 1'b1) 

begin 

div <= div + 1'b 1; 

end 

end 

assign clkdiv = div[8]; 

always @(posedge(clkdiv)) 

begin 

if (rst == 1'b1) 

begin 

counter <= 8'b 00000000; 

end 

 

counter <= counter + 1; 

end 

always @(counter) 

begin 

if (counter <= 128) 

begin 

dac_out <= 8'b 11111111; 

end 

else 

begin 

dac_out <= 8'b 00000000; 

end 

end 

endmodule 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 39 

 

 

Triangle 
module tri_wave ( clk, rst, dac_out); 

 

input clk; 

input rst; 

output [7:0] dac_out; 

 

reg [7:0] dac_out; 

reg [7:0] counter; 

reg [15:0] div; 

wire  clkdiv; 

 

always @(posedge clk) 

begin : process_1 

if (clk == 1'b 1) 

begin 

div <= div + 1'b 1; 

end 

end 

assign clkdiv = div[8]; 

always @(posedge(clkdiv)) 

begin : process_2 

if (rst == 1'b 1) 

counter <= 8'b 00000000; 
end 

counter <= counter + 1; 

 

if(counter < 128) 

dac_out = dac_out + 1; 

 

end 

else  

dac_out = dac_out - 1; 

 

endmodule 
 

Ramp 
Module ramp_wave ( clk, rst, dac_out); 

 

input clk; 

input rst; 

output [7:0] dac_out; 

 

reg [7:0] dac_out; 

reg [7:0] counter; 

reg [15:0] div; 

wire  clkdiv; 

 

always @(posedge clk) 

begin : process_1 

if (clk == 1'b 1) 

begin 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 40 

 

 

div <= div + 1'b 1; 

end 

end 

assign clkdiv = div[8]; 

always @(posedge(clkdiv)) 

begin : process_2 

if (rst == 1'b 1) 

begin 

counter <= 8'b 00000000; 

end 
 

counter <= counter + 1; 

dac_out = dac_out - 1; 

end 

 

endmodule 

 

User Constraint File (UCF): 
 

NET "clk" LOC = "p79" 

NET "rest" LOC = "p21" 

NET "dout<0>" LOC = "p187" 

NET "dout<1>" LOC = "p185" 

NET "dout<2>" LOC = "p190" 

NET "dout<3>" LOC = "p189" 

NET "dout<4>" LOC = "p194" 

NET "dout<5>" LOC = "p191" 

NET "dout<6>" LOC = "p197" 

NET "dout<7>" LOC = "p196" 

 

Result: The different waveforms are generated and observed in CRO. 

 

Outcomes: Design, and interface a DAC using HDL be able to generate different waveforms 

using DAC on CRO 
 

 

 

PROGRAM 5 – ANALOG TO DIGITAL CONVERTER 

AIM: Write HDL code to accept Analog signal, Temperature sensor and display the data on 

LCD or Seven segment displays.. 

 

Learning Objective: To study HDL code to simulate Analog to Digital Converter (ADC) 

using temperature sensor. 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 41 

 

 

 

library IEEE --analog to digital converter 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 

entity adc is 

Port ( addr : out std_logic_vector(1 downto 0); 

chin: in std_logic_vector(1 downto 0); 

strt : out std_logic; 

EOC :   in std_logic; 
dout : in std_logic_vector(7 downto 0); 

clk1: in std_logic; 

oen1: out std_logic; 

oen2: out std_logic; 

oen3: out std_logic; 

oen4: out std_logic; 

oen5: out std_logic; 

oen6: out std_logic; 

disp: out std_logic_vector(7 downto 0)); 

end adc; 

 
 

architecture Behavioral of adc is 

type state is (state1,state2,state3,state4,state5); 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 42 

 

 

--locally used signals declaration 

signal current_state, next_state:state; 

signal soen1 : std_logic:='1'; 

signal soen2 : std_logic:='1'; 

signal clk_count : std_logic_vector(8 downto 0):= (others => '0'); 

signal clk_dsp : std_logic_vector(1 downto 0); 

signal check : std_logic_vector(7 downto 0); 

signal address : std_logic_vector(3 downto 0):="0000"; 

signal temp2 : std_logic_vector(7 downto 0):="00000000"; 

signal data : std_logic_vector(7 downto 0); 

signal clk : std_logic; 

begin 

addr <= "00" when chin = "00"else 

"01" when chin = "01" else 

"10" when chin = "10"else 

"11"; 

 

oen3 <= '0'; 

oen4 <= '0'; 

oen5 <= '0'; 

oen6 <= '0'; 

 
 

p1:process(clk1) 

begin 

if clk1'event and clk1 = '1' then 

clk_count <= clk_count + 1; 

clk_dsp <= clk_count(8 downto 7); 

clk <= clk_count(6); 

end if; 

end process p1; 

 

p2:process(clk_dsp) 

begin 

case clk_dsp is 

when "00" => soen2 <= '1'; 

 

when "01" => soen1 <= '1'; 

 
 

soen1 <= '0'; 

 

soen2 <= '0'; 

when others => soen1 <= '0'; 

soen2 <= '0'; 

end case; 

end process p2; 

 

pp:process(clk) 

begin 

 

if clk'event and clk = '1' then 

current_state <= next_state; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 43 

 

 

case current_state is 

when state1 => 

strt <= '1'; --enabling start/ale 

next_state <= state2; 

when state2 => 

--start/ale low (pulse width 5 usec) 

strt <= '0'; 

--checking eoc 

 

 

end if; 

when state3 => 

 

if EOC = '0' then 

next_state <= state3; 

--start/ale low (pulse width 5 usec) 

-- making oe low to read eoc 

--checking eoc 

-- if dout(7) = '1' then 

if EOC = '1' then 
 

next_state <= state4; 

end if; 
 

when state4 => 

next_state <= state5; 

when state5 => -- jump to start 

check <= dout; 

next_state <= state1; 

end case; 

end if; 

 

end process pp; 

 
 

p4:process(clk1) 

type t_mem is array(0 to 15) of std_logic_vector(7 downto 0); 

variable mem_data: t_mem:= 

("00111111", "00000110", "01011011", "01001111", --0123 

"01100110", "01101101", "01111101", "00000111", --4567 

"01111111", "01101111", "01110111", "01111100", --89ab 

"00111001", "01011110", "01111001", "01110001"); --cdef 

variable adv : integer := 0; 

begin 

if clk1'event and clk1 = '1' then 

adv := conv_integer(address(3 downto 0)); 

data <= mem_data(adv); 

end if ; 

end process p4; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 44 

 

 

oen1 <= soen1; 

oen2 <= soen2; 

 

p5: process(clk) 

begin 

if clk1'event and clk1 = '1' then 

if ( soen2 = '1' ) then 

address <= check(3 downto 0); 

disp <= data; 

else 

if (soen1 = '1' ) then 

address <= check(7 downto 4); 

disp <= data; 

end if; 

end if; 

end if; 

end process p5 ; 

end behavioral; 

User Constraint File (UCF): 
 

NET "addr<0>" LOC = "p171" | IOSTANDARD = LVTTL ; 

NET "addr<1>" LOC = "p172" | IOSTANDARD = LVTTL ; 

 
 

NET "chin<0>" LOC = "p29" | IOSTANDARD = LVTTL ; 

NET "chin<1>" LOC = "p27" | IOSTANDARD = LVTTL ; 

 

NET "clk1" LOC = "p79" | IOSTANDARD = LVTTL ; 

 

NET "disp<0>" LOC = "p10" | IOSTANDARD = LVTTL ; 

NET "disp<1>" LOC = "p11" | IOSTANDARD = LVTTL ; 

NET "disp<2>" LOC = "p12" | IOSTANDARD = LVTTL ; 

NET "disp<3>" LOC = "p13" | IOSTANDARD = LVTTL ; 

NET "disp<4>" LOC = "p15" | IOSTANDARD = LVTTL ; 

NET "disp<5>" LOC = "p16" | IOSTANDARD = LVTTL ; 

NET "disp<6>" LOC = "p18" | IOSTANDARD = LVTTL ; 

NET "disp<7>" LOC = "p19" | IOSTANDARD = LVTTL ; 

 

NET "dout<0>" LOC = "p196" | IOSTANDARD = LVTTL ; 

NET "dout<1>" LOC = "p197" | IOSTANDARD = LVTTL ; 

NET "dout<2>" LOC = "p191" | IOSTANDARD = LVTTL ; 

NET "dout<3>" LOC = "p194" | IOSTANDARD = LVTTL ; 

NET "dout<4>" LOC = "p189" | IOSTANDARD = LVTTL ; 

NET "dout<5>" LOC = "p190" | IOSTANDARD = LVTTL ; 

NET "dout<6>" LOC = "p185" | IOSTANDARD = LVTTL ; 

NET "dout<7>" LOC = "p187" | IOSTANDARD = LVTTL ; 

 

NET "EOC" LOC = "p183" | IOSTANDARD = LVTTL ; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 45 

 

 

 

NET "oen1" LOC = "p2" | IOSTANDARD = LVTTL ; 

NET "oen2" LOC = "p3" | IOSTANDARD = LVTTL ; 

NET "oen3" LOC = "p7" | IOSTANDARD = LVTTL ; 

NET "oen4" LOC = "p9" | IOSTANDARD = LVTTL ; 

NET "oen5" LOC = "p166" | IOSTANDARD = LVTTL ; 

NET "oen6" LOC = "p167" | IOSTANDARD = LVTTL ; 

 

NET "strt" LOC = "p184" | IOSTANDARD = LVTTL ; 

 

Result: The analog to digital conversion is observed and the values are displayed in segment. 

 

Outcomes: Design, and interface of ADC using VHDL and display the measured values in 

seven segment display. 
 

 
 

 

 

 

 

PROGRAM 2 –STEPPER MOTOR 
 

AIM: Write HDL code to control speed, direction of Stepper motor. 

 

Learning Objective: To study and write the code to control speed, direction of stepper 

Motor 
 

 

Stepper Motor 

module stepper ( dout, clk, reset, dir); 

output  [3:0] dout; 

input clk; 

input reset; 

input dir; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 46 

 

 

wire [3:0] dout; 

reg [20:0] div; 

wire  clkdiv; 

reg [3:0] shift_reg; 

 

always @(posedge clk) 

begin : process_1 

if (clk === 1'b 1) 
begin 

 

end 

 

end 

div <= div + 1'b 1; 

assign clkdiv = div[16]; 

always @(negedge reset or posedge clkdiv) 

begin : process_2 

if (reset === 1'b 0) 

begin 

shift_reg <= 4'b 0001; 
end 

else if (clkdiv === 1'b 1 ) 

begin 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 47 

 

 

if (dir === 1'b 1) 

begin 

 

 

 

 

 

 
end 

 

 

 

 

 
end 

 

end 

else 

begin 

 

end 

shift_reg <= {shift_reg[0], shift_reg[3:1]}; 

 

 

shift_reg <= {shift_reg[2:0], shift_reg[3]}; 



HDL LAB 18ECL58 

Dept. of ECE, ATMECE, Mysuru Page 48 

 

 

assign dout = 

shift_reg; 

endmodule 

 

User Constraint File (UCF): 
 

NET "clk" LOC = "p79" | IOSTANDARD = 

LVTTL ; NET "rest" LOC = "p21" | 

IOSTANDARD = LVTTL ; NET "dirl" LOC = "p29" 

| IOSTANDARD = LVTTL ; NET "dout<0>" LOC = 

"p169" | IOSTANDARD = LVTTL ; NET "dout<1>" 

LOC = "p175" | IOSTANDARD = LVTTL ; NET 

"dout<2>" LOC = "p176" | IOSTANDARD = LVTTL 

; NET "dout<3>" LOC = "p178" | IOSTANDARD = 

LVTTL ; 

 

Result: The Motor is successfully interfaced and run. 

 

Outcomes: Design, and interface a stepper motor using HDL Also control and 

reverse directions of the motor using HDL. 
 


