

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SUBJECT: BASIC SIGNAL PROCESSING LABORATORY (IPCC)

SUBJECT CODE: 21EC33

PREPARED BY:
 Dr.Prajith Prakash Nair
Associate Professor, ECE

ACS College of Engineering

TABLE OF CONTENTS

PRACTICAL COMPONENT OF IPCC

SL.NO EXPERIMENT PAGE NO

1 a. Program to create and modify a vector
(array).
b. Program to create and modify a matrix.

2 Programs on basic operations on matrix.

3 Program to solve system of linear equations

4 Program for Gram-Schmidt
orthogonalization.

5 Program to find Eigen value and Eigen
vector.

6 Program to find Singular value
decomposition.

7 Program to generate discrete waveforms.

8 Program to perform basic operation on
signals.

9 Program to perform convolution of two
given sequences.

10 a. Program to perform verification of
commutative property of convolution.
b. Program to perform verification of
distributive property of convolution.
c. Program to perform verification of
associative property of convolution.

11 Program to compute step response from
the given impulse response.

12 Programs to find Z-transform and inverse Z-
transform of a sequence

Exp. No. 1 (a): Program to create and modify a vector (Array)

Exp. No. 1 (b): Program to create and modify a Matrix

Aim: To create a vector and perform various operations on it

Apparatus: Matlab Software, PC

Program:

To create an array with four elements in a single row, separate the elements

with either a comma (,) or a space.

a = [1 2 3 4]

To create a matrix that has multiple rows, separate the rows with semicolons.

a = [1 3 5; 2 4 6; 7 8 10]

Another way to create a matrix is to use a function, such as ones, zeros, or rand.
For example, create a 5-by-1 column vector of zeros.

z = zeros (5, 1)

OUTPUT :

Exp. No. 2: Programs on basic operations on matrix

Aim: To create a matrix and perform basic operation on it

Apparatus: Matlab Software, PC

Program:

MATLAB allows you to process all of the values in a matrix using a single
arithmetic operator or function.

a + 10

To transpose a matrix, use a single quote ('):

a'

You can perform standard matrix multiplication, which computes the inner
products between rows and columns, using the * operator. For example,
confirm that a matrix times its inverse returns the identity matrix:

p = a*inv(a)

To perform element-wise multiplication rather than matrix multiplication, use
the .* operator:

p = a.*a
The matrix operators for multiplication, division, and power each have a
corresponding array operator that operates element-wise. For example, raise
each element of a to the third power:

a.^3

Concatenation is the process of joining arrays to make larger ones. In fact, you
made your first array by concatenating its individual elements. The pair of
square brackets [] is the concatenation operator.

A = [a,a]

Concatenating arrays next to one another using commas is
called horizontal concatenation. Each array must have the same number of
rows. Similarly, when the arrays have the same number of columns, you can
concatenate vertically using semicolons.

A = [a; a]

Complex numbers have both real and imaginary parts, where the imaginary unit
is the square root of -1.

sqrt(-1)

To represent the imaginary part of complex numbers, use either i or j.

c = [3+4i, 4+3j; -i, 10j]

OUTPUT

Exp. No. 3: Program to solve system of linear equations.

Aim: To create and solve a system of linear equations

Apparatus: Matlab Software, PC

Program:

If you do not have the system of linear equations in the form AX = B, use equationsToMatrix to

convert the equations into this form. Consider the following system.

2−x+y−z=3 ; x+2y+3z=−10; x+y+z=2

Declare the system of equations.

syms x y z
eqn1 = 2*x + y + z == 2;
eqn2 = -x + y - z == 3;
eqn3 = x + 2*y + 3*z == -10;

Use equationsToMatrix to convert the equations into the form AX = B. The
second input to equationsToMatrix specifies the independent variables in the
equations.

[A,B] = equationsToMatrix([eqn1, eqn2, eqn3], [x, y, z])

Use linsolve to solve AX = B for the vector of unknowns X.

X = linsolve(A,B)

Exp. No. 4: Program for Gram-Schmidt orthogonalization.

Aim: To create and solve Gram-Schmidt orthogonalization

Apparatus: Matlab Software, PC

Program:

A=[1,2,3;2,3,4;4,5,6];
[m,n]=size(A);
Q=zeros(m,n);
R=zeros(n,n);
For j=1:n
v=A(:,j);
for i=1:j-1
R(I,j)=Q(:,i)’*A(:,j);
v=v-R(i,j)*Q(:,i);
end
R(j,j)norm(v);
Q(:,j)=v/R(j,j);
end

Output:

Exp. No. 5: Program for Eigen Values and Eigen Vectors.

Aim: To create and solve Eigen values and eigen vector

Apparatus: Matlab Software, PC

Program:

A = [-2,-4,2;-2,1,2;4,2,5]

[Eigenvalues_A,Eigenvectors_A] = my_eigen(A)

function [eigenvalues, eigenvectors] = my_eigen(A)

%%%This function takes a n by n matrix A and

%%%returns the eigenvalues and their assocaited eigenvectors.

 [m,n] = size(A);

 assert(isequal(m,n), "A is not a square matrix.") %Check to make sure A is a squa
re matrix.

 syms l

 lI = eye(m)*l;

 char_poly = det(A - lI);

 eigenvalues = solve(char_poly,l);

 for i = 1:m %This is to make sure any eigenvalues that = 0 are actually 0.

 if abs(eigenvalues(i)) < 10^-5

 eigenvalues(i) = 0;

 end

 end

 eigenvalues = transpose(eigenvalues); %This makes it easier to know which

 %eigenvalue goes with which eigenvector.

 eigenvectors = zeros(m); %This line is to make the code run smoother.

 for i = 1:m

 matrix = A - eye(m)*eigenvalues(i);

 a_eigenvector = null(matrix); %An eigenvector is the nullspace of a matrix min
us one of its eigenvalues along the diagonal.

 a_eigenvector = a_eigenvector/min(abs(a_eigenvector)); %This makes the eigenve
ctor look nice and readable.

 eigenvectors(:,i) = a_eigenvector;

 end

end

OUTPUT :

Exp. No. 6: Program to find Singular value decomposition.

Aim: To perform a program for SVD

Apparatus: Matlab Software, PC

Program :

U = Varg;
 V = Uarg;
 S = Sarg;
 A = Aarg';

 current_rank = size(U, 2);
 m = U' * A;
 p = A - U*m;
 P = orth(p);
 P = [P zeros(size(P,1), size(p,2)-size(P,2))];
 Ra = P' * p;
 z = zeros(size(m));
 K = [S m ; z' Ra];
 [tUp,tSp,tVp] = svds(K, current_rank);
 Sp = tSp;
 Up = [U P] * tUp;
 Vp = V * tVp(1:current_rank, :);
 Vp = [Vp ; tVp(current_rank+1:size(tVp,1), :)];
 if (force_orth)
 [UQ,UR] = qr(Up, 0);
 [VQ,VR] = qr(Vp, 0);
 [tUp,tSp,tVp] = svds(UR * Sp * VR', current_rank);
 Up = UQ * tUp;
 Vp = VQ * tVp;
 Sp = tSp;
 end;

 Up1 = Vp;
 Vp1 = Up;

Exp. No. 7: Program to generate discrete waveform

Aim: Write a program to generate dicrete waveform

Apparatus: Matlab Software, PC

Program :

x = rand(100,1) ;
y0 = rand ;
n = length(x) ;
y = zeros(n,1) ;
y(1) = y0 ;
for i = 2:n
 y(i)=y(i-1)+3*x(i) ;
end
stem(1:n,y)

Exp. No. 8: Program to perform basic operation on a signal

Aim: Write a program to perform basic operation on a signal

Apparatus: Matlab Software, PC

Program :

Addition

x=[1 2 3 4];
subplot(3,1,1);
stem(x);
title('X');
y=[1 1 1 1];
subplot(3,1,2);
stem(y);
title('Y');
z=x+y;
subplot(3,1,3);
stem(z);
title('Z=X+Y');

Subtraction

n1=-2:1;
x=[1 2 3 4];
subplot(3,1,1);
stem(n1,x);
title('X') ;
axis([-4 4 -5 5]);
n2=0:3;
y=[1 1 1 1];
subplot(3,1,2);
stem(n2,y);
title('Y');

axis([-4 4 -5 5]);
n3 =min (min(n1) ,min(n2)) : max (max (n1) , max (n2)); % finding the
duration of output signal
s1 =zeros(1,length (n3));
s2 =s1;
s1 (find ((n3>=min(n1)) & (n3 <=max (n1))==1))=x;
% signal x with the duration of output signal 'sub'
s2 (find ((n3>=min (n2)) & (n3 <=max (n2))==1))=y;
% signal y with the duration of output signal 'sub'
sub=s1 - s2; % subtraction
subplot(3,1,3)
stem(n3,sub)
title('Z=X-Y');
axis([-4 4 -5 5]);

Multiplication

n1=-2:1;
x=[1 2 3 4];
subplot(3,1,1);
stem(n1,x);
title('X') ;
axis([-4 4 -5 5]);
n2=0:3;
y=[1 1 1 1];
subplot(3,1,2);
stem(n2,y);
title('Y');
axis([-4 4 -5 5]);
n3 =min (min(n1) ,min(n2)) : max (max (n1) , max (n2)); % finding the
duration of output signal (out)
s1 =zeros(1,length (n3));
s2 =s1;
s1 (find ((n3>=min(n1)) & (n3 <=max (n1))==1))=x;
% signal x with the duration of output signal 'mul'
s2 (find ((n3>=min (n2)) & (n3 <=max (n2))==1))=y;
% signal y with the duration of output signal 'mul'
mul=s1 .* s2; % multiplication
subplot(3,1,3)

stem(n3,mul)
title('Z=X*Y');
axis([-4 4 -5 5]);

Exp. No. 9: Program to perform convolution of two signals

Aim: Write a program to perform convolution of 2 signals

Apparatus: Matlab Software, PC

Program

p=input('Enter the limit for x');
q=input('Enter the limit for y');
x=input('Enter the elements for x');
y=input('Enter the elements for y');
n1=0:p ;
n2=0:q;
subplot(3,1,1);
stem(n1,x);
title('Signal - x(n)');
subplot(3,1,2);
stem(n2,y);
title('Signal - h(n)');
z=conv(x,y);
t=length(n1)+length(n2)-1;
s=0:t-1;
subplot(3,1,3);
stem(s,z);
title('Output - y(n)');

Exp. No. 10: Program to perform property verification

Aim: Write a program to perform associative , distributive and
commutative property of signals

Apparatus: Matlab Software, PC

Programs

Exp. No. 11: Program to perform step response from impulse

Aim: Write a program to perform step response from impulse

Apparatus: Matlab Software, PC

Programs :

load('PulseResponseReflective100ps.mat');
plot(t,step)
xlabel('Time (Seconds)')
ylabel('Volts')
title('Step Response')

Exp. No. 12: Program to perform Z Transforms and Inverse Z
transforms

Aim: Write a program to perform Z Transforms and Inverse Z
transforms

Apparatus: Matlab Software, PC

Programs :

Z Transform

clc;
close all;
clear all;
syms 'z';
disp('If you input a finite duration sequence x(n), we will give

you its z-transform');
nf=input('Please input the initial value of n = ');
nl=input('Please input the final value of n = ');
x= input('Please input the sequence x(n)= ');
syms 'm';
syms 'y';
f(y,m)=(y*(z^(-m)));
disp('Z-transform of the input sequence is displayed below');
k=1;
for n=nf:1:nl
 answer(k)=(f((x(k)),n));
 k=k+1;
end
disp(sum(answer));

Inverse Z transform :

clc;

close all;

clear all;

syms n;

syms k;

syms f(z);

f(z) = input('Please input a function to obtain its inverse z

transform ');

disp(iztrans(f(z)));

