
HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

1

Department of Electronics and Communication

Engineering

HARDWARE DISCRIPTION LABORATORY

MANUAL

Subject Code: 18ECL58

Prepared by

Mrs. Vijaya Dalawai
Assistant Professor, Dept. Of ECE

 Dr. H B Bhuvaneswari

 HOD, Dept. Of ECE

Affiliated to Visvesvaraya Technological

University, Belagavi, Karnataka - 590018

2020-21

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

2

CONTENTS

Sl. NO Title

1 Syllabus

2 Cycles of Experiments

3 Overview of HDL lab

4 Introduction to FPGA

4

5

PART A - Combinational & Sequential Circuits

Programs

PART B -Interfacing Programs

6 Viva Questions

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

3

1. SYLLABUS
Subject code: 18ECL58 IA marks: 40

No. of practical Hrs. /week: 03 Exam hours: 03

 Exam marks: 60

…………………………………………………………………………

(ACCORDING TO VTU SYLLABUS)

PART – A

PROGRAMMING (using VHDL and Verilog)
1. Write Verilog program for the following combinational design along with test bench to verify the

design:

 a. 2 to 4 decoder realization using NAND gates only (structural model)

 b. 8 to 3 encoder with priority and without priority (behavioural model)

 c. 8 to 1 multiplexer using case statement and if statements

 d. 4-bit binary to gray converter using 1-bit gray to binary converter 1-bit adder and subtractor

2. Model in Verilog for a full adder and add functionality to perform logical operations of XOR,

XNOR, AND and OR gates. Write test bench with appropriate input patterns to verify the modeled

behaviour.

3. Verilog 32-bit ALU shown in figure below and verify the functionality of ALU by selecting

appropriate test patterns. The functionality of the ALU is presented in Table 1.

a. Write test bench to verify the functionality of the ALU considering all possible input patterns

b. The enable signal will set the output to required functions if enabled, if disabled all the outputs are

set to tri-state

c. The acknowledge signal is set high after every operation is completed

4. Write Verilog code for SR, D and JK and verify the flip flop.

5. Write Verilog code for 4-bit BCD synchronous counter.

6. Write Verilog code for counter with given input clock and check whether it works as clock divider

performing division of clock by 2, 4, 8 and 16. Verify the functionality of the code.

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

4

PART - B

INTERFACING (at least four of the following must be covered using

VHDL/ Verilog)

2. OVERVIEW OF HDL LAB

2.1 HDL

In electronics, a hardware description language or HDL is any language from a class of

Computer languages for formal description of electronic circuits. It can describe the circuit's

operation, its design and organization, and tests to verify its operation by means of simulation

HDLs are standard text-based expressions of the spatial, temporal structure and behavior of

electronic systems. In contrast to a software programming language, HDL syntax, semantics

include explicit notations for expressing time and concurrency, which are the attributes of

hardware. Languages whose only characteristic is to express circuit connectivity between a

hierarchies of blocks are properly classified as net list languages.

HDLs are used to write executable specifications of some piece of hardware. A simulation

program, designed to implement the underlying semantics of the language statements,

coupled with simulating the progress of time, provides the hardware designer with the

ability to model a piece of hardware before it is created physically. It is this execute ability

that gives HDLs the illusion of being programming languages. Simulators capable of supporting

discrete-event and continuous-time (analog) modeling exist, and HDLs targeted for each are

available.

1. Write a Verilog code to design a clock divider circuit that generates 1/2, 1/3rd and 1/4thclock from a

given input clock. Port the design to FPGA and validate the functionality through oscilloscope.

2. Interface a DC motor to FPGA and write Verilog code to change its speed and direction.

3. Interface a Stepper motor to FPGA and write Verilog code to control the Stepper motor rotation

which in turn may control a Robotic Arm. External switches to be used for different controls like

rotate the Stepper motor (i) +N steps if Switch no.1 of a Dip switch is closed (ii) +N/2 steps if Switch

no. 2 of a Dip switch is closed (iii) –N steps if Switch no. 3 of a Dip switch is closed etc.

4. Interface a DAC to FPGA and write Verilog code to generate Sine wave of frequency F KHz (eg.

200 KHz) frequency. Modify the code to down sample the frequency to F/2 KHz. Display the Original

and Down sampled signals by connecting them to an oscilloscope.

5. Write Verilog code using FSM to simulate elevator operation.

6. Write Verilog code to convert an analog input of a sensor to digital form and to display the same on

a suitable display like set of simple LEDs, 7-segment display digits or LCD display.

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

5

It is certainly possible to represent hardware semantics using traditional programming languages

such as C++, although to function such programs must be augmented with extensive and

unwieldy class libraries. Primarily, however, software programming languages function as

hardware description language

Using the proper subset of virtually any language, a software program called a

synthesizer can infer hardware logic operations from the language statements and produce an

equivalent net list of generic hardware primitives to implement the specified behavior. This

typically requires the synthesize r to ignore the expression of any timing constructs in the text.

The two most widely-used and well-supported HDL varieties used in industry are

 VHDL (VHSICHDL)

 Verilog

2.2 VHDL

VHDL (Very High Speed Integrated Circuit Hardware Description Language) is

commonly used as a design-entry language for field-programmable gate arrays and application-

specific integrated circuits in electronic design automation of digital circuits.

VHDL is a fairly general-purpose language, and it doesn’t require a simulator on which to run

the code. There are a lot of VHDL compilers, which build executable binaries. It can read and

write files on the host computer, so a VHDL program can be written that generates another

VHDL program to be incorporated in the design being developed. Because of this general-

purpose nature, it is possible to use VHDL to write a test bench that verifies with the user,

and compares results with those expected. This is similar to the capabilities of the Verilog

language

VHDL is not a case sensitive language. One can design hardware in a VHDL IDE (such as

Xilinx or Quartus) to produce the RTL schematic of the desired circuit. After that, the

generated schematic can be verified using simulation software (such as Model Sim) which

shows the waveforms of inputs and outputs of the circuit after generating the appropriate

test bench. To generate an appropriate test bench for a particular circuit or VHDL code,

the inputs have to be defined correctly. For example, for clock input, a loop process or an

iterative statement is required.

The key advantage of VHDL when used for systems design is that it allows the behavior of the

required system to be described (modeled) and verified (simulated) before synthesis tools

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

6

translate the design into real hardware (gates and wires). When a VHDL model is

translated into the "gates and wires" that are mapped onto a programmable logic device such

as a CPLD or FPGA, then it is the actual hardware being configured, rather than the

VHDL code being "executed" as if on some form of a process or chip.

Both VHDL and Verilog emerged as the dominant HDLs in the electronics industry while

older and less-capable HDLs gradually disappeared from use. But VHDL and Verilog share

many of the same limitations: neither HDL is suitable for analog/mixed-signal circuit

simulation. Neither possesses language constructs to describe recursively-generated logic

structures.

2.3 Verilog

Verilog is a hardware description language (HDL) used to model electronic systems. The

language supports the design, verification, and implementation of analog, digital, and mixed -

signal circuits at various levels of abstraction

The designers of Verilog wanted a language with syntax similar to the C programming

language so that it would be familiar to engineers and readily accepted. The language is case-

sensitive, has a preprocessor like C, and the major control flow keywords, such as "if"

and "while", are similar. The formatting mechanism in the printing routines and language

operators and their precedence real so similar

The language differs in some fundamental ways. Verilog uses Begin/End instead of curly braces

to define a block of code. The concept of time, so important to a HDL won't be found in C The

language differs from a conventional programming language in that the execution of statements

is not strictly sequential. A Verilog design consists of a hierarchy of modules are defined

with a set of input, output, and bidirectional ports. Internally, a module contains a list of wires

and registers. Concurrent and sequential statements define the behavior of the module by

defining the relationships between the ports, wires, and registers Sequential statements are

placed inside a begin/end block and executed in sequential order within the block. But all

concurrent statements and all begin/end blocks in the design are executed in parallel, qualifying

Verilog as a Dataflow language. A module can also contain one or more instances of another

modul eto define sub-behavior

A subset of statements in the language is synthesizable. If the modules in a design contains a

netlist that describes the basic components and connections to be implemented in hardware only

synthesizable statements, software can be used to transform or synthesize the design into the net

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

7

list may then be transformed into, for example, a form describing the standard cells of an

integrated circuit (e.g. ASIC) or a bit stream for a programmable logic device (e.g. FPGA)

Describing a design

In VHDL an entity is used to describe a hardware module

An entity can be described using,

1. Entity declaration

2. Architecture.

1. Entity declaration

It defines the names, input output signals and modes of a hardware module

Syntax

Entity entity _ name is

port declaration

end entity name

An entity declaration should start with “entity” and ends with “end” keywords. Ports are

interfaces through which an entity can communicate with its environment. Each port must have a

name, direction and a type. An entity may have no port declaration also. The direction will be

input, output or inout.

2. Architecture:

It describes the internal description of design or it tells what is there inside design

each entity has at least one architecture and an entity can have many architectures.

Architecture can be described using structural, dataflow, behavioral or mixed style.

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

8

Syntax:

Architecture architecture name of entity name is

architecture declaration part;

begin

statements;

endarchitecture_name;

Here we should specify the entity name for which we are writing the architecture body. The

architecture statements should be inside the begin and end keyword. Architecture declarative part

may contain variables, constants, or component declaration.

The internal working of an entity can be defined using different modeling styles inside

architecture body. They are

 Data flow modeling

 Behavioral modeling

 Structural modeling.

Structure of an entity:

 Data flow modeling

In this style of modeling, the internal working of an entity can be implemented using

concurrent signal assignment.

Consider a half adder as an example which is having one XOR gate and a AND gate as shown

below

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

9

Program

Here STD_LOGIC_1164 is an IEEE standard which defines a nine-value logic type, called

STD_ULOGIC. Use is a keyword, which imports all the declarations from this package. The

architecture body consists of concurrent signal assignments, which describes the functionality of

the design. Whenever there is a change in RHS, the expression is evaluated and the value is

assigned to LHS.

Behavioral modeling:

In this style of modeling, the internal working of an entity can be implemented using set of

statements.

It contains:

Process

statements

Sequential statements

Signal assignment statements

Process statement is the primary mechanism used to model the behavior of an entity it

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

10

contains sequential statements, variable assignment (:=) statements or signal assignment

(<=) statements etc. It may or may not contain sensitivity list. If there is an event occurs on any

of the signals in the sensitivity list, the statements within the process are executed. Inside the

process the execution of statements will be sequential and if one entity is having two

processes the execution of these processes will be concurrent. At the end it waits for another

event to occur.

Here whenever there is a change in the value of A OR B the process statements are executed.

Structural modeling

The implementation of an entity is done through set of interconnected components. It

contains

Signal declaration.

Component instances

Port maps.

Wait statements.

Component declaration:

Syntax:

Component Component name

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

11

List of interface ports;

end component component_name;

Before instantiating the component it should be declared using component declaration as shown

above. Component declaration declares the name of the entity and interface of a component.

Consider the example of full adder using 2 half adder and 1 OR gate.

Schematic Diagram of full adder

The program written for half adder in dataflow modeling is instantiated as shown above.

HA is the name of the entity in dataflow modeling. C1, C2, S1 are the signals used for internal

connections of the component which are declared using the keyword signal. Port map is used to

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

12

connectdifferentcomponentsaswellasconnectcomponentstoportsoftheentity.

Component instantiation is done as follows.

Componentlabel: component name port map (signal_list);

Signal list is the architecture signals which will be connected to component ports. This can be

done in different ways. What is declared above is positional binding. One more type is the

named binding.

The above can be written as,

HA1: ha port map (A => A, B => B, S => S1, C => C1);

HA2: ha port map (A => S1, B => Cin, S=> SUM, C => C2);

2.4 Design using HDL

The vast majority of modern digital circuit design revolves around an HDL

description of the desired circuit, device, or subsystem

Most designs begin as a written set of requirements or a high-level architectural diagram.

The process of writing the HDL description is highly dependent on the designer's diagram.

The process of writing the HDL description is highly dependent on the designer's

background and the circuit's nature. The HDL is merely the 'capture language'–often begin

with a high-level algorithmic description such as MATLAB or a C++ mathematical model

Control and decision structures are often prototyped in flowchart applications, or entered in a

state-diagram editor. Designers even use scripting languages (such as PERL) to automatically

generate repetitive circuit structures in the HDL language. Advanced text editors (such as

PERL) to automatically generate repetitive circuit structures in the HDL language. Advanced

text editors (such as Emacs) offer editor templates for automatic indentation, syntax-

dependent coloration, and macro-based expansion of entity/architecture/signal declaration.

As the design's implementation is fleshed out, the HDL code invariably must undergo code

review, or auditing. In preparation for synthesis, the HDL description is subject to an array

of automated checkers. The checkers enforce standardized code guidelines, identifying

ambiguous code construct before they can cause misinterpretation by downstream synthesis, and

check for common logical coding errors, such as dangling ports or shorted outputs.

In industry parlance, HDL design generally ends at the synthesis stage. Once the synthesis

tool has mapped the HDL description into a gate net list, this net list is passed off to the back -

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

13

end stage. Depending on the physical technology (FPGA, ASIC gate-array, ASIC standard-

cell), HDLs may or may not play a significant role in the back-end flow. In general, as the

design flow progresses toward a physically realizable form, the design database becomes

progressively more laden with technology-specific information, which cannot be becomes

progressively more laden with technology-specific information, which cannot be stored in a

generic HDL-description. Finally, a silicon chip is manufactured in a lab.

2.5 Simulating and debugging HDL code

Essential to HDL design is the ability to simulate HDL programs. Simulation allows a

HDL description of a design (called a model) to pass design verification, an important

milestone that validates the design's intended function (specification) against the code

implementation in the HDL description. It also permits architectural exploration. The engineer

can experiment with design choices by writing multiple variations of a base design, then

comparing their behavior in simulation .Thus, simulation is critical for successful HDL design

To simulate an HDL model, an engineer writes a top-level simulation environment (called

a test bench). At minimum, a test bench contains an instantiation of the model (called the

device under test or DUT), pin/signal declarations for the model's I/O, and a clock

waveform. An HDL simulator–the program that executes the test bench–maintains the

simulator clock, which is the master reference for all events in the test bench simulation

Events occur only at the instants dictated by the test bench HDL, or in reaction to

stimulus and triggering events.

Design verification is often the most time-consuming portion of the design process, due to

the disconnect between a device's functional specification, the designer's interpretation of the

specification, and the imprecision of the HDL language. The majority of the initial test/debug

cycle is conducted in the HDL simulator environment, as the early stage of the design is subject

to frequent and major circuit changes. An HDL description can also be prototyped and tested in

hardware–programmable logic devices are often used for this purpose. Hardware prototyping

is comparatively more expensive than HDL simulation, but offers a real-world view of the

design. Prototyping is the best way to check interfacing against other hardware devices, and

hardware prototypes, even those running on slow FPGAs, offer much faster simulation times

than pure HDL simulation.

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

14

2.6. Requirements & Procedure

Requirements:

1. HDL software with front-end (Design entry, synthesis, simulation implementation and

programming)

2. FPGAkitwithminimum400,000gatedensity

Procedure:

Software part

1. Click on the Project navigator icon on the desktop of your PC. Write the vhdl code, check

syntax and perform the functional simulation using Model sim XE.

2. Open a new UCF file and lock the pins of the design with FPGAI/O pins.

3. Implementthedesignbydoubleclickingontheimplementationtoolselection

4. Check the implementation reports.

5. Create programming file.

3. INTRODUCTION TO FPGA (FIELD PROGRAMMABLE GATE ARRAY)

FPGA contains a two dimensional arrays of logic blocks and interconnections between logic

blocks. Both the logic blocks and interconnects are programmable. Logic blocks are

programmed to implement a desired function and the interconnects are programmed using the

switch boxes to connect the logic blocks.

To implement a complex design (CPU for instance), the design is divided into small sub

functions and each sub function is implemented using one logic block. All the sub functions

implemented in logic blocks must be connected and this is done by programming the

interconnects.

3.1 INTERNAL STRUCTURE OF ANFPGA

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

15

FPGAs, alternative to the custom ICs, can be used to implement an entire System On one Chip

(SOC). The main advantage of FPGA is ability to reprogram. User can reprogram an FPGA to

implement a design and this is done after the FPGA is manufactured. This brings the name

“Field Programmable.”

Custom ICs are expensive and takes long time to design so they are useful when produced in

bulk amounts. But FPGAs are easy to implement within a short time with the help of Computer

Aided Designing (CAD) tools.

3.2 XILINXFPGA

Xilinx logic block consists of one Look Up Table (LUT) and one Flip Flop. An LUT is used to

implement number of different functionality. The input lines to the logic block go into the LUT

and enable it. The output of the LUT gives the result of the logic function that it implements and

the output of logic block is registered or unregistered output from the LUT.

4-INPUT LUT BASED IMPLEMENTATION OF LOGIC BLOCK.

Xilinx LUT

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

16

3.3 FPGA/ASIC Design Flow Overview

The ISE (Integrated Synthesis Environment) design flow comprises the following steps:

1. Design Entry

Create an ISE project as follows:

1. Create a project.

2. Create files and add them to your project, including a user constraints (UCF)file.

3. Add any existing files to your project.

Functional

Verification

You can verify the functionality of your design at different points in the design flow as follows:

 Before synthesis, run behavioral simulation (also known as RTL simulation).

2. Design Synthesis

Synthesize your design.

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

17

3. Design Implementation
Implement your design as follows:

1. Implement your design, which includes the following steps:

o Translate

o Map

o Place and Route

4. Xilinx Device Programming

Program your Xilinx device as follows:

1. Create a programming file (BIT) to program your FPGA.

2. Generate a PROM or ACE file for debugging or to download to your device.

Optionally, create a JTAG file.

3. Use IMPACT to program the device with a programming cable.

3.4 PIN SHEET OFXC3S400-5TQ144

FRC1 FRC2 FRC3

1

74

IO

1

84

IO

1

100

IO

2

76

IO

2

85

IO

2

102

IO

3

77

IO

3

86

IO

3

4

79

IO

4

87

IO

4

103

IO

5

78

IO

5

89

IO

5

105

IO

6

82

IO

6

90

IO

6

107

IO

7

80

IO

7

92

IO

7

108

IO

8

83

IO

8

96

IO

8

113

IO

9

VCC

POWER

9

VCC

POWER

9

VCC

POWER

10

GND

SUPPLY

10

GND

SUPPLY

10

GND

SUPPLY

FRC4

FRC6

FRC7

1

112

IO

1

28

IO

1

57

IO

2

116

IO

2

31

IO

2

59

IO

3

119

IO

3

33

IO

3

63

IO

4

118

IO

4

44

IO

4

69

IO

5

123

IO

5

46

IO

5

68

IO

6

131

IO

6

47

IO

6

73

IO

7

130

IO

7

50

IO

7

70

IO

8

137

IO

8

51

IO

8

20

IO

9

VCC

POWER

9

VCC

POWER

9

VCC

POWER

10

GND

SUPPLY

10

GND

SUPPLY

10

GND

SUPPLY

FRC5

FRC8

FRC10

1

1

IO

1

93

IO

1

60

IO

2

12

IO

2

95

IO

2

56

IO

3

13

IO

3

97

IO

3

41

IO

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

18

4

14

IO

4

98

IO

4

40

IO

5

15

IO

5

99

IO

5

36

IO

6

17

IO

6

194

IO

6

35

IO

7

18

IO

7

IO

7

32

IO

8

21

IO

8

122

IO

8

10

IO

9

23

IO

9

129

IO

9

11

IO

10

24

IO

10

132

IO

10

8

IO

11

26

IO

11

135

IO

11

7

IO

12

27

IO

12

140

IO

12

6

IO

13

5

SUPPLY

13

5

SUPPLY

13

5

SUPPLY

14

-5

14

-5

14

-5

15

VCC

15

VCC

15

VCC

16

GND

16

GND

16

GND

CLK 52

FRC9

1

5

IO

2

4

IO

3

2

IO

4

141

IO

5

NA

IO

6

NA

IO

7

NA

IO

8

NA

IO

9

VCC

POWER

SUPPLY

10

GND

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

19

PART– A

PROGRAMS

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

20

EXPERIMENT NO.1

AIM: Write HDL codes for the following combinational circuits.

1 a) 2 TO 4 DECODER

RTL SCHEMATIC

Truth Table

EN Din(1) Din(0) Dout(3) Dout(2) Dout(1) Dout(0)

1 X x 0 0 0 0

0 0 0 0 0 0 1

0 0 1 0 0 1 0

0 1 0 0 1 0 0

0 1 1 1 0 0 0

Verilog Code:

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 12:00:22 12/23/2020

// Design Name:

// Module Name: s4btg

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

21

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

 input a1;

 wire w1,w2,w3,w4,w5,w6;

 nand x1(w1,a0);

 nand x2(w2,a1);

 nand x3(w3,w1,w2);

 nand x4(w4,a0,w2);

 nand x5(w5,w1,a1);

 nand x6(w6,a0,a1);

 nand x7(d0,w3,w3);

 nand x8(d1,w4,w4);

 nand x9(d2,w5,w5);

 nand x10(d3,w6,w6);

 endmodule

1 b) 8 TO 3 ENCODER WITHOUT PRIORITY

RTL
Schematic

Truth Table

INPUTS OUTPUTS
en Din(0) Din(1) Din(2) Din(3) Din(4) Din(5) Din(6) Din(7) Dout(0) Dout(1) Dout(3)

1 X x x x x x x X z z z

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 0 0 1 0 1

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

22

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0

Verilog Code:

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 12:00:22 12/23/2020

// Design Name:

// Module Name: s4btg

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

 output dout0;

 output dout1;

 output dout2;

 input din0;

 input din1;

 input din2;

 input din3;

 input din4;

 input din5;

 input din6;

 input din7;

reg[2:0]dout;

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

23

always@(din)

begin

case(din)

8'b00000001:dout=3'b000;

8'b00000010:dout=3'b001;

8'b00000100:dout=3'b010;

8'b00001000:dout=3'b011;

8'b00010000:dout=3'b100;

8'b00100000:dout=3'b101;

8'b01000000:dout=3'b110;

8'b10000000:dout=3'b111;

defualt:dout=3'bzzz;

endcase

end

endmodule

8 TO 3 ENCODER WITH PRIORITY

RTL Schematic

Truth Table

INPUTS OUTPUTS
en Din(0) Din(1) Din(2) Din(3) Din(4) Din(5) Din(6) Din(7) Dout(0) Dout(1) Dout(3)

0 X x x x x x x x z z z

1 X x x x x x x 1 1 1 1

1 X x x x x x 1 0 1 1 0

1 X x x x x 1 0 0 1 0 1

1 X x x x 1 0 0 0 1 0 0

1 X x x 1 0 0 0 0 0 1 1

1 X x 1 0 0 0 0 0 0 1 0

1 X 1 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0 0 0

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

24

Verilog Code:

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 12:00:22 12/23/2020

// Design Name:

// Module Name: s4btg

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//
//
reg y;

always@(s,i)

begin

if(s==3'b000)y=i[0];

else if (s==3'b001)y=i[1];

else if (s==3'b010)y=i[2];

else if (s==3'b011)y=i[3];

else if (s==3'b100)y=i[4];

else if (s==3'b101)y=i[5];

else if (s==3'b110)y=i[6];

else if (s==3'b111)y=i[7];

else y=3'dz;

end

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

25

1 c) 8 TO 1 MULTIPLEXER

Truth Table:

RTL Schematic

Verilog Code:

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 12:00:22 12/23/2020

// Design Name:

// Module Name: s4btg

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

reg y;

always@(s,i)

begin

if(s==3'b000)y=i[0];

else if (s==3'b001)y=i[1];

S(2) S(1) S(0) Y

0 0 0 I(0)

0 0 1 I(1)

0 1 0 I(2)

0 1 1 I(3)

1 0 0 I(4)

1 0 1 I(5)

1 1 0 I(6)

1 1 1 I(7)

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

26

else if (s==3'b010)y=i[2];

else if (s==3'b011)y=i[3];

else if (s==3'b100)y=i[4];

else if (s==3'b101)y=i[5];

else if (s==3'b110)y=i[6];

else if (s==3'b111)y=i[7];

else y=3'dz;

end

1. d) 4-BIT BINARY TO GRAYCONVERTER

RTL Schematic

Verilog Code:

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 12:00:22 12/23/2020

// Design Name:

// Module Name: s4btg

// Project Name:

// Target Devices:

// Tool versions:

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

27

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module s4btg(B,G);

output[3:0]G;

input[3:0]B;

assign G[3]=B[3];

Gray_bin_1 x1(G[2],G[3],G[2]);

Fulladder_1 x2(G[1], ,1'b0,B[2],B[1]);

Subtractor_1 x3(G[0], ,1'b0,B[1],B[0]);

endmodule

module Gray_bin_1(b0,g1,g0);

output b0;

input g0,g1;

assign b0=g0^g1;

endmodule

module Fulladder_1(sum,cout,a,b,c);

output sum,cout;

input a,b,c;

assign sum=a^b^c;

assign cout=(a&b)|(b&c)|(c&a);

endmodule

module Subtractor_1(diff,bout,a,b,c);

output diff,bout;

input a,b,c;

assign diff=a^b^c;

assign bout=((~a)&b)|((((~a)|b))&c);

endmodule

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

28

EXPERIMENT NO.2

AIM: Write HDL code to describe the functions of a full Adder Using three

modeling styles.

RTL Schematic

Truth Table

timescale 1ns / 1ps

/`///

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

29

// Company:

// Engineer:

//

// Create Date: 10:11:38 01/28/2021

// Design Name:

// Module Name: fulladder

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module fulladder(sum,cout,yxor,yxnor,yand,yor,a,b,c);

output sum,cout,yxor,yxnor,yand,yor;

inout a,b,c;

assign sum=a^b^c;

assign cout=(a@b)|(b@c)|(c@a);

assign yxor=a^b^c;

assign yxnor=~(a^b^c);

assign yand=a@b@c;

assign yor=a|b|c;

endmodule

EXPERIMENT NO. 3

AIM: Write a model for 4/8/32 bit Arithmetic Logic Unit using the schematic
diagram shown below.

RTL Schematic

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

30

Verilog Code:

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 13:41:32 01/12/2021

// Design Name:

// Module Name: program1

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module program1(result,a,b,opcode,enable);

output[32:0]result;

input signed [31:0]a,b;

input[2:0] opcode;

input enable;

reg[32:0] result;

always@(opcode,a,b,enable)

begin

if(enable==0)

begin

result=31'bx;

end

else

begin

case(opcode)

3'b000:begin result=a+b;end

3'b001:begin result=a-b;end

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

31

3'b010:begin result=a+1;end

3'b011:begin result=a-1;end

3'b100:begin result=!a;end

3'b101:begin result=~a;end

3'b110:begin result=a/b;end

3'b111:begin result=a&b;end

endcase

result[32]=1'b1;

end

end

endmodule

EXPERIMENT NO.4

AIM: Develop the HDL code for the following flip-flop: T, D, SR and JK.

D-FLIP FLOP

RTL Schematic

Truth Table

CLK D Q Qb OPERATION

0 x Q Qb No change

1 0 0 1 Reset

1 1 1 0 Set

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 10:41:44 01/12/2021

// Design Name:

// Module Name: sr_ff

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//
module dff(q,qb,d,clk);

output q,qb;

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

32

input d,clk;

reg q=0,qb=1;

always@(posedge clk)

begin

q=d;

qb=~q;

end

endmodule

SR FLIP – FLOP

RTL Schematic

Truth Table

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 10:41:44 01/12/2021

// Design Name:

// Module Name: sr_ff

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module srff(q,qb,sr,clk);

output q,qb;

input clk;

input[1:0]sr;

CLK s r Q Qb

0 x x Q Qb

1 0 1 0 1

1 1 0 1 0

1 1 1 Not defined

1 0 0 Q Qb

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

33

reg q=0,qb=1;

always@(posedge clk)

begin

case(sr)

2'b00:q=q;

2'b01:q=0;

2'b10:q=1;

2'b11:q=1'bz;

endcase

qb=~q;

end

endmodule

JK-FLIP FLOP

RTLSchematic TruthTable

/ 1ps

/ Engineer`timescale:

//

// Create Date: 15:35:53 12/23/2020

// 1ns D///

// Company:

//esign Name:

// Module Name: jkff

// Project Name:

// Target Devices:

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module jkff(q,qb,jk,clk);

output q,qb;

input clk;

input[1:0]jk;

reg q=0,qb=1

CLK J K Q Qb

0 x x Q Qb

1 0 1 0 1

1 1 0 1 0

1 1 1 Qb Q

1 0 0 Q Qb

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

34

// Tool versions:

// Description:

//;

always@(posedge clk)

begin

case(jk)

2'b00:q=q;

2'b01:q=0;

2'b10:q=1;

2'b11:q=~q;

endcase

qb=~q;

end

endmodule

EXPERIMENT-5

 4-bit BCD Synchronous counter.

Write Verilog code for 4-bit BCD synchronous counter.

RTL Schematic TruthTable

Clock Reset Current

State

Next

State

1 1 xxx 0000

1 0 0000 0001

1 0 0001 0010

1 0 0010 0011

1 0 0011 0100

1 0 0100 0101

1 0 0101 0110

1 0 0110 0111

1 0 0111 1000

1 0 1000 1001

1 0 1001 1010

1 0 1010 1011

1 0 1011 1100

1 0 1100 1101

1 0 1101 1110

1 0 1110 1111

0 x 1111 0000

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

35

Verilog Code:

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 10:06:13 01/27/2021

// Design Name:

// Module Name: bcd

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module bcd(count, clk,reset);

 output [3:0] count;

 input clk,reset;

 reg[3:0]count=4'b0000;

 always@(posedge clk)

 begin

 if((reset==1)|(count==4'b1001))

 count = 4'b0000;

 else

 count = count+1;

 end

 endmodule

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

36

EXPERIMENT-6

Clock divider performing division of clock by 2, 4, 8 and 16

Write Verilog code for counter with given input clock and check whether it works as

clock divider performing division of clock by 2, 4, 8 and 16. Verify the functionality
of the code.

Verilog Code:

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 10:53:24 12/28/2020

// Design Name:

// Module Name: freediv

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module freediv(clk2,clk4,clk8,clk16,clk,reset);

output clk2,clk4,clk8,clk16;

input clk,reset;

reg clk2,clk4,clk8,clk16;

reg [3:0]count=4'b0000;

always@ (posedge clk)

begin

if (reset==1)

begin count=4'b0000;end

else

begin count=count+1;end

clk2=count[0];

clk4=count[1];

clk8=count[2];

clk16=count[3];

end

endmodule

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

37

PART- B

INTERFACING

PROGRAMS

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

38

EXPERIMENT-1

Clock divider circuit that generates 1/2, 1/3rd and 1/4

Write a Verilog code to design a clock divider circuit that generates 1/2, 1/3rd and
1/4thclock from a given input clock. Port the design to FPGA and validate the

functionality through oscilloscope

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 10:53:24 12/28/2020

// Design Name:

// Module Name: freediv

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//
 module vcode(clk_2,clk_4,clk_8,clk_16,clk,reset);

output clk_2,clk_4,clk_8,clk_16;

input clk,reset;

reg clk_2,clk_4,clk_8,clk_16;

reg[3:0]count=4'b0000;

always@(posedge clk)

begin

if(reset==1)

begin count=4'b0000;end

else

begin count=count+1;end

clk_2=count[0];

clk_4=count[1];

clk_8=count[2];

clk_16=count[3];

end

EXPERIMENT-2

DCMOTOR:

Interface a DC motor to FPGA and write Verilog code to change its speed and direction.

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

39

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; use

IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dcmotor is

Port (clk : in STD_LOGIC;

reset,dir : inSTD_LOGIC;

pwm : out STD_LOGIC_VECTOR (1 downto 0); rly :

out STD_LOGIC;

row : in STD_LOGIC_VECTOR (3 downto 0)); end

dcmotor;

architecture Behavioral of dcmotor is

signal counter:STD_LOGIC_VECTOR (7 downto 0):="11111110";

signal div_reg:STD_LOGIC_VECTOR (16 downto 0);

signal dclk,ddclk,datain,tick:STD_LOGIC;

signal dcycle:integer range 0 to 255 ; begin

process(clk,div_reg)

begin

if(clk'event and clk='1')then

div_reg<= div_reg+1;

end if;

end process;

ddclk<=div_reg(12);

tick<=row(0)and row(1)and row(2)and row(3);

process(tick)

begin

if falling_edge(tick)then

case row is

when "1110"=> dcycle<=255;---speed highest

when "1101"=> dcycle<=200;

when "1011"=> dcycle<=150;

when "0111"=> dcycle<=100;---speed lowest

when others=> dcycle<=100;

end case; end if;

end process;

process(ddclk,reset)

begin

if reset='0'then

counter<="00000000"; pwm<="01";

elsif(ddclk'event and ddclk='1')then

counter<=counter+1;

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

40

if(counter >=dcycle)then

pwm(1)<='0';

else pwm(1)<='1';

end if;

end if;

end process; rly<=dir;

end Behavioral;

Reset Direction/rly PWM operation

0 0 01 stop

1 1 11 Anticlockwise

1 0 11 clockwise

EXPERIMENT-3

STEPPERMOTOR:

 Verilog Code:
`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 10:53:24 12/28/2020

// Design Name:

// Module Name: freediv

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

//

 Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

NET "clk" LOC = "p52" ;

NET "dir" LOC = "p76" ;

NET "pwm<0>" LOC = "p4";

NET "pwm<1>" LOC = "p141" ;

NET "reset" LOC = "p74" ;

NET "rly" LOC = "p5";

NET "row<0>" LOC = "p69" ;

NET "row<1>" LOC = "p63" ;

NET "row<2>" LOC = "p59" ;

NET "row<3>" LOC = "p57";

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

41

//
module seeppermotor(

input clk;

input reset;

input dir;

input[1:0]row;

output reg[3:0]dout

);

reg[25:0]divclk;

reg intclk;

reg[3:0]register;

always@(posedge clk)

begin

divc1k=divclk+1;

end

always@(row)

begin

case(row)

2'b00:intclk=divclk[21];

2'b00:intclk=divclk[19];

2'b00:intclk=divclk[17];

2'b00:intclk=divclk[15];

default:intclk=divclk[21];

endcase

end

always@(posedge intclk)

begin

if(!reset)

register=4'b1001;

else

begin

if(!dir)

register={register[0],register[3:1]};

else

register={register[2:0],register[3]};

end

dout=register;

end

endmodule

CLOCKWISE (DIR= ‘1’) ANTICLOCKWISE (DIR=’0’)

A B C D A B C D

1 0 0 0 0 0 1 0

NET "clk" LOC =

"p52"; NET "dir" LOC =

"p85"; NET "rst" LOC =

"p84";

NET "dout<0>" LOC = "p112";

NET "dout<1>" LOC = "p116";

NET "dout<2>" LOC = "p119";

NET "dout<3>" LOC = "p118";

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

42

0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1

ABCD ABCD ABCD ABCD…..

CBAD CBAD CBAD CBAD…..

Reset Direction operation

0 X stop

1 1 clockwise

1 0 anticlockwise

When current is passed through the coil, the circular magnetic field is generated.

EXPERIMENT-4

 DAC- SINEWAVE:

Interface a DAC to FPGA and write Verilog code to generate Sine wave of
frequency F KHz (eg. 200 KHz) frequency.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; use

IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

43

entity sinewave is Port

(clk:in std_logic;

dout : out std_logic_vector(0 downto 7)); end

sinewave;

architecture behavioral of sinewave is signal

a: integer range 1 to 1000000:=1; signal b:

integer range 0 to 49:=0;

signalr:std_logic:='1';

begin

process(clk,b,r)

type sine is array (0 to 49) of std_logic_vector (0 downto 7);

constant sinedata:sine:=(x"00", x"01", x"02",x"04", x"06", x"09", x"0C", x"0F",

x"14", x"18", x"1D", x"22",x"28", x"2E",x"34", x"3B",

x"42",x"49",x"50", x"58",x"5F",x"67", x"6F",x"77",

x"7F",x"87",x"8F",x"97",x"9F",x"A7",x"AE", x"B5",

x"BD",x"C3",x"CA",x"D0",x"D6",x"DC",x"E1",x"E6",

x"EB",x"FF",x"F3",x"F6",x"F8",x"FB", x"FC",x"FD", x"FE",x"FF");

begin

if (clk'event and clk='1')then

a<=a+1;

if (r='1') then

if (a=1) then

dout <=sinedata(b);

b<=b+1;

a<=1;

end if;

if (b=48) then

r<='0';

end if;

elsif (r='0') then

if (a=1) then

dout <= sinedata(b);

b<=b-1;

a<=1;

end if;

if (b=1) then

r<='1';

end if; end if; end if; end

process;

end behavioral;

NET "clk" LOC = "p52";

NET "dout<7>" LOC ="p1";

NET "dout<6>" LOC ="p12";

NET "dout<5>" LOC ="p13";

NET "dout<4>" LOC ="p14";

NET "dout<3>" LOC ="p15";

NET "dout<2>" LOC ="p17";

NET "dout<1>" LOC="p18";

NET "dout<0>" LOC ="p21";

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

44

Small ‘x’ --- Hexadecimal number

Capital ‘X’--- Unknown or don’t care

θ = 180° / 50 intervals = 3.6° = Each interval
During Negative Quarter (1/4) cycle = 127.5-127.5 Sin(nθ) 0≤ n ≤24

n=24 ---- 00 h

n=23 ---- 01 h
n=22 ---- 02 h

:

n=2 ---- 6Fh

n=1 ---- 77 h
n=0 ---- 7F h corresponds to127.5

During Positive Quarter (1/4) cycle = 127.5+127.5 Sin(nθ) 1≤ n ≤25

n=1 ---- 87 h

n=2 ---- 8F h
n=3 ---- 97 h

:

n=24 ---- FEh
n=25 ---- FF h corresponds to255

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

45

EXPERIMENT-5

ELEVATOR

Write Verilog code using FSM to simulate elevator operation:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; use

IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ssg is

Port (keyreturn : in STD_LOGIC_VECTOR (3 downto 0);

keyscan : buffer STD_LOGIC_VECTOR (3 downto 0):="1000"; segm :

out STD_LOGIC_VECTOR (3 downto 0);

clk : inSTD_LOGIC;

dis : out STD_LOGIC_VECTOR (6 downto 0):="0000000"); end

ssg;

architecture Behavioral of ssg is

signal a,temp:integer range 0 to 15:=0;----initial content to be displayed after dumping

signal b:integer range 0 to 2000009;

begin

process(clk)

begin

if(clk'event and clk='1')then keyscan<=keyscan(0)

& keyscan(3 downto 1);

if keyscan="0001" and keyreturn="0001" thena<=0; elsif

keyscan="0001" and keyreturn="0010" then a<=1; elsif

keyscan="0001" and keyreturn="0100" then a<=2; elsif

keyscan="0001" and keyreturn="1000" then a<=3; elsif

keyscan="0010" and keyreturn="0001" then a<=4; elsif

keyscan="0010" and keyreturn="0010" then a<=5; elsif

keyscan="0010" and keyreturn="0100" then a<=6; elsif

keyscan="0010" and keyreturn="1000" then a<=7; elsif

keyscan="0100" and keyreturn="0001" then a<=8; elsif

keyscan="0100" and keyreturn="0010" then a<=9; elsif

keyscan="0100" and keyreturn="0100" then a<=10; elsif

keyscan="0100" and keyreturn="1000" then a<=11; elsif

keyscan="1000" and keyreturn="0001" then a<=12; elsif

keyscan="1000" and keyreturn="0010" then a<=13; elsif

keyscan="1000" and keyreturn="0100" then a<=14; elsif

keyscan="1000" and keyreturn="1000" then a<=15; endif;

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

46

end if;

endprocess;

Process(clk,a,temp)

begin

if(clk'event and clk='1')then

b<=b+1;

if(b=2000000)then ------Delay between one floor to next floor

if(temp<a) then -------a=current floor and temp= destination floor

temp<=temp+1 ;

b<=0;

elsif(temp/=a) then

temp<=temp-1 ;

b<=0;

end if;

end if;

end if;

end process;

process(temp) ---- when the key of destination floor is pressed process will be activated type

sevseg is array (0 to 15)of std_logic_vector(6 downto 0);

constantsegdis:sevseg:= ("1111110","0110000","1101101","1111001",

"0110011","1011011","1011111","1110000",

"1111111","1111011","1110111","0011111",

"1001110","0111101","1001111","1000111");

begin

dis<=segdis(temp);

segm<="1110";

end process; end

Behavioral;

CURRENT FLOOR DESTINATION FLOOR INCREMENT/DECREMENT

0 5 increment from 0 to 5
1 4 increment from 1 to 4
2 6 increment from 2 to 6
3 8 increment from 3 to 8
4 A increment from 4 to A
5 7 increment from 5 to 7
6 E increment from 6 to E
7 6 decrement from 7 to 6
8 1 decrement from 8 to 1
9 3 decrement from 9 to 3
A 2 decrement from A to 2
B 8 decrement from B to 8
C 1 decrement from C to 1
D 5 decrement from D to 5
E 6 decrement from E to 6
F 3 decrement from F to 3

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

47

EXPERIMENT-6

SEVEN SEGMENTDISPLAY

Write Verilog code to convert an analog input of a sensor to digital form and to display

the same on a suitable display like set of simple LEDs, 7-segment display digits or
LCD display.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; use

IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ssg is

Port (keyreturn : in STD_LOGIC_VECTOR (3 downto 0);

keyscan : buffer STD_LOGIC_VECTOR (3 downto 0):="1000"; segm :

out STD_LOGIC_VECTOR (3 downto 0);

clk : inSTD_LOGIC;

dis : out STD_LOGIC_VECTOR (6 downto 0):="0000000"); end

ssg;

architecture Behavioral of ssg is

signal a:integer range 0 to 15:=0;

begin

process(clk)

begin

if(clk'event and clk='1')then keyscan<=keyscan(0)

& keyscan(3 downto 1);

if keyscan="0001" and keyreturn="0001" then a<=0; elsif

keyscan="0001" and keyreturn="0010" then a<=1; elsif

keyscan="0001" and keyreturn="0100" then a<=2; elsif

keyscan="0001" and keyreturn="1000" then a<=3; elsif

keyscan="0010" and keyreturn="0001" then a<=4; elsif

keyscan="0010" and keyreturn="0010" then a<=5; elsif

keyscan="0010" and keyreturn="0100" then a<=6; elsif

keyscan="0010" and keyreturn="1000" then a<=7; elsif

keyscan="0100" and keyreturn="0001" then a<=8; elsif

keyscan="0100" and keyreturn="0010" then a<=9; elsif

keyscan="0100" and keyreturn="0100" then a<=10; elsif

keyscan="0100" and keyreturn="1000" then a<=11; elsif

keyscan="1000" and keyreturn="0001" then a<=12; elsif

keyscan="1000" and keyreturn="0010" then a<=13; elsif

keyscan="1000" and keyreturn="0100" then a<=14; elsif

keyscan="1000" and keyreturn="1000" then a<=15; endif;

end if;

end process; process(a)

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

48

type sevseg is array (0 to 15)of std_logic_vector(6 downto 0);

constantsegdis:sevseg:= ("1111110","0110000","1101101","1111001",

"0110011","1011011","1011111","1110000",

"1111111","1111011","1110111","0011111",

"1001110","0111101","1001111","1000111");

begin

dis<=segdis(a);

segm<="1110";---To activate one segment out of four segments

end process;

end Behavioral;

If common cathode, a=b=c=d=e=f=g= 1

Ifcommonanode, a=b=c=d=e=f=g=0
Keyscan / keyreturn 0111 1011 1101 1110

0111 0 1 2 3

1011 4 5 6 7

1101 8 9 A B

1110 C D E F

NET "clk" LOC = "p52" ;

NET "dis<0>" LOC = "p18" ;

NET "dis<1>" LOC = "p17" ;

NET "dis<2>" LOC = "p15" ;

NET "dis<3>" LOC = "p14" ;

NET "dis<4>" LOC = "p13" ;

NET "dis<5>" LOC = "p12" ;

NET "dis<6>" LOC = "p1";

NET "keyreturn<0>" LOC = "p112" ;

NET "keyreturn<1>" LOC = "p116" ;

NET "keyreturn<2>" LOC = "p119" ;

NET "keyreturn<3>" LOC = "p118" ;

NET "keyscan<0>" LOC = "p123" ;

NET "keyscan<1>" LOC = "p131" ;

NET "keyscan<2>" LOC = "p130" ;

NET "keyscan<3>" LOC = "p137" ;

NET "segm<0>" LOC = "p27";

NET "segm<1>" LOC = "p26" ;

NET "segm<2>" LOC = "p24" ;

NET "segm<3>" LOC = "p23";

HDL LAB MANUAL 18ECL58

Acs college of engineering, Bangalore
Dept. of ECE

49

Display

a

b

c

d

e

f

g

0

1

1

1

1

1

1

0
1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 1 1 1
7 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
A 1 1 1 0 1 1 1
B 0 0 1 1 1 1 1
C 1 0 0 1 1 1 0
D 0 1 1 1 1 0 1
E 1 0 0 1 1 1 1
F 1 0 0 0 1 1 1

