MACHINE ARCHITECTURE

The Software is set of instructions or programs written to carry out certain task on
digital computers. It is classified into system software and application software. System
software consists of a-variety of programs that support- the operation f)'f a computer.

)) £

Application software focuses on an application or problem to be solved. System software

consists of a variety of programs that support the operation of a computer.

Examples for system software are Operating system, compilér, assembler, macro processor.,
loader or linker, debugger, text editor, database_management systéms (some of thent) and,
———/ ;
software engineering tools. These softwaré’s make it possible for the,user to focus on an

application or other problem to.bé solved, without riceding to know the details of how the

machine works internally.

Difference between System Software and Application Software

System Software . _Application Software
System Software intended to support the Application Software is primarily concerned |
operation and use of computer with the solution of some problem using |

computeras a tool

Related to Machine Architecture Not related to machine architecture
Machine Dependent _ Machine Independent |
Example: Compilers, Assemblers, OS etc Example: Payroll System, Games etc ,{

" The Simplified Instructional Computer (SIC):

Simplified Instructional Computer (SIC) is a hypothetical computer that includes the ;
hardware features most often found on real machines, There are two versions of SIC. they

' are, standard model (SIC), and, extension version (SIC/XE) (extra equipment or exira

: expensive).

B SOUI’CG dlglﬂOtGSln | Qorpaper!essl Save Tarth!’

SIC Machine Architecture:

We discuss here the -SIC machine architecture with respect to its Memory and

Registers, Data Formats, Instruction Formats, Addressing Modes, Instruction Set, Input and

Output
s Memory:.) .

There are a t o tal of 32,768(2'°)bytes in the computer memory. It uses
Little Endian format to store the numbers, 3 consecutive bytes form a word, and each location

in memory contains 8-bit bytes.

. —_—
e Registers:

There are five registers, each 24 bits in length. Their maemonic, number and use are

given in the following table:

Mnemonic| Number| Use
A 0 Accumulator; used for arithmetic operations
X 1 Index register; used for addressing
L 2 Linkage register; JSUB
PC 8 Program counter
SW 9 Status word, jncludil_lg CC

e Data Formats:_

Integers are stored as 24-bit binary numbers. 2’s complement representation is used
vfor negative values; characters are stored usmg therr 8-bit ASCII codes No ﬂoatmg pomt

hardware on the standard versron of SIC

‘Source: d|g|notes N Go paperless! Save Earth!

e Instruction Formats:

All machine instructions on the standard version of SIC have the 24-bit formaf as

shown above

3 | 15
L Opcode [x] Address

* Addressing Modes:

Mode Indication | Target address calculation
Direct x=0 TA = address
Indexed x=1 TA =address + (X) - =

There are two addressing modes available, which are as shown in the above table.

Parentheses are used to indicate the contents of a register or 2 memory location.
e Instruction Set:

1. SIC provides, load and store instructions (LDA, LDX, STA, STX, etc.). Integer
arithmetic operations: (ADD, SUB, MUL; DIV, etc.). .

2. All arithmetic operations involve register A and a word in mem‘ory, Witil the result
being left in the register. Two in;tﬂr-uctions are provided for subroutine linkage.

3. COMP compares the value in register A with a word in memory, this instruction sets
a condition code CC to indicate the result. There are conditional Jjump instructions:
(JLT, JEQ, JGT), these instructions test the setting of CC and jump accordingly.

4] SU’Bjumps.to the subroutine placing the return address in register L, RSUB returns

by jumping to the address contained in register L.

e Inputand Output:

~Input and Output are performed by transferring 1 byte at a time to or from the

| . . ice (TD) instruction tests whether
rightmost 8 bits of register A (accumulator)_‘Thgs‘TeSt Device (). .

SOUFCG d]ganteSIH Go P'af’v'e.r]ess! Q,AVe Earth!

the addressed device is ready to send or receive a byte of data. Read Data (RD), Write Data

(WD) are used for reading or writing the data.

Data movement and Storage Definition

LDA, STA, LDL, STL, LDX, STX (A- Accumulator, L — Linkage Register, X —
Index Register), all uses3-byte word. LDCH, STCH associated with characters uses 1-byte.

There are no memory-memory move instructions.

Storage definitions are

WORD - ONE-WORD CONSTANT
RESW - ONE-WORD.VARIABLE
BYTE - ONE-BYTE CONSTANT

RESB - ONE-BYTE VARIABLE

Example Programs (SIC):

Exam ple 1: Simple data and character movement aperation

ALPHA

FIVE

CHARZ

Cl

To store the value 5 in awariable AI.LPHA and character Z in a variable C1

LDA FIVE

STA ALPHA

LDCH CHARZ

STCH Cl

RESW 1 : *

WORD <]
BYTE cz

RESB 1

“Source: diginotes.in’

Go pa"p'e'r‘!'ess', Save Earﬂn'

Example 2: Arithmetic oﬁ‘erations
BETA=ALPHA-+INCR+I

LDA ALPHA
ADD INCR
SUB ONE

STA BETA

........
........

ONE WORD |
. ALPHA RESW |
BEETA RESW |

RESW 1.

INCR RESW 1

Example 3: Looping and Indexing op

To perform STR ing of 11 characters,

LDX ZERO ; X=0
MOVECH LDCH STRI1, X ; LOAD A FROM .STRl
STCH STR2, X, ; STORE A TO STR2
TIX ELEVEN ~ ; ADD 1 TO X, TEST

JLT MOVECH

V:' SOUFCGdlgl notesm Go ‘p,_a_pe‘riless‘!: Sav.e. Eartw |

STR1 . "BYTE C ‘HELLO"WORLD’
STR2 RESB 11
ZERO WORD 0

ELEVEN WORD |1

Example 4: Input and Output operation

To read a character from the input device and to write a character to the output
device. ' '

INLOOP - TD- INDEV

JEQ INLOOP

STCH DATA

OUTLOOP TD OUTD

JEQ OUTLP : LOOP UNTIL DEVICE IS READY
& 7
LDCH DATA : LOAD DATA INTO A
WD OUTDEV :WRITE A TO OUTPUT DEVICE
INDEV BYTE X °‘F5° : INPUT DEVICE NUMBER
OUTDEV BYTE X8 :OUTPUT DEVICE NUMBER

- Spurce: diginotesin | Go paperless] Ssve Earth!

SIC/XE Machine Architecture:

e Memory

Maximum memory available on a SIC/XE system is | Megabyte (2% bytes).

e Registers

Additional B, S, T, and F registers are provided by SIC/XE, in addition to the
registers of S1C.

1_\'Iném0n_ic Number |Specialmse. . .. -
B 3 Base register
S 4 Ge-:neral working .reg:ister)
T 5 General working register
F 6 Floating—.point accumulator (48 bits)

e Data Formats
There is a 48-bit floating-point data type, F*2(¢102%

1 11 36
s exponent fraction

e Instruction Formats:
The new set of instruction formats fro SIC/XE machine architecture are as follows.

e Format 1 (1 byte): contains only operation code (straight from table).

« Format 2 (2 bytes): first eight bits for operation code, next four for register 1 and

Source: diginotes.in* Ge paperless! Save Earth!’

following four for register 5 The numbers for the registers go according to the
numbers indicated at the registers seetion (i, register T is replaced by hex 5, F jg
veplaced by hex 6). .

e Format3 (3 bytes): First 6 bits contain operation code, next 6 bits contain flags, last

12 bits contain displacement for the address of the operand. Operation code uses only

6 bits. thus the second hex digit will be affected by the values of the first two flags (n

and 1). The flags, in order, are: n, i, X, b,’p, and ¢. Its functionality is explained in the

next section. The last flag ¢ indicates the instruction format (0 for 3and 1 for4)'.’

Format 4 (4 bytes): same as format 3 with an extra 2 hex di;gits (8 bits) for addresses

that require more than 12 bits to be represented.

—

Format 1 (1 byte)

8

op

Format 2 (2 bytes)

8 4 4

op rl r2

Formats 1 and 2 are instructions do not reference memory at all

Format 3 (3 bytes)

6 1 11111 12

op nfi|x(b|plec| disp

Format 4 (4 bytes)

6 I 111 11 20

op n|i|x|[bfp]e address

*Source: diginotes.in G paperless! Save Earth!’

e Addressing modes & Flag Bits

Five possible addressing modes plus the combinations are as follows.

[Direct (x, b, and p all set to 0): operand address goes as it is. n and i are-both set to
the same value, either 0 or 1. While in general that value is 1, if set to O for format 3
we can assume that the rest of the flags (x, b, p, and e) are used as a part of the
address of the operand, to make the format compatible to the SIC format.

. 2

Relative (either b or p equal to 1 and the other one to 0): the address of the operand

should: be added to the current value-stored at the:B-register (if b = 1) or to the value .
stored at the PC register (ifp=1)

3. Immediate(i =1, n =)2 The operand value is already enclosed on the instruction

(ie. lies on the last 12/20 bits of the)'nstructiqn)

4. Indirect(i =0, n = 1): The operand value points/to an address that holds the address

for the operand value.

5 Indexed (x = 1): value to be added to the value stored at the register x to obtain real
address of the operand. This can be combined with any of the previous modes except

immediate.

The various flag bits used in the above formats have the following meanmgs e->e=0
fheans format 3, e = 1 means format 4. .

e Instruction Set:

SIC/XE prOVldeS all of the mstructlons that are avallable on the standard version. In addmon

lave Instructlons°t0 load and store the new reglsters LDB STB etc, Floatmg— pomt
h

Source: dlglnotes i paper!ess' Save ;arrw

arithmetic operations, ADDF, SUBF, MULF, DIVF, Register move instruction: RMO
Register-to-register arithmetic operations, ADDR, SUBR, MULR, DIVR and, Supervisor cal|

instruetion : SV,

¢ Inputand Output:

Ihere are 1/0.channels that-can be used to perform input and output while the CPU js .
exeeuting other instructions, Allows overlap of computing and /O, resulting in more

efficient system operation. The instructions SIO, TIO, and HIO are used to start, test and halt

the operation of 1/0 channels.
Example Programs (SIC/XE) . - _

Example I: Simple data and character'movement operation
To store the value'5 in a variable ALPHA and character Z in a variable C1

LDA #5
STA ALPHA

LDA #90
STCH CI

ALPHA RESW |
Cl RESB 1

Example 2: Arithmetic operations
BETA=ALPHA+INCR+I

LDS INCR
LDA ALPHA
ADDRS,A”
SUB |

STA BETA

% SOUI’Ce d'ngteSln Go paperless! Save Sarth!

ALPHA RESW
INCR RESW
BETA RESW

Example 3: Looping and Indexing operation

To perforn_1 STR2=STR1 where STRI is a stying of 11 characters.

LDT #11
CLDX #0

____—MOVECH

STCH STR2,X

TIXR T

JLT MOVECH

STRI1 BYTE

STR2 RESB 11

LDCH STRI, X

: LOAD A FROM STR1
~STORE'A TO STR2

ADD 1 TO X, TEST(T)

C ‘HELLO WORLD’

Difference between SIC and SIC/XE

Addressing Mode

SIC SIC/XE
- Memory 213 bytes 290 bytes
Registers 5(AX,L,PC & SW) 9(A,X.L,B,S,T,F,PC & SW)
Data Formats No Floating Point Hardware Supports Floating.Point
Hardware
Instruction Format One Four
Two Five and its combination

Jedvde

 Source: diginotes.in * Ge paperless! Save Earth!

AFRYS esmoe

L g

g

ASSEMBLERS
The basic assembler functions are:

* Translating mnemonic language code to its equivalent object code.

* Assigning machine addresses to symbolic labels.

Assembly i -
Language —» Assembler » Object i
Program , Program

SIC Aésembler Dfrectiv_e:

START: Specify name and starting address for the program

END: Indicate Efid of the program and (optionally).specify the first execution
: instruction in the program.)

BYTE: Generate character or hexadecimal

constant, oceupying as many bytes as
needed to represent the constant.

WORD: Generate oné—word integer constants

RESB: Reserve the indicated number6f bytes for a data area.

RESW: Reserve the indicated number of words for a data area.
A simple SIC Assembler

The design of assembler in other words (functions):

1. Convert mnemonic operation codes to their machine language equivalents.
- E)éample: Translate LDA to 00.

Convert symbolic operands to their equivalent machine addresses.
" Example: Translate GAMMA to 400F

3]

3. Build the machine instructions in the proper format,
4. Convert the data constants to internal machine representations.
Example ONE WORD 1 to 000001
| 5: erte the ob_]ect program and the assembly hstmg, »

* Source: diginotes.in G paperless! Sane Exth

Two Pass Assembler

Pass-1

* Assign addresses to all the statements in the program

Save the addresses assigned to all labels to be used in Pass-2

Perform some processing of assembler directives such as RESW, RESB to find the
length of data areas for assigning the address values.

e Defines the symbols in the symbol table(generate.the symbol table)

Pass-2

Assernble the instructions (transtatimg operation codes and looking up addresses).
e (Generate data values defined by BYTE, WORD ete.

Perform the processing of the assembler directives not done during pass-1.

e Write the object program andwassembler listing.

Assembler Design:

The most important things which need to be concentrated is the generation of Symbol
- table and resolving forward references. -
« Symbol Table:

— This is created during pass |
— All the labels of the instructions are symbols

— Table has entry for symbol name, address value.

» Forward reference:

Symbols that are_ delmed in the htel part of the program are calted forward
, referencmg ‘

There will not be any addless value for such symbols in the symbol table in -
pass 1.

-
-

“Source: d|g|notes int G paperlessl Save \arllnl

DELTA=GAMMA + INCR - 1

LOCCTR SOURCE STATEMENT OBJECT CODE
ARTH _ [START _|4000 |
4000 DA | GAMMA | 00400F
4003 ADD JINCR | 184012
4006 SUB |ONE . 14015
4009 STA__ | DELTA_ | 0¢A00C
400C | DELTA [RESW |1 '

" 400F | GAMMA [RESW | o
4012 [INGR _[RESW |1
i

4015 |ONE WORD | 000001
4018 END N
"~ OPTAB v o SYMTAB
MNEMONIC OPCODE LABEL ADDRESS ‘
LDA 00 DELTA |400c
ADD . 18 GAMMA | 400F
SUB 1C - ‘ INCR T 012
STA 0C ONE — 1015
— :

Figure2.1: Assembly Language Programwit!, objettcode
Object Code for Instruction

LDA GAMMA

Opcode | X| Address

0000 0000 | 0] 100 0000 0000 1111
0 0 4 0 0 F

OBJECT PROGRAM v
The simple object program conlamq three lypcs of records: Header record, Text record
" 7 amd’nd record. : : .

The header record contains the starting address ang length,

Text record contains the translated instructions ¢

indication of the addresses where these are to be loaded,
[)

nd data of the program, together with ap

‘.‘SOUFCel: dlgInOteSII’] " Go paperless! Save Tarth!

The end record marks the end of the object program and specifies the address where
the execution is to begin.

Syntax

* Header record

-Col. 1 H

- Col. 2~7 Program name

- Col. 8~13 Starting address of object program (hex)

- Col. 14~19 Length of object program in bytes (hex)
» Text 1‘ec;0rd
© .Col.1T . o B —
- Col. 2~7 Starting address for object code in this record (hex)

- Col. 8~9 Length of obj.ect code in this record in bytes (hex)

- Col. 10~69 Object code, represented in hex (2 col. perbyt€)

» End record

-Col.lE

- Col.2~7 Address of first executable instruction in‘object program (hex)

H*ARTH ~004000"000018
T“004000A0C“00460FA1 84012"1C4015"0C400C
T7004015"03~000001

E~004000

Fig 2.2 Object program corresponding to Fig 2.1

Sou'rCé: diginOteS.in " Go paperless! Save Tarth!

Algorithms and Data structure

The simple assembler uses two major internal data structures: the operatlon Code
Table (OPTAB) and the Symbol Table (SYMTA B).

OPTAB:

. It is used to lookup mnemonic operation codes and translates them to their machine

language equivalents. In more complex assemblers the table also contains

information about instruction format and length.

In pass 1 the OPTAB is used to look up and validate the operation code in the source

program. In pass 2, it i5"used to.translate the operation.codes to machine language. Tn

simple SIC machine this process can be performed in either in pass 1 or in pass 2.

But for machin€ like SIC/XE that has instructions of different lengths,
search OPTAB in the first pass to fi

LOCCTR.
~

we must

nd the instruction length for incrementing -

* In pass 2 we take the information from‘©PTAP 6 tell us which instruction format to

use in assembling the instructionyand any peculiarities of the object code instruction.

* OPTAB is usually organized as a hash table, with mnemonic operation code as the
key. The hash table organization is particularly appropriate, since it provides fast
retrieval with a minimum of searching. Most of the cases the OPTAB is a static
table- that-is, entries aresnot normally added to or deleted from it. In such cases it is

possible to design a special hashing function or other data structure to give optimum

performance for the particular set of keys being stored.

S'ourCe:d'igi"notes.in " Go paperless! Save Earth!

SYMTAB:

e This table includes the name and value for cach label in the source program, together
with flags to indicate the error conditions (e.g., if"a symbol is defined in two differeng
places).)

* . During Pass 1: labels are entered into the symbol table along with their assigned

 address value as they are encountered. All the symbols addres‘s value should get

“resolved at the pass 1.

* During Pass 2: Symbols used as operands are looked up the symbol table to-obtain the

address value to be inserted in the assembled instructions.

SYMTARB is usually organized as a hash table for efficiency of insertion and retrieval.

-Since entries are rarely deleted, efficieneyof deletion is the important criteria for
optimization.

* Both pass 1 and pass 2 require reading the source program. Apart from this an
intermediate file'is created by pass 1 that contains each source statement together

with its assigned address, error indicators, etc. This file is one of the inputs to the pass
o

P

* A copy of the source program is also an input tothe pass 2, which is used to retain the

operations that may be performed durinig pass 1 (such as scanning the operation field

for symbols and addressing flags), so that these ieed not be performed during pass 2.

Similarly, pointers into OPTAB and SYMTAB is retained for each operation code

and symbol used. This avoids need to repeat many of the table-searching operations.

LOCCTR:

LOCCTR is an important variable which helps in the assignment of the addresses. LOCCTR
is initialized to the beginning address mentioned in the START statement of the program.
After each statement is processed, the length of the assembled instruction is added to the
LOCCTR to make it point-to the next instruction. Whenever a label is encountered in an

instruction the LOCCTR value gives the address to be associated with that label.

Source: diginotes.in Go paperless! Save Earﬂn!

The Algorithm for Pass 1:
Begin
read first input line
if OPCODE = ‘START then begin
save #[Operand] as starting address
initialize LOCCTI.{ to starting address

write line to intermediate file

readnextinputline -

end(if START)

else
initialize LQCC R
While OPCODE != ‘E
begin'.
if this is not a comme
begin
if there is,a symbol in the LABEL field then

begin

search SYMTAB for LABEL : . .

if found the-p.
set error flag (duplicate symbol)

else

(if symbol)

. Source: diginotes.in - o paperless! Sove Sath]

search OPTAB for OPCODIY
i found then
ndd{% (inste length) to LOCCTR
else it OPCODLE = *“WORD” then
add 3 to LOCCTR
else i("bl’CO[)E = 'RESW” then

add 3 * #{OPERAND] to
LOCCTR

else if OPCOD

end

else
set error flag (invalfd operation code) .
end (if not a comment)
write line to intermediate file
read next input line

end { while not END}

. Source:diginotes.in G paperless] Save Earth!

R

wrtte fast line to intermediate file

(£

v VL

(LOCCTR — stanting address) as program length

= Tk

ﬁ 1

,'(C "
b
\/

[—

[he aigon’zhgn scans’ the first statement STARTF-.and saves the operand field (the

[
r\lq

c:\}&”fl

(/] ‘

Larune

ng address of the program. Initializes the LOCCTR value to this
is line is written to the intermediate line.

f«
‘)
;J

fa
(Tl

[]
vy
iy

—\O —‘

% - no operand is mentioned the LOCCTR is nitialized. to zero If a label is

encountered. the symbel has to be entered in the symbol table along with its

associated address value.

mbol_ad@v exists that indicates an entry of the same symbol already e‘usts
error flag is set mdlcatmo a duplication of the symbol
2cks for the mnemonic code, it searches for this code in the OPTAB. If found

then the length of the instruction is added to the LOCCTR to make it point to the
nett-mstruction.

s [Enextch

If the opcode is the dlrectrve WORD it adds a value 3 to the LOCCTR. If it is RESW,

it needs o add the number of data word to the LOCCTR If it is BYTE it adds a value
one to the LOCCTR, if RESB it adds number of bytes.

If = 5 END directive then it is the end of the program it finds the length of the
progrem by evaluating current LOCCTR — the starting address mentioned in the

operznd field of the END directive. Each processed line is written to the intermediate

file. ’

Source: diginotes.in Go paperless! Save Earth!

The Algorithm for Pass 2:
Begin

read 1st input line

if OPCODE = ‘START’ then

Source: diginotes.in Go paperless! Save Earth!

read next wnput line
end
\;ﬁte Header recond to object program
mitialize st Text necond
While OPCODE = ENIDX do
: begin

i this s not conument line then

begin
search OPTAB tor OPCODE- -

it found then

begin

if found then
begin
store symbol value as operand address
" else ’ : .
begin
store 0 as opcran.d address

set error flag (undefined symbol)

end

SO urce d| ngteSm : qb Paperfess' Save Eart"w'

end (if symbol) -
else store 0 as operand address
as.semble the objecf code instruction
else it OPCODE = ‘BYTE’ or ‘WORD?” then
convert constant to object cqci_e

if object code doesn’t fit into current Text record then

begin
Write text record to object code

initialize new Text re

add object cc
end {if not comme
write listing line
read next input line
end
write listing line read
next input line writé
last listing line
End {Pass 2}

» Here the first input line is read from the intermediate file. If the opcode is START, then this

line is directly written to the list file. A header record is w_rﬁten in the objec.t progfam which

- Source:diginotes.in G el S Sath

Program Relocation

Somatimes it is roquired to load and run several programs at the same time. The System Mugy

be able o load these programs wherever there is place in the memory. Therefore the eXact

starting is not known until the load time,

L

» The address of the instruction JSUR gets medified to pew

DA | (ISUR RDREQ)
M @ RDREC
QU
= l S008 | 43108038 | (+ISUS ROREC)
& & et~
,f SN ™M —RDREC
é‘ ST ?420
(SULS -
| 7428 | 4B108458 | (+JSUB RDREC)
8456" | BAIQ e RDREC
k-
P 495
: .r
I ~
3

Fig: Examples of Prograng Relocation’

The above diagram shows the Concept of relocation. Initially the program is loaded at

aded atlocation 0006.
The address field of this instruction cont

mstruction labeled RDREC. The second

loaded at new location 3000.

location 0000 The inStruction JSURB s lo

ains 01036, which is the address of the
figure shows that if the program is to be
. . .
location 6036. Likewise
ated at location 7420, the JSUB
anged to 4B108456 that con‘Eeépond to the new

the third figure shows that if the Program is reloc
instruction would need to be o

address of RDREC.

The only part of the program that require modification at load time are“those that

specify direct addresses. The rest of the instructions need not be modified. The
instructions which doesn’t require modific

address (immediate addressing) and PC.

ation are the ones that is not a memory
relative, Base-relative instructions.

-

S Source: diginotes.in Go paperless! Save Tarth!

From the object program, it is not possible to distinguish the address and constant The

assembler must keep some information to tell the loader. The object program that
contains the modification record is called a relocatable program.

» For an address label, its address is assigned relative to the start of the program

(START 0). The assembler produces a Modification record to store the stal’tm0
location and the length of the address field to be modified. The command for the

.loader must also be a part of the object program. The Modification has the following
format:

Mogliﬁcation record
Col.1 - M

Col. 2-7 Starting location of the address field to be modified, relative to the

beginning.of the program (Hex)

Col. 8-9 Length of the add}ess field to be modified, in half-bytes (Hex)

Qne modification record is created for each address tobe wiodif; ed. The length is stored in

half-bytes (4 bits). The starting location s the location of the byte containing the leftmost bits
of the address field to be modified. If the field contaids an odd number of half-bytes, the
starting location begins in the middle of the first byte.

The Modification Record for
4ISUB RDREC

instruction is

- . MO00000705

000007 is the starting location of the address field to be modified b

y the loader for proper
executlon of the program.

05 is the length of the address field to be modified , in half bytes.

SOUI’CGZ digino'te_s_'ih Go paper]ess! Saye E_arrw »

Design and Implementation Issues

. hitect e machine. 1§ q.
Some of the features in thesprogram depend on the architecture of th e If g

tion formats and hence limjjeg

achine architecture the availability of

number of instruction formats and the addressing modes changes. Therefore the design
usually . requires considering two things: Machine-dependent features and Machine-

independent features.

Source: diginotes.in Go paperless! Save Earth!

ASSEMBLERS

Machine-Independent features:

These are the features which do not depend on the architecture of the machine. These are:

= Literals .

* Symbol-Defining Statements
* Expressions

* Program blocks

= Control sections

Literals:
— A literal is defined with a prefix = followed by a specification of the literal value.
Example: .
001A ENDFIL, LDA =C’EOE4’ 032010
~
LTORG ...
002D =C’EOF’ 454F46

The example above shows a 3-byte operand whose value is a character string EOF.

The object code for the instruction is also mentioned. It shows the relative displacement
i is value.is stored. In the example the value is at location (002D

value of the location where Fhls h P ()
and hence the displacement value is (010). As another example the given statement below

shows a 1-byte literal with the hexadecimal value ‘05°.

1062 WLOOP TD =X05" E32011

It is important to understand the difference between a constant defined as a literal and
a constant defined as an lmmedlate operand In case of hterals the assembler generates the
specified value as a constant at some other memory location In immediate mode the oper'md
value is assembled as part of the instruction itself. Examp]e | | v i
Ty IS SIQUI’#.IB dlglﬂ@t&&‘aln . Go paperless! Save Zarth!

All the literal operands used in a program are gathered together into one or morg
literal pools. This is usually placed at the end of the program. The assembly listing of
program containing literals usually includes a listing of this I1te1al pool, which shows the
assigned addresses and the generated data values. In some cases it is placed at some othey
location in the object program. An asmmbler directive LTORG is used. Whenever {p,
LTORG is encountered. it creates a literal pool that contains all the literal operands Use
since the beginning of the program. The literal pool definition is done after LTORG is

encountered. It is better to place the literals close to the instructions.

A literal table is created for the literals which_are used in the program. The literal

table contains the literal name, oper and value and Iength The lltelal table is usually created

as a hash table on the hteral name.

Implementation of Literals:

During Pass-1:
-

The literal encountered is searched-iri thé literal table. If the literal already exists, 10
action is taken; if it is not present, the literal is added to the LITTAB and for the address
value it waits till it encounters LTORG for literal definition. When Pass 1 encounters &
LTORG statement or the end of the program, the assembler makes a scan of the literal tablé
At this time each literal currently in the table is assigned an address. As addresses

assigned, the location counter is updated to reflect the number of bytes occupied by each
literal.)

During Pass-2:

°

; : jon
The assembler searches the LITTAB or eac, literal encountered in the instructi®
and replaces it. with its equivalent value as if these values are generated by BYTE.or WORD:

|0
Ifa hteral represents an address in the program, the assembler must generate a mOd'rca :
relocation for, if it all it gets affected duye to relocation.

Ay ‘Sﬂoyuy‘r'ce: d| inotes.in © . Go. paperless] gw

LOCCTR | | OBJECT
- ; | CODE
START [0 }j ~ ISTART |0
INLOOP | TD =X'F1” 0600 INLOOP [TD [=XFI
1JEQ — TINLOOP ooz [JEO TINLOOP-
RD =X’ o006 | ' RD =X°F1°
STCH | DATA 0009 [STCH [DATA
LTORG — " 066C [=XFI” Fl
OUTLP | TD =05 TV o00b OUTLY [TD | =X05)
" 1JEQ OUTLP . L0010 i [JEQ | OUTLP |
LDCH “[DATA 0013 | | LDCH | DATA
WD =X05’ ©Lools WD | =X05
DATA | RESB |1 0019 DATA [RESB |1
END END
001A =X"05 05
- 0018 ——
LITTAB
Literal Name Value .- . | Length | Address
XFI° Fi 1 | 000C
X’05° 05] | 001A

Symbol-Defining Statements: EQU

Statement:

Most assemblers provide an assembler directive that allows the programmer t6 define

symbols and specify their values. The directive used for this EQU (Equate). The general

form of the statement is

Symbol

-

EQU

value

This statement defines the given symbol (i.e., entering in the SYMTAB) and assiening to it --

the value specified. The value can be a constant or an expression involving constants and any

other symbol which is already defined. One common usage is to define symbolic names that

can be used to improve readability in place of numeric values.

Source: diginotes.in

Go paperless! Save Sarth!

For example
+L.DT #4096

) S ST | TPV N is does not clearly what exactly th;
This loads the vegister T with immediate value 4096, this does arly what exactly this

value indicates. If a statement is included as:
MAXLEN EQU 4096 and then
+LDT #MAXLEN

Then it clearly indicates that the value of MAXLEN is some maximum length valye.
When the assembler encounters EQU statement, it enters the symbol MAXLEN along with
its value in the symbol table. During LDT the assembler searches the SYMTAB for its entry
and itsequivalent value as the operand in the instruction. The object code generated ‘is the
same for both the options discussed, butis easier to undeéistand. If the maximum length is
changed from 4096 to 1024, it difficult to change if it is mentioned as an immediate value
wherever required in the instructions. We have to scan the whole program and make changes
_ wherever 4096 is used. If we mention this value in the instruction throu‘gh the symbol defined

by EQU, we may not have to search the whole program but change only the value of
"MAXLENGTH in the EQU statement (only once)

ORG Statement:

This directive can be used to indirectly assign values to the symbols. The directive is
usually called ORG (for origin). Its general format is:

~ ORG value

Where value is a constant or an expression involving constants and previously defined

symbols. When this statement is encountered during ssembler

. assembly of a program, the

resets its location counter (LOCCTR) (o the specified value. Since the values of symbols

- used as labels are taken from LOCCTR, (e ORG statement will affect the values of all labels

defined until the next ORG i cncountered. ORG i assignment storage in the

s used to control

object program. Sometimes altering the valyes may result in incorrect assembly.

Source: diginotes.in Go paperless! Save Tarth!

Y

ORG can be usetul in label definition. Suppose we need to define a symbol table with

the following structure:
SYMBOL 6Bytes
VALUE 3 Bytes
FLAG 2 Bytes

The table looks like the one given below.

SYMBOL VALUE FLAGS
STAR
{100 enines)
= -
* B e
© - h @

The symbol field contains a 6-byté user-defined symbol; VALUE is a one-word
representatlon of the value assigned to the symbol; FLAG is a 2- -byte field specifies symbo]

type and other information. The space for the ttable can be reserved by the statement:

STAB RESB 1100

If we want. to refer to the entries of the table using indexed addressing, place the

offset value of the desired entry from the beginning of the table in the index resister To refer
to.the fields SYMBOL, VALUE, and FLAGS individually,

we need to assign the values first
as shown below: '

SYMBOL EQU STAB
VALUE . ‘EQU" % ‘STAB+6‘IZ :
' FLAGS EQU . STAB+9

‘Source: dlgl'notes [raperlesil Sovet Bkl

To retrieve the VALUE field from the table indicated by register X, we can write a

statement:

LDA VALUE, X

The same thing can also be done using ORG statement in the following way:

STAB "RESB -~ 1100
ORG STAB
—_— - SYMBOL - - RESB 6-
VALUE™ RESW 1
FLAG RESB 2
ORG STAB#1100

/ 4

The first statement alloeates 1160 bytes of memory assigned to label STAB. In the
second statement the ORG statement initializes. the location counter to the value of STAB.
Now the LOCCTR points to STAB. The next three lines assign appropriate memory storage
to each of SYMBOL, VALUE and FLAG symbols. The last ORG statement reinitializes the
LOCCTR to a new value after skipping the requited number of memory for the table STAB
(i.e., STAB+1100).

Restrictions-EQU

In the case of EQU all the symbols used on the rlght hand S|de of the statement must have been
defined prewously in the program,

ALPHA RESW ! BETA .EQU ALPHA
BETA EQU ALPHA ALPHA RESW l

Source: diginotes.in Go paperless! Save Tarth!

B

Restriction —-ORG

All symbols used to specify the new LOCCTR value must have been previously defined.

ALPHA RESB 1 ORG ALPHA
ORG ALPHA BYTEI RESB]
BYTE! RESB I BYTE2 RESB I
BYTE2 RESB I BYTE3 RESB I
BYTE3 RESB ! | . ORG
ORG ALPHA RESB 1
Expressions:

Assemblers also allow use of expressions in place of'operands in the instruction. Each
such expression must be evaluated to generate a single operand value or address. Assemblers
generally arithmetic expressions formied according to the normal rules using arithmetic
operators +, - *, /. Division is usually defined to produce an integer result. Individual terms
may be constants, user-defined symbols, or special terms. The only special term used is * (
the current value of location. counter) which indicates the value of the

next unassigned

memory location. Thus the statement
P .

BUFFEND EQU %

Assigns a value to BUFFEND, which is the address of the next byte following the
buffer area. Some values in the object program are relative to the beginning of the program
and some are absolute (independent of the program location, like constants). Hence,
expressions are classified as either absolute expression or relative expressions depending on

the type of value they produce.

Absolute Expressions: The expression that uses only absolute terms is absolute
.) L
expression. Absolute expression may contain relative term provided the relative terms

occur in pairs with opposite signs for cach pair. Example:
MAXLEN EQU BUFEND-BUFFER

In the above mstructlon the dlfference in the expressxon glves a value that does not
kE depend on the locatlon of the program ~ and hence glves an absolute immaterial of the :

- Source: diginotes.in'® " Go paperless! Save Earth!

. " .
B N N B Aay . by
ROANCANON Of IR

program, The expression can have only absolute terms, Example:

MANXLEN BQU 1000

3. N . ol - T L, S U — s I, H
Relative Expressions: All the relative terms exeept one can be paired as described in
“absolute™. The remaimng unpaired relative termomust have a positive sign. Example:

STARB EQU OPTAB + (BUFEND— BUFFER)

-~

Program Blocks:

Program blocks allow the generated machine instructions and data to appear in the object

program in a ditferent order by Separating blocks for storing code, data, stack, and larger
- - ——/
data block.

Assembler Directive USE:

USE |blockname] -,

At the beginning, statements are assumed to be part_of’ the' wnmamed (default) block. If no
USE statements are included, the entire proeramdbelone s to this single block. Each program ‘
block may actually contain several separate segmenty of the source program. Assemblers
carrange these segments to gather together the spicces of each block and assign address.
Separate the program into blocks in a particular order.Large buffer area is moved to the end
of the object program. Program readability is better if data areas are placed in the source

program close to the statements that reference them.

In the example below three blocks are used:
Defanlt: executable instructions
CDATA: all data areas that are less in length

CBLKS: all data areas that consists of larger blocks of memory

o VS_o'lurce‘:- digipoteSjih Go paperless! Save Tarth!

T —

LOCCTR OBJECT
CODE
READ START | 0
0000 ILDX #0
0003 LDT #11-
0006 MOVECH | JSUB RDDATA 4B200B
0009 LDCH | DATA 532019
000C STCH | STR,X
000F TIXR | T
0011 JLT . | MOVECH
USE CDATA
0000 . DATA RESB |1
0001 STR RESB |11
: USE CBLKS
0000 BUFFER | RESB | 4096
1000 BUFEND«| EQU *
1000 . MAXLEN | EQU | BUFEND-
BUFFER
— &ISE
0014 RDDATA | CLEAR | A
0016 INLOOP | TD INDEV E32018
0019 JEQ INLOQR
001C RD INDEV
001F STCH. | DATA -
0022 RSUB
USE CDATA
000C INDEV BYTE | X’FI’
END
BLOCK TABLE
BLOCK: NAME BLOCKNUMBER ADDRESS LENGTH]
DEFAULT 0 0000 00025 N
CDATA 1 0025 (0000+0025) 000D 7
CBLKS 2 _ 003:2 (0025+000D) 1000 j '
Program Length = 1032 (0032+1000)
JSUB RDDATA
Opcode | N |1 | X |B|P | E | DISPLACEMENT
0100 |1 [1]o.[o[1]o [000000001011 |
10 e — 17 - :
T ptRDDALAS (0000+00]4) oot Dls =T'A'_°(oA Ooogﬁtooglagper]e'ss! qfa\/e g‘aer'

Source: diginotes.in

LDCH DATA

Opeode | NJT[X]B]P]E]DISPLACEMENT
0101 LLrfo o u]o]ooooo0nl (ool
00 L
3 3 2 0 | Y

TA of DATA=(0025+0) = 025

Disp = TA - (PC)
=025-00C =019

TD INDEV

Opcode | N [1 [X[B[P[E[DISPLACEMENT

<

1110 1 {1]0 1 {0] 00000001 1000
00 -

E 3 ' 20 \
TA of INDEV =000C + 0025 = 031

Disp= TA «(PC)=031=019'=.018

Advantages of Program Blocks 5
1. We can avoid using Format 4 }
2. Base register is no longer necessary, '
3. The problem of placement of literals is cusiy solved.
4. Program readability is improved. . -

CONTROL SECTIONS and PROG RAM LINKING

i i

A control section is a part of the program that maintaing ity identity nfior assembly; each control
section can be loaded and relocated independently of (he others, Different control seetions are
most often used for subroutines or other logical subdivisions of g program,

The syntax

secname CSECT

~ Separate location counter [cach control seetion

~.Source: diginotes.in Go paperless! Save Earth!

LOCCTR SOURCE STATEMENT oBJECT”
| _CODE_
READ * [START o
“TEXTDEE lgﬂ/_}l__ L
EXTREF | RDDATA |
0000 . Tipx (o
0003 LDT iH |
0006 MOVECH | +JSUB RDDATA 413100000
000A - | LDCH DATA
000D STCH STR,X
000F TIXR T
0011 JLT MOVECH
0014 DATA RESB 1
0015 STR RESB 11
0020
-RBPATA | CSECT
EXTREE | DATA —
0000 CLEAR A B400
0002 INLOOP TD INDEV E3200D
0065 - JEQ INLOOP 332FFA
0008 RD INDEV DB2007
000B +STCH DATA 57100000
000F RSUB 4F0000
0012 INDEV BYTE X°’F1I° F1
0013 - - ’ END

Control sections differ from program blocks in'that they are handled separately by the
assembler. Symbols that are defined in one control section may not be used directly another
control section; they must be identified as external reference for the loader to handle. The

external references are indicated by two assembler directives:
EXTDEF (external Definition):

It names symbols that arc defined in this section but may be used by other control

sections. ¢ 4% e s v
EXTREF (external Reference):

It names symbols that arc used in this CONTROL section and are defined elsewhere.

Source: dig‘ihotne's_‘in' © Go paperless! Save Earth!”

For Program Linking we require Defiiie, Reler and Modification Record,

I Define Record: Lists symbols that are defined in this control section,

Col. 1 D
Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address within this control section (hexadesimal)

Col.14-73 Repeat information in Col, 2-13 for other exteral symbols

2. Refer Record

Col. 1 R »
Col. 2-7 Name of external symbol referred (o in this control section
Col. 8-73 Name of other externakseference symbols

3. Modification Record

Col. 1 M X
Col. 2-7 Starting address of the field to be modified (hexadecimal),
' relative to the beginning of control.scetion,

Col. 8-9 . = Length ofthe field to bc modificd, in half-bytes (hexadecimal)

Col. 10 Modification flag(+ or -)

Col.11-16 Externaksymbol whose valie is to be added 10 or subtracted from
the indicated field

Handling External Reference

’ MOVECH +JSUB RDDATA 43100000
I'he operand RDDATA is an external reference,
" 0 The assembler has no idea where RDDATA is
0 inserts an address of zero

0 can orily use extended formattg provide enough room (that is, relative

addressing for external reference is invalid)

The assembler generates information for each external reference that will allow the

loader to perform the required linking,

; V-‘_r:‘FS.imilaﬁ)’ for the instruction 'ﬂ-STCH DATA the object code is 5 7100000

“Source: diginotes.in Go paperless! Save Tarth!

[

HRDDATA000000000013

RDATA '

T000000 1 3B400E3200D332FFADB200757 100000450000k]
MO0000COS+DATA |

E

Figure: Object Program for control section-RDDATA

ASSEMBLER DESIGN OPTIONS

ONE PASS ASSEMBLERS
- : 8 - /
The main problem in designing the assembler using single pass was to resolve forward

references. We can avoid to some extent the forward reférences by:

Eliminating forward-réference to data items, by defining all the storage reservation
statements at the beginning of the program rather at the end.

Unfortunately, forward reférence to labels on the instructionseannot be avoided.

(forward jumping)

There are two types of one-pass assemblers:

One that produces object code directly:in.memory for immediate execution (Load-

and-go assemblers).
The other type produces the usual kind of object code for later execution.

Load-and-Go Assembler
: Load-and-go assembler generates their object code in memory for immediate

execution.
No object program is written out, no loader is needed.

[t is useful in a system with frequent program development and testing

o The efficiency of the assembly process is an important consideration.

SQU.rC.e..;‘ di_gilniote_s'_fin . _qvo.pape‘rileshsl' Save Earth!

Programs are re-assembled nearly every time they are run; efficiency of the asscmBIy

process is an important consideration.

LOCCTR OBJECT
CODE
READ START | 1000
1000 ZERO WORD | 0 000000
1003 ELEVEN .| WORD |.11 00000B .
1006 DATA RESB |1 ..
1007 | STR |RESB | 11
1012 LDX | ZERO 041000
1015 MOVECH | JSUB | RDDATA 480000
1018 LDCH | DATA 501006
101B STCH | STR,X 549007
101E TIX ELEVEN 2C100C
1021 JLT MOVECH 381015
1024 INDEV." | BYTE | X’FI’ Fl
1025 RDDATA |LDA | ZERO 001000
1028 INLOOP |TD - | INDEV
102B JEQ INLOOP
102E RD INDEV
1031 STCH | DATA -
1034 RSUB
1037 END
OPTAB
MNEMONIC | QPCODE
LDX ‘ 04 -
LDCH 50
STCH 54
TIX 2C -
JLT 38
LDA 00
JSUB - 48 $e
TD E0
JEQ 30
RD D8
RSUB 4C

Source: diginotes.in

Qo paper]ess! Save Eaer

SYMTAR

LABEL | ADDRESS

CAURO oo

TELEVEN | oos

DATA e

NTR oo

AOVECH s
LRDDATA v = M 1016 | NULL |

* indicate undelined symbol
Fraueer The status aller seanning the input stgtement MOVECH JSUB RDDATA
Forward Reference in Oune-Pass Assemblers: [n load-and-Co assemblers when a forward

reterence is encountered

Omits the operand address il the symbol has not yétbeen.defined
Enters this undefined symibol into SYMTAB and indieates that itis unddmcd

Adds the address@f this operand address to a listof f6Fward references associated
with the SYMT AB enfry

When the definition for the symbol is encountercd, scans the reference list and inserts
the address.

At the end of the program, reports the errorfif there are still SYMTAR entries
indicated undefined symbols.

HREAD 001000
T0010000600000000000B |

' TOO1012160410004800000501006549007.2CI0003810]5Fl_()01000
T001016021025

Flgure ObJect Program aﬂer scanning line RDDATA LDA ZERO.

-

Source: diginotes.in o paperless! Sove Tarth!

Multi-Pass Assembler: "

F 7 Qg ¢ 3 are e . ‘ '
or a two pass assembler, forward references in symbol definition are nof alloyred:

ALPHA QU BIETA
BETA EQU DELTA
DELTA RESW |

o Symbol definition must be completed in pass 1.

Prohibiting forward references in symbol definition is not a serious inconvenience,

o Forward references tend to create difficulty for a person reading the program.

Implementation Issues for Modified Two-Pass Assembler:

— Implementation Isuues when forward referencing is encountered in Symbol Defining

statements

For a forward reference in symbol ;ieﬁniti'on, we store inthe SYMTAB:

o The symbol name =

o The defining expression

o The number of undefined symbols in the defining expression

The undefined symbol (marked with a flag *) associated with a list of symbols depend

on this undefined symbol.

When a ;ymbo] is defined, we can recursively evaluate the symbol expressions

depending on the newly defined symbol.

~ Source: diginotes.in . Qo"papé%!‘ess!‘iaw 'Eaan:!

Multi-Pass Assembler Example Program

\ i . PR IRATLL) e SRV S B0 P
ot undefined symbols w the L HALER e At
‘h\h“nl}) CRPICASION — MALT RN L PO T NT - BUF IR
= , REVAT EL) BUFFER-L
Phe defimmng expression daic o
: 4 BUSEER BER 2088 i
S S S 5 o« RUFEND F i
HALFSZ ml MAXLEN2 Io o
: Depending list
/"’/‘f
MAXLEN | »
Undefined symbol

wimlc

b AXLEN (6] B ‘ » et piaxeEn | 0 |

miraz [arfuanericg [o : | MALFSZ isqumy‘ [a]

PREVEY]m | aﬁfrﬁn.a . {o

MAsEN Juof warent o sen || | rnirsz Jo| M*:\!lé"lﬁlwf.ﬂ@@mﬂl: 4 i“m

e

T Tofmin]s] [emm]c [t —fiien | ehsfrivr 5]

2% MAXLEN EQU BUFEND-BUFFER "

'_PREV‘B,T. EQU BUFFER-1

Let us assume that when line 4 s read, the location counter contains the hexadecimal value 1034

.

) :_') SOUI’CG dlgantesm _ Go p;per]ess! Save Ea_rtM

SUFE 4 ¢
BUFEND | * denp] MAXLEN | 2 BUFEND | 200
HALESZ |81] MAXLENI N R PALFRE oo ’
PREVET {1003 o 8 Ny |pRevar (108 ’
MAXLEN | 81! BUFEND-BUFFER | #eb—cd| NALESZ 101 -/ . °f
BUFFER 11034 g S SuFrepAiiess s e
4 BUFFER RESB. 4086 'BUFEND EQU *
—/ :

In Multi-Pass Assembler the portion of the Program that involve forward references in symbol
definitions are saved during Passl. Additional Passes through these stored definitions are made
as the assembly progresses. This process is followed by a normal Pass 2.

Source: diginotes.in Go paperless! Save Earth!

