
MODULE - 1

1.1 WHY SHOULD YOU LEARN TO WRITE PROGRAMS
Programs are generally written to solve the real-time arithmetic/logical problems.
Nowadays, computational devices like personal computer, laptop, and cell phones are
embedded with operating system, memory and processing unit. Using such devices one can
write a program in the language (which a computer can understand) of one’s choice to solve
various types of problems. Humans are tend get bored by doing computational tasks multiple
times. Hence, the computer can act as a personal assistant for people for doing their job!! To
make a computer to solve the required problem, one has to feed the proper program to it.
Hence, one should know how to write a program!!

There are many programming languages that suit several situations. The programmer must
be able to choose the suitable programming language for solving the required problem
based on the factors like computational ability of the device, data structures that are
supported in the language, complexity involved in implementing the algorithm in that
language etc.

1.1.1 Creativity and Motivation
When a person starts programming, he himself will be both the programmer and the end-
user. Because, he will be learning to solve the problems. But, later, he may become a
proficient programmer. A programmer should have logical thinking ability to solve a given
problem. He/she should be creative in analyzing the given problems, finding the possible
solutions, optimizing the resources available and delivering the best possible results to the
end-user. Motivation behind programming may be a job-requirement and such other
prospects. But, the programmer should follow certain ethics in delivering the best possible
output to his/her clients. The responsibilities of a programmer includes developing a
feasible, user-friendly software with very less or no hassles. The user is expected to have
only the abstract knowledge about the working of software, but not the implementation
details. Hence, the programmer should strive hard towards developing most effective
software.

1.1.2 Computer Hardware Architecture
To understand the art programming, it is better to know the basic architecture of computer
hardware. The computer system involves some of the important parts as shown in Figure
1.1. These parts are as explained below:

 Central Processing Unit (CPU): It performs basic arithmetic, logical, control and

I/O operations specified by the program instructions. CPU will perform the given
tasks with a tremendous speed. Hence, the good programmer has to keep the CPU
busy by providing enough tasks to it.

 Main Memory: It is the storage area to which the CPU has a direct access. Usually,
the programs stored in the secondary storage are brought into main memory before
the execution. The processor (CPU) will pick a job from the main memory and
performs the tasks. Usually, information stored in the main memory will be vanished
when the computer is turned-off.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 2)

What

Software

Input and Output Central

Devices Processing Unit

Main

Memory

Next?

Secondary

Memory

Figure 1.1 Computer Hardware Architecture

Secondary Memory: The secondary memory is the permanent storage of

computer. Usually, the size of secondary memory will be considerably larger than that
of main memory. Hard disk, USB drive etc can be considered as secondary memory
storage.

I/O Devices: These are the medium of communication between the user and the

computer. Keyboard, mouse, monitor, printer etc. are the examples of I/O devices.
 Network Connection: Nowadays, most of the computers are connected to network

and hence they can communicate with other computers in a network. Retrieving the
information from other computers via network will be slower compared to accessing
the secondary memory. Moreover, network is not reliable always due to problem in
connection.

The programmer has to use above resources sensibly to solve the problem. Usually, a
programmer will be communicating with CPU by telling it ‘what to do next’. The usage of
main memory, secondary memory, I/O devices also can be controlled by the programmer.

To communicate with the CPU for solving a specific problem, one has to write a set of
instructions. Such a set of instructions is called as a program.

1.1.3 Understanding Programming
A programmer must have skills to look at the data/information available about a problem,
analyze it and then to build a program to solve the problem. The skills to be possessed by a
good programmer includes -

 Thorough knowledge of programming language: One needs to know the
vocabulary and grammar (technically known as syntax) of the programming
language. This will help in constructing proper instructions in the program.

 Skill of implementing an idea: A programmer should be like a ‘story teller’. That is,
he must be capable of conveying something effectively. He/she must be able to

solve the problem by designing suitable algorithm and implementing it. And, the
program must provide appropriate output as expected.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 3)

Thus, the art of programming requires the knowledge about the problem’s requirement and
the strength/weakness of the programming language chosen for the implementation. It is
always advisable to choose appropriate programming language that can cater the
complexity of the problem to be solved.

1.1.4 Words and Sentences
Every programming language has its own constructs to form syntax of the language. Basic
constructs of a programming language includes set of characters and keywords that it
supports. The keywords have special meaning in any language and they are intended for
doing specific task. Python has a finite set of keywords as given in Table 1.1.

Table 1.1 Keywords in Python

and as assert break class continue

def del elif else except False

finally for from global if import

in is lambda None nonlocal not

or pass raise return True try

while with Yield

A programmer may use variables to store the values in a program. Unlike many other
programming languages, a variable in Python need not be declared before its use.

1.1.5 Python Editors and Installing Python
Before getting into details of the programming language Python, it is better to learn how to
install the software. Python is freely downloadable from the internet. There are multiple
IDEs (Integrated Development Environment) available for working with Python. Some of
them are PyCharm, LiClipse, IDLE etc. When you install Python, the IDLE editor will be
available automatically. Apart from all these editors, Python program can be run on
command prompt also. One has to install suitable IDE depending on their need and the
Operating System they are using. Because, there are separate set of editors (IDE)
available for different OS like Window, UNIX, Ubuntu, Soloaris, Mac, etc. The basic Python
can be downloaded from the link:

https://www.python.org/downloads/

Python has rich set of libraries for various purposes like large-scale data processing,
predictive analytics, scientific computing etc. Based on one’s need, the required packages
can be downloaded. But, there is a free open source distribution Anaconda, which
simplifies package management and deployment. Hence, it is suggested for the readers to
install Anaconda from the below given link, rather than just installing a simple Python.

https://anaconda.org/anaconda/python

Successful installation of anaconda provides you Python in a command prompt, the default
editor IDLE and also a browser-based interactive computing environment known as jupyter
notebook.

http://www.chetanahegde.in/
https://www.python.org/downloads/
https://anaconda.org/anaconda/python
mailto:chetanahegde@ieee.org

4)

The jupyter notebook allows the programmer to create notebook documents including live
code, interactive widgets, plots, equations, images etc. To code in Python using jupyter
notebook, search for jupyter notebook in windows search (at Start menu). Now, a browser
window will be opened similar to the one shown in Figure 1.2.

Figure 1.2 Homepage of Jupyter Notebook

Figure 1.3 IDE of Jupyter Notebook

mailto:chetanahegde@ieee.org

. 5)

You can choose the working directory of your choice for storing your work. To open a
notebook for Python programming, click on New button at the right-side of the screen. Now
select Python 3 from the drop-down list. A new notebook (or workbook will be created as
shown in Figure 1.3. Type a command of your choice and press Ctrl+Enter to run that
command. One can give headings/subheadings etc for the commands being typed, store the
entire workbook for future reference etc. Readers are advised to try and experience various
options/menu’s available.

1.1.6 Conversing with Python
Once Python is installed, one can go ahead with working with Python. Use the IDE of your
choice for doing programs in Python. After installing Python (or Anaconda distribution), if
you just type ‘python’ in the command prompt, you will get the message as shown in Figure
1.4. The prompt >>> (usually called as chevron) indicates the system is ready to take
Python instructions. If you would like to use the default IDE of Python, that is, the IDLE, then
you can just run IDLE and you will get the editor as shown in Figure 1.5.

Figure 1.4 Python initialization in command prompt

After understanding the basics of few editors of Python, let us start our communication with
Python, by saying Hello World. The Python uses print() function for displaying the contents.
Consider the following code -

>>> print(“Hello World”) #type this and press enter key

Hello World #output displayed

>>> #prompt returns again

Here, after typing the first line of code and pressing the enter key, we could able to get the
output of that line immediately. Then the prompt (>>>) is returned on the screen. This
indicates, Python is ready to take next instruction as input for processing.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 6)

Figure 1.5 Python IDLE editor

Once we are done with the program, we can close or terminate Python by giving quit()
command as shown -

>>> quit() #Python terminates

1.1.7 Terminology: Interpreter and Compiler

All digital computers can understand only the machine language written in terms of zeros
and ones. But, for the programmer, it is difficult to code in machine language. Hence, we
generally use high level programming languages like Java, C++, PHP, Perl, JavaScript etc.
Python is also one of the high level programming languages. The programs written in high
level languages are then translated to machine level instruction so as to be executed by
CPU. How this translation behaves depending on the type of translators viz. compilers and
interpreters.

A compiler translates the source code of high-level programming language into machine level
language. For this purpose, the source code must be a complete program stored in a file
(with extension, say, .java, .c, .cpp etc). The compiler generates executable files (usually
with extensions .exe, .dll etc) that are in machine language. Later, these executable files
are executed to give the output of the program.

On the other hand, interpreter performs the instructions directly, without requiring them to
be pre-compiled. Interpreter parses (syntactic analysis) the source code ant interprets it
immediately. Hence, every line of code can generate the output immediately, and the
source code as a complete set, need not be stored in a file. That is why, in the previous
section, the usage of single line print(“Hello World”) could able to generate the
output immediately.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 7)

Consider an example of adding two numbers -
>>> x=10

>>> y=20

>>> z= x+y

>>> print(z)

30

Here, x, y and z are variables storing respective values. As each line of code above is
processed immediately after the line, the variables are storing the given values. Observe that,
though each line is treated independently, the knowledge (or information) gained in the
previous line will be retained by Python and hence, the further lines can make use of
previously used variables. Thus, each line that we write at the Python prompt are logically
related, though they look independent.

NOTE that, Python do not require variable declaration (unlike in C, C++, Java etc) before its
use. One can use any valid variable name for storing the values. Depending on the type (like
number, string etc) of the value being assigned, the type and behavior of the variable name is
judged by Python.

1.1.8 Writing a Program
As Python is interpreted language, one can keep typing every line of code one after the
other (and immediately getting the output of each line) as shown in previous section. But, in
real-time scenario, typing a big program is not a good idea. It is not easy to logically debug
such lines. Hence, Python programs can be stored in a file with extension .py and then can
be run. Programs written within a file are obviously reusable and can be run whenever we
want. Also, they are transferrable from one machine to other machine via pen-drive, CD
etc.

1.1.9 What is a Program?
A program is a sequence of instructions intended to do some task. For example, if we need
to count the number of occurrences of each word in a text document, we can write a
program to do so. Writing a program will make the task easier compared to manually
counting the words in a document. Moreover, most of the times, the program is a generic
solution. Hence, the same program may be used to count the frequency of words in
another file. The person who does not know anything about the programming also can run
this program to count the words.

Programming languages like Python will act as an intermediary between the computer and the
programmer. The end-user can request the programmer to write a program to solve one’s
problem.

1.1.10 The Building Blocks of Programs
There are certain low-level conceptual structures to construct a program in any
programming language. They are called as building-blocks of a program and listed below -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 8)

Input: Every program may take some inputs from outside. The input may be through

keyboard, mouse, disk-file etc. or even through some sensors like microphone, GPS
etc.

Output: Purpose of a program itself is to find the solution to a problem. Hence,
every program must generate at least one output. Output may be displayed on a
monitor or can be stored in a file. Output of a program may even be a music/voice
message.

Sequential Execution: In general, the instructions in the program are sequentially
executed from the top.
Conditional Execution: In some situations, a set of instructions have to be

executed based on the truth-value of a variable or expression. Then conditional
constructs (like if) have to be used. If the condition is true, one set of instructions will
be executed and if the condition is false, the true-block is skipped.
Repeated Execution: Some of the problems require a set of instructions to be

repeated multiple times. Such statements can be written with the help of looping
structures like for, while etc.
Reuse: When we write the programs for general-purpose utility tasks, it is better to

write them with a separate name, so that they can be used multiple times
whenever/wherever required. This is possible with the help of functions.

The art of programming involves thorough understanding of the above constructs and using
them legibly.

1.1.11 What Could Possibly Go Wrong?
It is obvious that one can do mistakes while writing a program. The possible mistakes are
categorized as below -

Syntax Errors: The statements which are not following the grammar (or syntax) of
the programming language are tend to result in syntax errors. Python is a case-
sensitive language. Hence, there is a chance that a beginner may do some
syntactical mistakes while writing a program. The lines involving such mistakes are
encountered by the Python when you run the program and the errors are thrown by
specifying possible reasons for the error. The programmer has to correct them and
then proceed further.
Logical Errors: Logical error occurs due to poor understanding of the problem.

Syntactically, the program will be correct. But, it may not give the expected output. For
example, you are intended to find a%b, but, by mistake you have typed a/b. Then it
is a logical error.

Semantic Errors: A semantic error may happen due to wrong use of variables,
wrong operations or in wrong order. For example, trying to modify un-initialized
variable etc.

Note that, some of textbooks/authors refer logical and semantic error both as same,
as the distinction between these two is very small.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 9)

NOTE: There is one more type of error - runtime error, usually called as exceptions. It
may occur due to wrong input (like trying to divide a number by zero), problem in
database connectivity etc. When a run-time error occurs, the program throws some
error, which may not be understood by the normal user. And he/she may not
understand how to overcome such errors. Hence, suspicious lines of code have to
be treated by the programmer himself by the procedure known as exception
handling. Python provides mechanism for handling various possible exceptions like
ArithmeticError, FloatingpointError, EOFError, MemoryError etc. A brief idea about
exception handling is there in Section 1.3.7 later in this Module. For more details,
interested readers can go through the links -

https://docs.python.org/3/tutorial/errors.html and
https://docs.python.org/2/library/exceptions.html

1.2 VARIABLES, EXPRESSIONS AND STATEMENTS
After understanding some important concepts about programming and programming
languages, we will now move on to learn Python as a programming language with its
syntax and constructs.

1.2.1 Values and Types

A value is one of the basic things in a program. It may be like 2, 10.5, “Hello” etc. Each
value in Python has a type. Type of 2 is integer; type of 10.5 is floating point number;
“Hello” is string etc. The type of a value can be checked using type function as shown
below -

>>> type("hello")

<class 'str'> #output

>>> type(3)

<class 'int'>

>>> type(10.5)

<class 'float'>

>>> type("15")

<class 'str'>

In the above four examples, one can make out various types str, int and float. Observe the
4th example - it clearly indicates that whatever enclosed within a double quote is a string.

1.2.2 Variables
A variable is a named-literal which helps to store a value in the program. Variables may
take value that can be modified wherever required in the program. Note that, in Python, a
variable need not be declared with a specific type before its usage. Whenever you want a
variable, just use it. The type of it will be decided by the value assigned to it. A value can be
assigned to a variable using assignment operator (=). Consider the example given below-

>>> x=10

>>> print(x)

10 #output

http://www.chetanahegde.in/
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/2/library/exceptions.html
mailto:chetanahegde@ieee.org

. 10)

>>> type(x)

<class 'int'>

>>> y="hi"

>>> print(y)

hi

>>> type(y)

<class 'str'>

#type of x is integer

#output

#type of y is string

It is observed from above examples that the value assigned to variable determines the type of
that variable.

1.2.3 Variable Names and Keywords
It is a good programming practice to name the variable such that its name indicates its
purpose in the program. There are certain rules to be followed while naming a variable -

 Variable name must not be a keyword

 They can contain alphabets (lowercase and uppercase) and numbers, but should
not start with a number.

 It may contain a special character underscore(_), which is usually used to combine

variables with two words like my_salary, student_name etc. No other special
characters like @, $ etc. are allowed.

 As Python is case-sensitive, variable name sum is different from SUM, Sum etc.

Examples:
>>> 3a=5

SyntaxError: invalid syntax

>>> a$=10

SyntaxError: invalid syntax

>>> if=15

SyntaxError: invalid syntax

1.2.4 Statements

#starting with a number

#contains $

#if is a keyword

A statement is a small unit of code that can be executed by the Python interpreter. It
indicates some action to be carried out. In fact, a program is a sequence of such
statements. Following are the examples of statements -

>>> print("hello")

hello

>>> x=5

>>> print(x)

1.2.5 Operators and Operands

#printing statement

#assignment statement

#printing statement

Special symbols used to indicate specific tasks are called as operators. An operator may
work on single operand (unary operator) or two operands (binary operator). There are
several types of operators like arithmetic operators, relational operators, logical operators
etc. in Python.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 11)

Arithmetic Operators are used to perform basic operations as listed in Table 1.2.

Table 1.2 Arithmetic Operators

Operator Meaning Example
+ Addition Sum= a+b
- Subtraction Diff= a-b
* Multiplication Pro= a*b
/ Division Q = a/b

X = 5/3
(X will get a value 1.666666667)

// Floor Division - returns only
integral part after division

F = a//b
X= 5//3 (X will get a value 1)

% Modulus - remainder after

division

R = a %b

(Remainder after dividing a by b)
** Exponent E = x** y

(means x to the powder of y)

Relational or Comparison Operators are used to check the relationship (like less than,
greater than etc) between two operands. These operators return a Boolean value - either
True or False.

Assignment Operators: Apart from simple assignment operator = which is used for
assigning values to variables, Python provides compound assignment operators. For
example,

x= x+y
can be written as -

x+=y

Now, += is compound assignment operator. Similarly, one can use most of the arithmetic
and bitwise operators (only binary operators, but not unary) like *, /, %, //, &, ^ etc. as
compound assignment operators. For example,

>>> x=3

>>> y=5

>>> x+=y #x=x+y

>>> print(x)

8

>>> y//=2 #y=y//2

>>> print(y)

2 #only integer part will be printed

NOTE:
1. Python has a special feature - one can assign values of different types to multiple

variables in a single statement. For example,
>>> x, y, st=3, 4.2, "Hello"

>>> print("x= ", x, " y= ",y, " st= ", st)

x=3 y=4.2 st=Hello

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 12)

2. Python supports bitwise operators like &(AND), | (OR), ~(NOT), ^(XOR), >>(right
shift) and <<(left shift). These operators will operate on every bit of the operands.
Working procedure of these operators is same as that in other languages like C and
C++.

3. There are some special operators in Python viz. Identity operator (is and is not)

and membership operator (in and not in). These will be discussed in further
Modules.

1.2.6 Expressions
A combination of values, variables and operators is known as expression. Following are few
examples of expression -

x=5

y=x+10

z= x-y*3

The Python interpreter evaluates simple expressions and gives results even without print().
For example,

>>> 5

5 #displayed as it is

>>> 1+2

3 #displayed the sum

But, such expressions do not have any impact when written into Python script file.

1.2.7 Order of Operations
When an expression contains more than one operator, the evaluation of operators depends on
the precedence of operators. The Python operators follow the precedence rule (which can be
remembered as PEMDAS) as given below -

Parenthesis have the highest precedence in any expression. The operations within
parenthesis will be evaluated first. For example, in the expression (a+b)*c, the
addition has to be done first and then the sum is multiplied with c.

 Exponentiation has the 2nd precedence. But, it is right associative. That is, if there
are two exponentiation operations continuously, it will be evaluated from right to left
(unlike most of other operators which are evaluated from left to right). For example,

>>> print(2**3) #It is 2
3

8
2

3
>>> print(2**3**2) #It is 2 , so to be evaluated from right

512

Multiplication and Division are the next priority. Out of these two operations,
whichever comes first in the expression is evaluated.

>>> print(5*2/4) #multiplication and then division

2.5

>>> print(5/4*2) #division and then multiplication

2.5

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 13)

 Addition and Subtraction are the least priority. Out of these two operations,

whichever appears first in the expression is evaluated.

1.2.8 String Operations
String concatenation can be done using + operator as shown below -

>>> x="32"

>>> y="45"

>>> print(x+y)

3245

Observe the output: here, the value of y (a string “45”, but not a number 45) is placed just in
front of value of x(a string “32”). Hence the result would be “3245” and its type would be
string.

NOTE: One can use single quotes to enclose a string value, instead of double quotes.

1.2.9 Asking the User for Input
Python uses the built-in function input() to read the data from the keyboard. When this
function is invoked, the user-input is expected. The input is read till the user presses enterkey.
For example:

>>> str1=input()

Hello how are you? #user input

>>> print(“String is “,str1)

String is Hello how are you? #printing str1

When input() function is used, the curser will be blinking to receive the data. For a better
understanding, it is better to have a prompt message for the user informing what needs to
be entered as input. The input() function itself can be used to do so, as shown below -

>>> str1=input("Enter a string: ")

Enter a string: Hello

>>> print("You have entered: ",str1)

You have entered: Hello

One can use new-line character \n in the function input() to make the cursor to appear in the
next line of prompt message -

>>> str1=input("Enter a string:\n")

Enter a string:

Hello #cursor is pushed here

The key-board input received using input() function is always treated as a string type. If you
need an integer, you need to convert it using the function int(). Observe the following
example -

>>> x=input("Enter x:")

Enter x:10 #x takes the value “10”, but not 10

>>> type(x) #So, type of x would be str

<class 'str'>

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 14)

>>> x=int(input("Enter x:")) #use int()

Enter x:10

>>> type(x) #Now, type of x is int

<class 'int'>

A function float() is used to convert a valid value enclosed within quotes into float number as
shown below -

>>> f=input("Enter a float value:")

Enter a float value: 3.5

>>> type(f)

<class 'str'> #f is actually a string “3.5”

>>> f=float(f) #converting “3.5” into float value 3.5

>>> type(f)

<class 'float'>

A function chr() is used to convert an integer input into equivalent ASCII character.
>>> a=int(input("Enter an integer:"))

Enter an integer:65

>>> ch=chr(a)

>>> print("Character Equivalent of ", a, "is ",ch)

Character Equivalent of 65 is A

There are several such other utility functions in Python, which will be discussed later.

1.2.10 Comments
It is a good programming practice to add comments to the program wherever required. This will
help someone to understand the logic of the program. Comment may be in a single line or
spread into multiple lines. A single-line comment in Python starts with the symbol #.
Multiline comments are enclosed within a pair of 3-single quotes.

Ex1. #This is a single-line comment

Ex2. ''' This

is a

multiline

comment '''

Python (and all programming languages) ignores the text written as comment lines. They are
only for the programmer’s (or any reader’s) reference.

1.2.11 Choosing Mnemonic Variable Names
Choosing an appropriate name for variables in the program is always at stake. Consider the
following examples -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 15)

Ex1.
a=10000

b=0.3*a

c=a+b

print(c) #output is 13000

Ex2.
basic=10000

da=0.3*basic

gross_sal=basic+da

print("Gross Sal = ",gross_sal) #output is 13000

One can observe that both of these two examples are performing same task. But,
compared to Ex1, the variables in Ex2 are indicating what is being calculated. That is,
variable names in Ex2 are indicating the purpose for which they are being used in the
program. Such variable names are known as mnemonic variable names. The word
mnemonic means memory aid. The mnemonic variables are created to help the
programmer to remember the purpose for which they have been created.

Python can understand the set of reserved words (or keywords), and hence it flashes an
error when such words are used as variable names by the programmer. Moreover, most of
the Python editors have a mechanism to show keywords in a different color. Hence,
programmer can easily make out the keyword immediately when he/she types that word.

1.2.12 Debugging
Some of the common errors a beginner programmer may make are syntax errors. Though
Python flashes the error with a message, sometimes it may become hard to understand the
cause of errors. Some of the examples are given here -

Ex1. >>> avg sal=10000

SyntaxError: invalid syntax

Here, there is a space between the terms avg and sal, which is not allowed.

Ex2. >>> m=09
SyntaxError: invalid token

Python does not allow preceding zeros for numeric values.

Ex3. >>> basic=2000

>>> da=0.3*Basic

NameError: name 'Basic' is not defined

As Python is case sensitive, basic is different from Basic.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 16)

As shown in above examples, the syntax errors will be alerted by Python. But, programmer
is responsible for logical errors or semantic errors. Because, if the program does not yield
into expected output, it is due to mistake done by the programmer, about which Python is
unaware of.

1.3 CONDITIONAL EXECUTION
In general, the statements in a program will be executed sequentially. But, sometimes we
need a set of statements to be executed based on some conditions. Such situations are
discussed in this section.

1.3.1 Boolean Expressions
A Boolean Expression is an expression which results in True or False. The True and False are

special values that belong to class bool. Check the following -
>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

Boolean expression may be as below -
>>> 10==12

False

>>> x=10

>>> y=10

>>> x==y

True

Various comparison operations are shown in Table 1.3.

Table 1.3 Relational (Comparison) Operators

Operator Meaning Example
> Greater than a>b
< Less than a= Greater than or equal to a>=b
<= Less than or equal to a<=b
== Comparison a==b
!= Not equal to a !=b
is Is same as a is b
is not Is not same as a is not b

Few Examples:
>>> a=10

>>> b=20

>>> x= a>b

>>> print(x)

False

>>> print(a==b)

False

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 17)

>>> print("a<b is ", a<b)

a<b is True

>>> print("a!=b is", a!=b)

a!=b is True

>>> 10 is 20

False

>>> 10 is 10

True

NOTE: For a first look, the operators == and is look same. Similarly, the operators != and is

not look the same. But, the operators == and != does the equality test. That is, they will

compare the values stored in the variables. Whereas, the operators is and is not does the

identity test. That is, they will compare whether two objects are same. Usually, two objects

are same when their memory locations are same. This concept will be more clear when we

take up classes and objects in Python.

1.3.2 Logical Operators
There are 3 logical operators in Python as shown in Table 1.4. (NOTE that symbols like &&, ||
are not used in Python for representing logical operators)

Table 1.4 Logical Operators

Operator Meaning Example
and Returns true, if both operands are true a and b

or Returns true, if any one of two operands is true a or b

not Return true, if the operand is false (it is a unary operator) not a

NOTE:

1. Logical operators treat the operands as Boolean (True or False).
2. Python treats any non-zero number as True and zero as False.
3. While using and operator, if the first operand is False, then the second operand is

not evaluated by Python. Because False and’ed with anything is False.
4. In case of or operator, if the first operand is True, the second operand is not

evaluated. Because True or’ed with anything is True.

Example 1 (with Boolean Operands):
>>> x= True

>>> y= False

>>> print('x and y is', x and y)

x and y is False

>>> print('x or y is', x or y)

x or y is True

>>> print('Complement of x is ', not x)

Complement of x is False

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 18)

Example 2 (With numeric Operands):
>>> a=-3

>>> b=10

>>> print(a and b) #and operation

10 #a is true, hence b is evaluated and printed

>>> print(a or b)

-3

>>> print(0 and 5)

0

1.3.3 Conditional Execution

#or operation

#a is true, hence b is not evaluated #0

is false, so printed

The basic level of conditional execution can be achieved in Python by using if statement. The
syntax and flowcharts are as below -

Entry

if condition:

Statement block

Observe the colon symbol after condition. When the
condition is true, the Statement block will be
executed. Otherwise, it is skipped. A set (block) of
statements to be executed under if is decided by the
indentation (tab space) given.

Consider an example -

>>> x=10

>>> if x<40:

False

condition?

True

Statement Block

Exit

print("Fail") #observe indentation after if

Fail #output

Usually, the if conditions have a statement block. In any case, the programmer feels to do
nothing when the condition is true, the statement block can be skipped by just typing pass
statement as shown below -

>>> if x<0:

pass #do nothing when x is negative

1.3.4 Alternative Execution
A second form of if statement is alternative execution. Here, when the condition is true, one set
of statements will be executed and when the condition is false, another set of
statements will be executed. The syntax and flowchart are as given below -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 19)

if condition:

Statement block -1

else:

Statement block -2

As the condition will be either true or false,
only one among Statement block-1 and
Statement block-2 will be get executed. These
two alternatives are known as branches.

Example:
x=int(input("Enter x:"))

if x%2==0:

print("x is even")

else:

print("x is odd")

Sample output:

Enter x: 13
x is odd

1.3.5 Chained Conditionals

True False

Condition?

Statement Statement
block-1 block -2

Some of the programs require more than one possibility to be checked for executing a set of
statements. That means, we may have more than one branch. This is solved with the help of
chained conditionals. The syntax and flowchart is given below -

if condition1:

Statement Block-1
F

elif condition2:
Statement Block-2
|

|

|

|

elif condition_n:

Statement Block-n

else:

Statement Block-(n+1)

Cond1 Cond2

T T

Statement Statement

Block-1 Block-2

F
Condn

T

Statement

Block-n

F

Statement

Block-(n+1)

The conditions are checked one by one sequentially. If any condition is satisfied, the
respective statement block will be executed and further conditions are not checked. Note
that, the last else block is not necessary always.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 20)

Example: marks=float(input("Enter marks:"))

if marks >= 80:

print("First Class with Distinction")

elif marks >= 60 and marks < 80:

print("First Class")

elif marks >= 50 and marks < 60:

print("Second Class")

elif marks >= 35 and marks < 50:

print("Third Class")
else:

print("Fail")

Sample Output:

Enter marks: 78
First Class

1.3.6 Nested Conditionals
The conditional statements can be nested. That is, one set of conditional statements can be
nested inside the other. It can be done in multiple ways depending on programmer’s
requirements. Examples are given below -

Ex1. marks=float(input("Enter marks:"))
if marks>=60:

if marks<70:

print("First Class")

else:

print("Distinction")

Sample Output:
Enter marks:68
First Class

Here, the outer condition marks>=60 is checked first. If it is true, then there are two
branches for the inner conditional. If the outer condition is false, the above code does
nothing.

Ex2. gender=input("Enter gender:")

age=int(input("Enter age:"))

if gender == "M" :

if age >= 21:

print("Boy, Eligible for Marriage")

else:

print("Boy, Not Eligible for Marriage")

elif gender == "F":

if age >= 18:

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 21)

print("Girl, Eligible for Marriage")

else:

print("Girl, Not Eligible for Marriage")

Sample Output:
Enter gender: F
Enter age: 17
Girl, Not Eligible for Marriage

NOTE: Nested conditionals make the code difficult to read, even though there are proper
indentations. Hence, it is advised to use logical operators like and to simplify the nested
conditionals. For example, the outer and inner conditions in Ex1 above can be joined as -

if marks>=60 and marks<70:

#do something

1.3.7 Catching Exceptions using try and except
As discussed in Section 1.1.11, there is a chance of runtime error while doing some
program. One of the possible reasons is wrong input. For example, consider the following
code segment -

a=int(input("Enter a:"))

b=int(input("Enter b:"))

c=a/b

print(c)

When you run the above code, one of the possible situations would be -
Enter a:12

Enter b:0

Traceback (most recent call last):

File "C:\Users\Chetana\Dropbox\PythonNotes\p1.py", line 154, in

<module>

c=a/b

ZeroDivisionError: division by zero

For the end-user, such type of system-generated error messages is difficult to handle. So
the code which is prone to runtime error must be executed conditionally within try block.
The try block contains the statements involving suspicious code and the except block
contains the possible remedy (or instructions to user informing what went wrong and what
could be the way to get out of it). If something goes wrong with the statements inside try
block, the except block will be executed. Otherwise, the except-block will be skipped.
Consider the example -

a=int(input("Enter a:"))

b=int(input("Enter b:"))

try:

c=a/b

print(c)

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 22)

except:

print("Division by zero is not possible")

Output:
Enter a:12

Enter b:0

Division by zero is not possible

Handling an exception using try is called as catching an exception. In general, catching an
exception gives the programmer to fix the probable problem, or to try again or at least to end
the program gracefully.

1.3.8 Short-Circuit Evaluation of Logical Expressions
When a logical expression (expression involving operands and, or, not) is being evaluated, it
will be processed from left to right. For example, consider the statements -

x= 10

y=20

if x<10 and x+y>25:

#do something

Here, the expression x<10 and x+y>25 involves the logical operator and. Now, x<10 is

evaluated first, which results to be False. As there is an and operator, irrespective of the

result of x+y>25, the whole expression will be False. In such situations, Python ignores the

remaining part of the expression. This is known as short-circuiting the evaluation. When

the first part of logical expression results in True, then the second part has to be evaluated

to know the overall result.

The short-circuiting not only saves the computational time, but it also leads to a technique
known as guardian pattern. Consider following sequence of statements -

>>> x=5

>>> y=0

>>> x>=10 and (x/y)>2

False

>>> x>=2 and (x/y)>2

Traceback (most recent call last):

File "<pyshell#3>", line 1, in <module>

 x>=2 and (x/y)>2

ZeroDivisionError: division by zero

Here, when we executed the statement x>=10 and (x/y)>2, the first half of logical

expression itself was False and hence by applying short-circuit rule, the remaining part was not

executed at all. Whereas, in the statement x>=2 and (x/y)>2, the first half is True and the

second half is resulted in runtime-error. Thus, in the expression x>=10 and (x/y)>2,

short-circuit rule acted as a guardian by preventing an error.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 23)

One can construct the logical expression to strategically place a guard evaluation just
before the evaluation that might cause an error as follows:

>>> x=5

>>> y=0

>>> x>=2 and y!=0 and(x/y)>2

False

Here, x>=2 results in True, but y!=0 evaluates to be False. Hence, the expression

(x/y)>2 is never reached and possible error is being prevented from happening.

1.3.9 Debugging
One can observe from previous few examples that when a runtime error occurs, it displays
a term Traceback followed by few indications about errors. A traceback is a stack trace
from the point of error-occurrence down to the call-sequence till the point of call. This is
helpful when we start using functions and when there is a sequence of multiple function
calls from one to other. Then, traceback will help the programmer to identify the exact
position where the error occurred. Most useful part of error message in traceback are -

 What kind of error it is

 Where it occurred

Compared to runtime errors, syntax errors are easy to find, most of the times. But,
whitespace errors in syntax are quite tricky because spaces and tabs are invisible. For
example -

>>> x=10

>>> y=15

SyntaxError: unexpected indent

The error here is because of additional space given before y. As Python has a different
meaning (separate block of code) for indentation, one cannot give extra spaces as shown
above.

In general, error messages indicate where the problem has occurred. But, the actual error
may be before that point, or even in previous line of code.

1.4 FUNCTIONS
Functions are the building blocks of any programming language. A sequence of instructions
intended to perform a specific independent task is known as a function. In this section, we
will discuss various types of built-in functions, user-defined functions, applications/uses of
functions etc.

1.4.1 Function Calls
A function is a named sequence of instructions for performing a task. When we define a
function we will give a valid name to it, and then specify the instructions for performing

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 24)

required task. Later, whenever we want to do that task, a function is called by its name.
Consider an example -

>>> type(15)

<class 'int'>

Here type is a function name, 15 is the argument to a function and <class 'int'> is the
result of the function. Usually, a function takes zero or more arguments and returns the
result.

1.4.2 Built-in Functions
Python provides a rich set of built-in functions for doing various tasks. The
programmer/user need not know the internal working of these functions; instead, they need
to know only the purpose of such functions. Some of the built in functions are given below -

max(): This function is used to find maximum value among the arguments. It can be
used for numeric values or even to strings.

o max(10, 20, 14, 12) #maximum of 4 integers

20

o max("hello world")

'w' #character having maximum ASCII code

o max(3.5, -2.1, 4.8, 15.3, 0.2)

15.3 #maximum of 5 floating point values

min(): As the name suggests, it is used to find minimum of arguments.
o min(10, 20, 14, 12) #minimum of 4 integers

10

o min("hello world")

' ' #space has least ASCII code here

o min(3.5, -2.1, 4.8, 15.3, 0.2)

-2.1 #minimum of 5 floating point values

len(): This function takes a single argument and finds its length. The argument can
be a string, list, tuple etc.

o len(“hello how are you?”)
18

There are many other built-in functions available in Python. They are discussed in further
Modules, wherever they are relevant.

1.4.3 Type Conversion Functions

As we have seen earlier (while discussing input() function), the type of the variable/value
can be converted using functions int(), float(), str(). Consider following few examples -

 int('20') #integer enclosed within single quotes

20 #converted to integer type

 int("20") #integer enclosed within double quotes

20

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 25)

int("hello") #actual string cannot be converted to int

Traceback (most recent call last):

File "<pyshell#23>", line 1, in <module>

 int("hello")

ValueError: invalid literal for int() with base 10: 'hello'

int(3.8) #float value being converted to integer

3 #round-off will not happen, fraction is ignored

int(-5.6)

-5

float('3.5') #float enclosed within single quotes

3.5 #converted to float type

float(42) #integer is converted to float

42.0

str(4.5) #float converted to string

'4.5'

str(21) #integer converted to string

'21'

1.4.4 Random Numbers
Most of the programs that we write are deterministic. That is, the input (or range of inputs)
to the program is pre-defined and the output of the program is one of the expected values.
But, for some of the real-time applications in science and technology, we need randomly
generated output. This will help in simulating certain scenario. Radom number generation
has important applications in games, noise detection in electronic communication,
statistical sampling theory, cryptography, political and business prediction etc. These
applications require the program to be nondeterministic. There are several algorithms to
generate random numbers. But, as making a program completely nondeterministic is
difficult and may lead to several other consequences, we generate pseudo-random
numbers. That is, the type (integer, float etc) and range (between 0 and 1, between 1 and
100 etc) of the random numbers are decided by the programmer, but the actual numbers
are unknown. Moreover, the algorithm to generate the random number is also known to the
programmer. Thus, the random numbers are generated using deterministic computation
and hence, they are known as pseudo-random numbers!!

Python has a module random for the generation of random numbers. One has to import this
module in the program. The function used is also random(). By default, this function
generates a random number between 0 and 1 (excluding 1). For example -

import random

print(random.random())

0.7430852580883088

print(random.random())

0.5287778188896328

#module random is imported

#random() function is invoked

#a random number generated

#one more random number

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 26)

Importing a module creates an object. Using this object, one can access various functions
and/or variables defined in that module. Functions are invoked using a dot operator.

There are several other functions in the module random apart from the function random().
(Do not get confused with module name and function name. Observe the parentheses
while referring a function name). Few are discussed hereunder:

randint(): It takes two arguments low and high and returns a random integer
between these two arguments (both low and high are inclusive). For example,

>>>random.randint(2,20)

14 #integer between 2 and 20 generated

>>> random.randint(2,20)

10

choice(): This function takes a sequence (a list type in Python) of numbers as an
argument and returns one of these numbers as a random number. For example,

>>> t=[1,2, -3, 45, 12, 7, 31, 22] #create a list t

>>> random.choice(t) #t is argument to choice()

12 #one of the elements in t

>>> random.choice(t)

1 #one of the elements in t

Various other functions available in random module can be used to generate random
numbers following several probability distributions like Gaussian, Triangular, Uniform,
Exponential, Weibull, Normal etc.

1.4.5 Math Functions
Python provides a rich set of mathematical functions through the module math. To use
these functions, the math module has to be imported in our code. Some of the important
functions available in math are given hereunder -

sqrt(): This function takes one numeric argument and finds the square root of that
argument.

>>> math.sqrt(34) #integer argument

5.830951894845301

>>> math.sqrt(21.5) #floating point argument

4.636809247747852

pi: The constant value pi can be used directly whenever we require.
>>>print (math.pi)

3.141592653589793

log10(): This function is used to find logarithm of the given argument, to the base

10.
>>> math.log10(2)

0.3010299956639812

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 27)

log(): This is used to compute natural logarithm (base e) of a given number.
>>> math.log(2)

0.6931471805599453

sin(): As the name suggests, it is used to find sine value of a given argument. Note

that, the argument must be in radians (not degrees). One can convert the number of
degrees into radians by multiplying pi/180 as shown below -

>>>math.sin(90*math.pi/180) #sin(90) is 1

1.0

cos(): Used to find cosine value -
>>>math.cos(45*math.pi/180)

0.7071067811865476

tan(): Function to find tangent of an angle, given as argument.
>>> math.tan(45*math.pi/180)

0.9999999999999999

pow(): This function takes two arguments x and y, then finds x to the power of y.
>>> math.pow(3,4)

81.0

1.4.6 Adding New Functions (User-defined Functions)
Python facilitates programmer to define his/her own functions. The function written once
can be used wherever and whenever required. The syntax of user-defined function would
be -

def fname(arg_list):

statement_1

statement_2

……………

Statement_n

return value

Here def is a keyword indicating it as a function definition.
fname is any valid name given to the function
arg_list is list of arguments taken by a function. These are treated as inputs to

the function from the position of function call. There may be zero or more

arguments to a function.
statements are the list of instructions to perform required task.
return is a keyword used to return the output value. This statement is optional

The first line in the function def fname(arg_list)is known as function header. The

remaining lines constitute function body. The function header is terminated by a colon and
the function body must be indented. To come out of the function, indentation must be
terminated. Unlike few other programming languages like C, C++ etc, there is no main()

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 28)

function or specific location where a user-defined function has to be called. The
programmer has to invoke (call) the function wherever required.

Consider a simple example of user-defined function -

def myfun():

print("Hello")
Observe indentation print("Inside the function")

Statements outside the print("Example of function")

function without indentation. myfun()

myfun() is called here. print("Example over")

The output of above program would be -
Example of function

Hello

Inside the function

Example over

The function definition creates an object of type function. In the above example, myfun is

internally an object. This can be verified by using the statement -
>>>print(myfun) # myfun without parenthesis

<function myfun at 0x0219BFA8>

>>> type(myfun) # myfun without parenthesis

<class 'function'>

Here, the first output indicates that myfun is an object which is being stored at the memory

address 0x0219BFA8 (0x indicates octal number). The second output clearly shows

myfun is of type function.

(NOTE: In fact, in Python every type is in the form of class. Hence, when we apply type on any
variable/object, it displays respective class name. The detailed study of classes will be done in
Module 4.)

The flow of execution of every program is sequential from top to bottom, a function can be
invoked only after defining it. Usage of function name before its definition will generate
error. Observe the following code:

print("Example of function")

myfun() #function call before definition

print("Example over")

def myfun(): #function definition is here

print("Hello")

print("Inside the function")

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 29)

The above code would generate error saying
NameError: name 'myfun' is not defined

Functions are meant for code-reusability. That is, a set of instructions written as a function
need not be repeated. Instead, they can be called multiple times whenever required.
Consider the enhanced version of previous program as below -

def myfun():

print("Inside myfun()")

(5)
(3)

Execution
starts here(1)

(2)

def repeat(): (4)

myfun()

print(“Inside repeat()”)

myfun()

print("Example of function")
(6)

repeat()

print("Example over")

The output is -
Example of function

Inside myfun()

Inside repeat()

Inside myfun()

Example over

Observe the output of the program to understand the flow of execution of the program.
Initially, we have two function definitions myfun()and repeat()one after the other. But,
functions are not executed unless they are called (or invoked). Hence, the first line to
execute in the above program is -

print("Example of function")

Then, there is a function call repeat(). So, the program control jumps to this function.

Inside repeat(), there is a call for myfun(). Now, program control jumps to myfun()and

executes the statements inside and returns back to repeat() function. The statement

print(“Inside repeat()”) is executed. Once again there is a call for

myfun()function and hence, program control jumps there. The function myfun() is

executed and returns to repeat(). As there are no more statements in repeat(), the

control returns to the original position of its call. Now there is a statement

print("Example over")to execute, and program is terminated.

1.4.7 Parameters and Arguments
In the previous section, we have seen simple example of a user-defined function, where the
function was without any argument. But, a function may take arguments as an input from

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 30)

the calling function. Consider an example of a function which takes a single argument as
below -

def test(var):

print("Inside test()")

print("Argument is ",var)

print("Example of function with arguments")

x="hello"

test(x)

y=20
test(y)

print("Over!!")

The output would be -
Example of function with arguments

Inside test()

Argument is hello

Inside test()

Argument is 20

Over!!

In the above program, var is called as parameter and x and y are called as arguments. The

argument is being passed when a function test() is invoked. The parameter receives the

argument as an input and statements inside the function are executed. As Python

variables are not of specific data types in general, one can pass any type of value to the

function as an argument.

Python has a special feature of applying multiplication operation on arguments while
passing them to a function. Consider the modified version of above program -

def test(var):

print("Inside test()")

print("Argument is ",var)

print("Example of function with arguments")

x="hello"

test(x*3)

y=20

test(y*3)
print("Over!!")

The output would be -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 31)

Example of function with arguments

Inside test()

Argument is hellohellohello #observe repetition

Inside test()

Argument is 60 #observe multiplication

Over!!

One can observe that, when the argument is of type string, then multiplication indicates that
string is repeated 3 times. Whereas, when the argument is of numeric type (here, integer),
then the value of that argument is literally multiplied by 3.

1.4.8 Fruitful Functions and void Functions
A function that performs some task, but do not return any value to the calling function is
known as void function. The examples of user-defined functions considered till now are void
functions. The function which returns some result to the calling function after
performing a task is known as fruitful function. The built-in functions like mathematical
functions, random number generating functions etc. that have been considered earlier are
examples for fruitful functions. One can write a user-defined function so as to return a value to
the calling function as shown in the following example -

def sum(a,b):

return a+b

x=int(input("Enter a number:"))

y=int(input("Enter another number:"))

s=sum(x,y)

print("Sum of two numbers:",s)

The sample output would be -
Enter a number:3

Enter another number:4

Sum of two numbers: 7

In the above example, The function sum() take two arguments and returns their sum to the

receiving variable s.

When a function returns something and if it is not received using a LHS variable, then the

return value will not be available. For instance, in the above example if we just use the

statement sum(x,y)instead of s=sum(x,y), then the value returned from the function is of

no use. On the other hand, if we use a variable at LHS while calling void functions, it will

receive None. For example,
p= test(var) #function used in previous example

print(p)

Now, the value of p would be printed as None. Note that, None is not a string, instead it is of

type class 'NoneType'. This type of object indicates no value.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 32)

1.4.9 Why Functions?
Functions are essential part of programming because of following reasons -

 Creating a new function gives the programmer an opportunity to name a group of

statements, which makes the program easier to read, understand, and debug.

 Functions can make a program smaller by eliminating repetitive code. If any
modification is required, it can be done only at one place.

 Dividing a long program into functions allows the programmer to debug the
independent functions separately and then combine all functions to get the solution
of original problem.

 Well-designed functions are often useful for many programs. The functions written
once for a specific purpose can be re-used in any other program.

For the Curious Minds (Something beyond the syllabus)

Special parameters of print() - sep and end :
Consider an example of printing two values using print() as below -

>>> x=10

>>> y=20

>>> print(x,y)

10 20 #space is added between two values

Observe that the two values are separated by a space without mentioning anything
specific. This is possible because of the existence of an argument sep in the print() function
whose default value is white space. This argument makes sure that various values to be
printed are separated by a space for a better representation of output.

The programmer has a liberty in Python to give any other character(or string) as a
separator by explicitly mentioning it in print() as shown below -

>>> print("18","2","2018",sep='-')

18-2-2018

We can observe that the values have been separated by hyphen, which is given as a value for
the argument sep. Consider one more example -

>>> college="RNSIT"

>>> address="Channasandra"

>>> print(college, address, sep='@')

RNSIT@Channasandra

If you want to deliberately suppress any separator, then the value of sep can be set with
empty string as shown below -

>>> print("Hello","World", sep='')

HelloWorld

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 33)

You might have observed that in Python program, the print() adds a new line after printing the
data. In a Python script file, if you have two statements like -

print(“Hello”)

print(“World”)

then, the output would be
Hello

World

This may be quite unusual for those who have experienced programming languages like C,
C++ etc. In these languages, one has to specifically insert a new-line character (\n) to get the
output in different lines. But, in Python without programmer’s intervention, a new line will be
inserted. This is possible because, the print() function in Python has one more special
argument end whose default value itself is new-line. Again, the default value of this argument
can be changed by the programmer as shown below (Run these lines using a script file, but
not in the terminal/command prompt) -

print(“Hello”, end= ‘@’)

print(“World”)

The output would be -
Hello@World

In fact, when you just type print and open a parentheses in any Python IDE, the intelliSense
(the context-aware code completion feature of a programming language which helps the
programmer with certain suggestions using a pale-yellow box) of print() will show the
existence of sep and end arguments as below -

The above figure clearly indicates that the sep and end have the default values space and
new-line respectively.

(NOTE: You can see two more arguments file and flush here. The default value sys.stdout
of the argument file indicates that print() will send the data to standard output, which is
usually keyboard. When you are willing to print the data into a specific file, the file-object
can be given as a value for file argument. The flush argument with True value makes sure
that operations are successfully completed and the values are flushed into the memory
from the buffer. The default value of flush is False, because in most of the cases we need
not check whether the data is really got flushed or not - as it would be happening even
otherwise. While printing the data into a file (that is, when a file is open for write purpose),
we may need to make sure whether the data got flushed or not. Because, someone else in
the network trying to read the same file (trying to open a file for read purpose) when write
operation is under progress may result in file corruption. In such situations, we need to set
flush argument as True. Indeed, this is just a basic vague explanation of flush argument
and it has much more meaning in real.)

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 34)

Formatting the output:
There are various ways of formatting the output and displaying the variables with a required
number of space-width in Python. We will discuss few of them with the help of examples.

 Ex1: When multiple variables have to be displayed embedded within a string, the
format() function is useful as shown below -

>>> x=10

>>> y=20

>>> print("x={0}, y={1}".format(x,y))

x=10, y=20

While using format() the arguments of print() must be numbered as 0, 1, 2, 3, etc. and they
must be provided inside the format() in the same order.

 Ex2: The format() function can be used to specify the width of the variable (the number
of spaces that the variable should occupy in the output) as well. Consider below given
example which displays a number, its square and its cube.

for x in range(1,5):

print("{0:1d} {1:3d} {2:4d}".format(x,x**2, x**3))

Output:
1 1 1

2 4 8

3 9 27

4 16 64

Here, 1d, 3d and 4d indicates 1-digit space, 2-digit space etc. on the output screen.

Ex3: One can use % symbol to have required number of spaces for a variable. This will
be useful in printing floating point numbers.

>>> x=19/3

>>> print(x)

6.333333333333333 #observe number of digits after dot

>>> print("%.3f"%(x)) #only 3 places after decimal point

6.333

>>> x=20/3

>>> y=13/7

>>> print("x= ",x, "y=",y) #observe actual digits

x= 6.666666666666667 y= 1.8571428571428572

>>> print("x=%0.4f, y=%0.2f"%(x,y))

x=6.6667, y=1.86 #observe rounding off digits

To know more about possibilities with format(), read -
https://docs.python.org/3/tutorial/inputoutput.html

http://www.chetanahegde.in/
https://docs.python.org/3/tutorial/inputoutput.html
mailto:chetanahegde@ieee.org

. 1)

MODULE - 2

2.1 ITERATION
Iteration is a processing repeating some task. In a real time programming, we require a set of
statements to be repeated certain number of times and/or till a condition is met. Every
programming language provides certain constructs to achieve the repetition of tasks. In this
section, we will discuss various such looping structures.

2.1.1 The while Statement
The while loop has the syntax as below -

while condition:

statement_1

statement_2

…………….

statement_n

statements_after_while

Here, while is a keyword. The condition is evaluated first. Till its value remains true,

the statement_1 to statement_n will be executed. When the condition becomes

false, the loop is terminated and statements after the loop will be executed. Consider an

example -

n=1

while n<=5:

print(n) #observe indentation

n=n+1

print("over")

The output of above code segment would be -
1

2

3

4

5

over

In the above example, a variable n is initialized to 1. Then the condition n<=5 is being

checked. As the condition is true, the block of code containing print statement (print(n))

and increment statement (n=n+1) are executed. After these two lines, condition is checked

again. The procedure continues till condition becomes false, that is when n becomes 6.

Now, the while-loop is terminated and next statement after the loop will be executed. Thus, in

this example, the loop is iterated for 5 times.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 2)

Note that, a variable n is initialized before starting the loop and it is incremented inside the
loop. Such a variable that changes its value for every iteration and controls the total
execution of the loop is called as iteration variable or counter variable. If the count
variable is not updated properly within the loop, then the loop may not terminate and keeps
executing infinitely.

2.1.2 Infinite Loops, break and continue
A loop may execute infinite number of times when the condition is never going to become
false. For example,

n=1

while True:

print(n)

n=n+1

Here, the condition specified for the loop is the constant True, which will never get

terminated. Sometimes, the condition is given such a way that it will never become false and

hence by restricting the program control to go out of the loop. This situation may happen

either due to wrong condition or due to not updating the counter variable.

In some situations, we deliberately want to come out of the loop even before the normal
termination of the loop. For this purpose break statement is used. The following example
depicts the usage of break. Here, the values are taken from keyboard until a negative
number is entered. Once the input is found to be negative, the loop terminates.

while True:

x=int(input("Enter a number:"))

if x>= 0:

print("You have entered ",x)

else:
print("You have entered a negative number!!")

break

Sample output:
Enter a number:23

You have entered 23

Enter a number:12

You have entered 12

Enter a number:45

You have entered 45

Enter a number:0

You have entered 0

Enter a number:-2

#terminates the loop

You have entered a negative number!!

In the above example, we have used the constant True as condition for while-loop, which

will never become false. So, there was a possibility of infinite loop. This has been avoided

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 3)

by using break statement with a condition. The condition is kept inside the loop such a way
that, if the user input is a negative number, the loop terminates. This indicates that, the loop
may terminate with just one iteration (if user gives negative number for the very first time) or it
may take thousands of iteration (if user keeps on giving only positive numbers as input).
Hence, the number of iterations here is unpredictable. But, we are making sure that it will not
be an infinite-loop, instead, the user has control on the loop.

Sometimes, programmer would like to move to next iteration by skipping few statements in the
loop, based on some condition. For this purpose continue statement is used. For
example, we would like to find the sum of 5 even numbers taken as input from the
keyboard. The logic is -

 Read a number from the keyboard

 If that number is odd, without doing anything else, just move to next iteration for
reading another number

 If the number is even, add it to sum and increment the accumulator variable.

When accumulator crosses 5, stop the program

The program for the above task can be written as -

sum=0

count=0

while True:

x=int(input("Enter a number:"))

if x%2 !=0:

continue

else:

sum+=x

count+=1

if count==5:

break

print("Sum= ", sum)

Sample Output:
Enter a number:13

Enter a number:12

Enter a number:4

Enter a number:5

Enter a number:-3

Enter a number:8

Enter a number:7

Enter a number:16

Enter a number:6

Sum= 46

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 4)

2.1.3 Definite Loops using for
The while loop iterates till the condition is met and hence, the number of iterations are
usually unknown prior to the loop. Hence, it is sometimes called as indefinite loop. When we
know total number of times the set of statements to be executed, for loop will be used. This is
called as a definite loop. The for-loop iterates over a set of numbers, a set of words, lines in a
file etc. The syntax of for-loop would be -

for var in list/sequence:

statement_1

statement_2

………………

statement_n

statements_after_for

Here, for and in are keywords

list/sequence is a set of elements on which the loop is iterated. That is, the

loop will be executed till there is an element in list/sequence
statements constitutes body of the loop

Ex: In the below given example, a list names containing three strings has been created.

Then the counter variable x in the for-loop iterates over this list. The variable x takes the

elements in names one by one and the body of the loop is executed.

names=["Ram", "Shyam", "Bheem"]

for x in names:

print(x)

The output would be -
Ram

Shyam

Bheem

NOTE: In Python, list is an important data type. It can take a sequence of elements of
different types. It can take values as a comma separated sequence enclosed within square
brackets. Elements in the list can be extracted using index (just similar to extracting array
elements in C/C++ language). Various operations like indexing, slicing, merging, addition
and deletion of elements etc. can be applied on lists. The details discussion on Lists will be
done in Module 3.

The for loop can be used to print (or extract) all the characters in a string as shown below -
for i in "Hello":

print(i, end=’\t’)

Output:
H e l l o

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 5)

When we have a fixed set of numbers to iterate in a for loop, we can use a function
range(). The function range() takes the following format -

range(start, end, steps)

The start and end indicates starting and ending values in the sequence, where end is

excluded in the sequence (That is, sequence is up to end-1). The default value of start is

0. The argument steps indicates the increment/decrement in the values of sequence with

the default value as 1. Hence, the argument steps is optional. Let us consider few

examples on usage of range() function.

Ex1. Printing the values from 0 to 4 -
for i in range(5):

print(i, end= ‘\t’)

Output:
0 1 2 3 4

Here, 0 is the default starting value. The statement range(5) is same as range(0,5)

and range(0,5,1).

Ex2. Printing the values from 5 to 1 -
for i in range(5,0,-1):

print(i, end= ‘\t’)

Output:
5 4 3 2 1

The function range(5,0,-1)indicates that the sequence of values are 5 to 0(excluded) in

steps of -1 (downwards).
Ex3. Printing only even numbers less than 10 -

for i in range(0,10,2):

print(i, end= ‘\t’)

Output:
0 2 4 6 8

2.1.4 Loop Patterns
The while-loop and for-loop are usually used to go through a list of items or the contents of a
file and to check maximum or minimum data value. These loops are generally
constructed by the following procedure -

 Initializing one or more variables before the loop starts

 Performing some computation on each item in the loop body, possibly changing the
variables in the body of the loop

 Looking at the resulting variables when the loop completes

The construction of these loop patterns are demonstrated in the following examples.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 6)

Counting and Summing Loops: One can use the for loop for counting number of items in the
list as shown -

count = 0

for i in [4, -2, 41, 34, 25]:

count = count + 1

print(“Count:”, count)

Here, the variable count is initialized before the loop. Though the counter variable i is not

being used inside the body of the loop, it controls the number of iterations. The variable

count is incremented in every iteration, and at the end of the loop the total number of

elements in the list is stored in it.

One more loop similar to the above is finding the sum of elements in the list -

total = 0

for x in [4, -2, 41, 34, 25]:

total = total + x

print(“Total:”, total)

Here, the variable total is called as accumulator because in every iteration, it
accumulates the sum of elements. In each iteration, this variable contains running total of
values so far.

NOTE: In practice, both of the counting and summing loops are not necessary, because
there are built-in functions len() and sum() for the same tasks respectively.

Maximum and Minimum Loops: To find maximum element in the list, the following code
can be used -

big = None

print('Before Loop:', big)

for x in [12, 0, 21,-3]:

if big is None or x > big :

big = x

print('Iteration Variable:', x, 'Big:', big)

print('Biggest:', big)

Output:
Before Loop: None

Iteration Variable: 12 Big: 12

Iteration Variable: 0 Big: 12

Iteration Variable: 21 Big: 21

Iteration Variable: -3 Big: 21

Biggest: 21

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 7)

Here, we initialize the variable big to None. It is a special constant indicating empty.

Hence, we cannot use relational operator == while comparing it with big. Instead, the is

operator must be used. In every iteration, the counter variable x is compared with previous

value of big. If x > big, then x is assigned to big.

Similarly, one can have a loop for finding smallest of elements in the list as given below -

small = None

print('Before Loop:', small)

for x in [12, 0, 21,-3]:

if small is None or x < small :

small = x

print('Iteration Variable:', x, 'Small:', small)

print('Smallest:', small)

Output:
Before Loop: None

Iteration Variable: 12 Small: 12

Iteration Variable: 0 Small: 0

Iteration Variable: 21 Small: 0

Iteration Variable: -3 Small: -3

Smallest: -3

NOTE: In Python, there are built-in functions max() and min() to compute maximum and

minimum values among. Hence, the above two loops need not be written by the

programmer explicitly. The inbuilt function min() has the following code in Python -
def min(values):

smallest = None

for value in values:

if smallest is None or value < smallest:

smallest = value

return smallest

2.2 STRINGS
A string is a sequence of characters, enclosed either within a pair of single quotes or
double quotes. Each character of a string corresponds to an index number, starting with zero
as shown below -

S= “Hello World”

character H e l l o w o r l d
index 0 1 2 3 4 5 6 7 8 9 10

The characters of a string can be accessed using index enclosed within square brackets. For
example,

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 8)

>>> word1="Hello"

>>> word2='hi'

>>> x=word1[1]

>>> print(x)

e

>>> y=word2[0]

>>> print(y)

h

#2
nd
 character of word1 is extracted

#1
st
 character of word1 is extracted

Python supports negative indexing of string starting from the end of the string as shown
below -

S= “Hello World”

character H e l l o w o r l D
Negative index -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

The characters can be extracted using negative index also. For example,

>>> var=“Hello”

>>> print(var[-1])

o

>>> print(var[-4])

e

Whenever the string is too big to remember last positive index, one can use negative index to
extract characters at the end of string.

2.2.1 Getting Length of a String using len()
The len() function can be used to get length of a string.

>>> var="Hello"

>>> ln=len(var)

>>> print(ln)

5

The index for string varies from 0 to length-1. Trying to use the index value beyond
this range generates error.

>>> var="Hello"

>>> ln=len(var)

>>> ch=var[ln]

IndexError: string index out of range

2.2.2 Traversal through String with a Loop
Extracting every character of a string one at a time and then performing some action on that
character is known as traversal. A string can be traversed either using while loop or using for
loop in different ways. Few of such methods is shown here -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 9)

 Using for loop:
st="Hello"

for i in st:

print(i, end='\t')

Output:
H e l l o

In the above example, the for loop is iterated from first to last character of the string st.

That is, in every iteration, the counter variable i takes the values as H, e, l, l and o. The

loop terminates when no character is left in st.

 Using while loop:
st="Hello"

i=0

while i<len(st):

print(st[i], end=‘\t’)

i+=1

Output:
H e l l o

In this example, the variable i is initialized to 0 and it is iterated till the length of the

string. In every iteration, the value of i is incremented by 1 and the character in a string is

extracted using i as index.

2.2.3 String Slices
A segment or a portion of a string is called as slice. Only a required number of characters
can be extracted from a string using colon (:) symbol. The basic syntax for slicing a string
would be -

st[i:j:k]

This will extract character from ith character of st till (j-1)th character in steps of k. If first

index i is not present, it means that slice should start from the beginning of the string. If the

second index j is not mentioned, it indicates the slice should be till the end of the string. The

third parameter k, also known as stride, is used to indicate number of steps to be

incremented after extracting first character. The default value of stride is 1.

Consider following examples along with their outputs to understand string slicing.

st="Hello World" #refer this string for all examples

1. print("st[:] is", st[:]) #output Hello World

As both index values are not given, it assumed to be a full string.

2. print("st[0:5] is ", st[0:5]) #output is Hello

Starting from 0th index to 4th index (5 is exclusive), characters will be printed.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 10)

3. print("st[0:5:1] is", st[0:5:1]) #output is Hello

This code also prints characters from 0th to 4th index in the steps of 1. Comparing this
example with previous example, we can make out that when the stride value is 1, it is
optional to mention.

4. print("st[3:8] is ", st[3:8]) #output is lo Wo

Starting from 3rd index to 7th index (8 is exclusive), characters will be printed.

5. print("st[7:] is ", st[7:]) #output is orld

Starting from 7th index to till the end of string, characters will be printed.

6. print(st[::2]) #outputs HloWrd

This example uses stride value as 2. So, starting from first character, every
alternative character (char+2) will be printed.

7. print("st[4:4] is ", st[4:4]) #gives empty string

Here, st[4:4] indicates, slicing should start from 4th character and end with (4-

1)=3rd character, which is not possible. Hence the output would be an empty string.

8. print(st[3:8:2]) #output is l o

Starting from 3rd character, till 7th character, every alternative index is considered.

9. print(st[1:8:3]) #output is eoo

Starting from index 1, till 7th index, every 3rd character is extracted here.

10. print(st[-4:-1]) #output is orl

Refer the diagram of negative indexing given earlier. Excluding the -1st character, all
characters at the indices -4, -3 and -2 will be displayed. Observe the role of stride with
default value 1 here. That is, it is computed as -4+1 =-3, -3+1=-2 etc.

11. print(st[-1:]) #output is d

Here, starting index is -1, ending index is not mentioned (means, it takes the index 10)
and the stride is default value 1. So, we are trying to print characters from -1 (which is
the last character of negative indexing) till 10th character (which is also the last
character in positive indexing) in incremental order of 1. Hence, we will get only last
character as output.

12. print(st[:-1]) #output is Hello Worl

Here, starting index is default value 0 and ending is -1 (corresponds to last character in
negative indexing). But, in slicing, as last index is excluded always, -1st character is
omitted and considered only up to -2nd character.

13. print(st[::]) #outputs Hello World

Here, two colons have used as if stride will be present. But, as we haven’t
mentioned stride its default value 1 is assumed. Hence this will be a full string.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 11)

14. print(st[::-1]) #outputs dlroW olleH

This example shows the power of slicing in Python. Just with proper slicing, we
could able to reverse the string. Here, the meaning is a full string to be extracted in the
order of -1. Hence, the string is printed in the reverse order.

15. print(st[::-2]) #output is drWolH

Here, the string is printed in the reverse order in steps of -2. That is, every
alternative character in the reverse order is printed. Compare this with example (6)
given above.

By the above set of examples, one can understand the power of string slicing and of
Python script. The slicing is a powerful tool of Python which makes many task simple
pertaining to data types like strings, Lists, Tuple, Dictionary etc. (Other types will be
discussed in later Modules)

2.2.4 Strings are Immutable
The objects of string class are immutable. That is, once the strings are created (or
initialized), they cannot be modified. No character in the string can be
edited/deleted/added. Instead, one can create a new string using an existing string by
imposing any modification required.

Try to attempt following assignment -
>>> st= “Hello World”

>>> st[3]='t'

TypeError: 'str' object does not support item assignment

Here, we are trying to change the 4th character (index 3 means, 4th character as the first
index is 0) to t. The error message clearly states that an assignment of new item (a string) is
not possible on string object. So, to achieve our requirement, we can create a new string using
slices of existing string as below -

>>> st= “Hello World”

>>> st1= st[:3]+ 't' + st[4:] >>>

print(st1)

Helto World #l is replaced by t in new string st1

2.2.5 Looping and Counting
Using loops on strings, we can count the frequency of occurrence of a character within
another string. The following program demonstrates such a pattern on computation called
as a counter. Initially, we accept one string and one character (single letter). Our aim to
find the total number of times the character has appeared in string. A variable count is
initialized to zero, and incremented each time a character is found. The program is given
below -

def countChar(st,ch):

count=0

for i in st:

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 12)

if i==ch:

count+=1

return count

st=input("Enter a string:")

ch=input("Enter a character to be counted:")

c=countChar(st,ch)

print("{0} appeared {1} times in {2}".format(ch,c,st))

Sample Output:
Enter a string: hello how are you?
Enter a character to be counted: h
h appeared 2 times in hello how are you?

2.2.6 The in Operator
The in operator of Python is a Boolean operator which takes two string operands. It returns
True, if the first operand appears in second operand, otherwise returns False. For example,

>>> 'el' in 'hello'

True

>>> 'x' in 'hello'

False

2.2.7 String Comparison

#el is found in hello

#x is not found in hello

Basic comparison operators like < (less than), > (greater than), == (equals) etc. can be
applied on string objects. Such comparison results in a Boolean value True or False.
Internally, such comparison happens using ASCII codes of respective characters. Consider
following examples -

Ex1. st= “hello”
if st== ‘hello’:

print(‘same’)

Output is same. As the value contained in st and hello both are same, the equality
results in True.

Ex2. st= “hello”
if st<= ‘Hello’:

print(‘lesser’)

else:

print(‘greater’)

Output is greater. The ASCII value of h is greater than ASCII value of H. Hence, hello is

greater than Hello.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 13)

NOTE: A programmer must know ASCII values of some of the basic characters. Here are
few -

A - Z : 65 - 90
a - z : 97 - 122
0 - 9 : 48 - 57
Space : 32
Enter Key : 13

2.2.8 String Methods
String is basically a class in Python. When we create a string in our program, an object of that
class will be created. A class is a collection of member variables and member methods (or
functions). When we create an object of a particular class, the object can use all the
members (both variables and methods) of that class. Python provides a rich set of built -in
classes for various purposes. Each class is enriched with a useful set of utility functions and
variables that can be used by a Programmer. A programmer can create a class based on
his/her requirement, which are known as user-defined classes.

The built-in set of members of any class can be accessed using the dot operator as
shown-

objName.memberMethod(arguments)

The dot operator always binds the member name with the respective object name. This is
very essential because, there is a chance that more than one class has members with
same name. To avoid that conflict, almost all Object oriented languages have been
designed with this common syntax of using dot operator. (Detailed discussion on classes
and objects will be done in later Modules.)

Python provides a function (or method) dir to list all the variables and methods of a
particular class object. Observe the following statements -

>>> s="hello" #string object is created with the name s

>>> type(s) #checking type of s

<class ‘str’> #s is object of type class str

>>> dir(s) #display all methods and variables of object s

['__add__', '__class__', '__contains__', '__delattr__', '__dir__',

'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',

'__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__',

'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__',

'__mod__', '__mul__', '__ne__', '__new__', '__reduce__',

'__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__',

'__sizeof__', '__str__', '__subclasshook__', 'capitalize',

'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs',

'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha',

'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric',

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 14)

'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust',

'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind',

'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',

'splitlines', 'startswith', 'strip', 'swapcase', 'title',

'translate', 'upper', 'zfill']

Students need not remember the above list !!

Note that, the above set of variables and methods are common for any object of string
class that we create. Each built-in method has a predefined set of arguments and return
type. To know the usage, working and behavior of any built-in method, one can use the
command help. For example, if we would like to know what is the purpose of islower()

function (refer above list to check its existence!!), how it behaves etc, we can use the
statement -

>>> help(str.islower)

Help on method_descriptor:

islower(...)

S.islower() -> bool

Return True if all cased characters in S are lowercase and there

is at least one cased character in S, False otherwise.

This is built-in help-service provided by Python. Observe the className.memberName

format while using help.

The methods are usually called using the object name. This is known as method
invocation. We say that a method is invoked using an object.

Now, we will discuss some of the important methods of string class.
capitalize(s) : This function takes one string argument s and returns a capitalized

version of that string. That is, the first character of s is converted to upper case, and all
other characters to lowercase. Observe the examples given below -

Ex1. >>> s="hello"

>>> s1=str.capitalize(s)

>>> print(s1)

Hello #1
st
 character is changed to uppercase

Ex2. >>> s="hello World"

>>> s1=str.capitalize(s)

>>> print(s1)

Hello world

Observe in Ex2 that the first character is converted to uppercase, and an in-between
uppercase letter W of the original string is converted to lowercase.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 15)

s.upper(): This function returns a copy of a string s to uppercase. As strings are
immutable, the original string s will remain same.

>>> st= “hello”

>>> st1=st.upper()

>>> print(st1)

'HELLO'

>>> print(st) #no change in original string

'hello'

s.lower(): This method is used to convert a string s to lowercase. It returns a copy of

original string after conversion, and original string is intact.

>>> st='HELLO'

>>> st1=st.lower()

>>> print(st1)

hello

>>> print(st) #no change in original string

HELLO

s.find(s1) : The find() function is used to search for a substring s1 in the string s. If
found, the index position of first occurrence of s1 in s, is returned. If s1 is not found in s,
then -1 is returned.

>>> st='hello'

>>> i=st.find('l')

>>> print(i) #output is 2

>>> i=st.find('lo')

>>> print(i) #output is 3

>>> print(st.find(‘x’)) #output is -1

The find() function can take one more form with two additional arguments viz. start
and end positions for search.

>>> st="calender of Feb. cal of march" >>>

i= st.find(‘cal’)

>>> print(i) #output is 0

Here, the substring ‘cal’ is found in the very first position of st, hence the result is 0.

>>> i=st.find('cal',10,20)

>>> print(i) #output is 17

Here, the substring cal is searched in the string st between 10th and 20th position and

hence the result is 17.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 16)

>>> i=st.find('cal',10,15)

>>> print(i) #ouput is -1

In this example, the substring 'cal' has not appeared between 10th and 15th

character of st. Hence, the result is -1.

s.strip(): Returns a copy of string s by removing leading and trailing white spaces.

>>> st=" hello world "

>>> st1 = st.strip()

>>> print(st1)

hello world

The strip() function can be used with an argument chars, so that specified chars are
removed from beginning or ending of s as shown below -

>>> st="###Hello##"

>>> st1=st.strip('#')

>>> print(st1) #all hash symbols are removed

Hello

We can give more than one character for removal as shown below -

>>> st="Hello world"

>>> st.strip("Hld")

ello wor

S.startswith(prefix, start, end): This function has 3 arguments of which start and end

are option. This function returns True if S starts with the specified prefix, False
otherwise.

>>> st="hello world"

>>> st.startswith("he") #returns True

When start argument is provided, the search begins from that position and returns True or
False based on search result.

>>> st="hello world"

>>> st.startswith("w",6) #True because w is at 6th position

When both start and end arguments are given, search begins at start and ends at end.

>>> st="xyz abc pqr ab mn gh“

>>> st.startswith("pqr ab mn",8,12) #returns False

>>> st.startswith("pqr ab mn",8,18) #returns True

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 17)

The startswith() function requires case of the alphabet to match. So, when we are

not sure about the case of the argument, we can convert it to either upper case or

lowercase and then use startswith() function as below -
>>> st="Hello"

>>> st.startswith("he") #returns False

>>> st.lower().startswith("he") #returns True

S.count(s1, start, end): The count() function takes three arguments - string, starting

position and ending position. This function returns the number of non-overlapping
occurrences of substring s1 in string S in the range of start and end.

>>> st="hello how are you? how about you?"

>>> st.count('h') #output is 3

>>> st.count(‘how’) #output is 2

>>> st.count(‘how’,3,10) #output is 1 because of range given

There are many more built-in methods for string class. Students are advised to
explore more for further study.

2.2.9 Parsing Strings
Sometimes, we may want to search for a substring matching certain criteria. For example,
finding domain names from email-Ids in the list of messages is a useful task in some
projects. Consider a string below and we are interested in extracting only the domain name.

“From chetanahegde@ieee.org Wed Feb 21 09:14:16 2018”

Now, our aim is to extract only ieee.org, which is the domain name. We can think of logic
as-

o Identify the position of @, because all domain names in email IDs will be after the
symbol @

o Identify a white space which appears after @ symbol, because that will be the
end of domain name.

o Extract the substring between @ and white-space.

The concept of string slicing and find() function will be useful here.Consider the code given
below -

st="From chetanahegde@ieee.org Wed Feb 21 09:14:16 2018"

atpos=st.find('@') #finds the position of @

print('Position of @ is', atpos)

spacePos=st.find(‘ ', atpos) #position of white-space after @

print('Position of space after @ is', spacePos)

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org
mailto:chetanahegde@ieee.org

. 18)

host=st[atpos+1:spacePos] #slicing from @ till white-space

print(host)

Execute above program to get the output as ieee.org. One can apply this logic in a loop,
when our string contains series of email IDs, and we may want to extract all those mail IDs.

2.2.10 Format Operator
The format operator, % allows us to construct strings, replacing parts of the strings with the
data stored in variables. The first operand is the format string, which contains one or more
format sequences that specify how the second operand is formatted. The result is a string.

>>> sum=20

>>> '%d' %sum

‘20’ #string ‘20’, but not integer 20

Note that, when applied on both integer operands, the % symbol acts as a modulus
operator. When the first operand is a string, then it is a format operator. Consider few
examples illustrating usage of format operator.

Ex1. >>> "The sum value %d is originally integer"%sum

'The sum value 20 is originally integer‘

Ex2. >>> '%d %f %s'%(3,0.5,'hello')

'3 0.500000 hello‘

Ex3. >>> '%d %g %s'%(3,0.5,'hello')

'3 0.5 hello‘

Ex4. >>> '%d'% 'hello'

TypeError: %d format: a number is required, not str

Ex5. >>> '%d %d %d'%(2,5)

TypeError: not enough arguments for format string

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 1)

MODULE 2 - FILES

2.3 FILES
File handling is an important requirement of any programming language, as it allows us to
store the data permanently on the secondary storage and read the data from a permanent
source. Here, we will discuss how to perform various operations on files using the
programming language Python.

2.3.1 Persistence
The programs that we have considered till now are based on console I/O. That is, the input
was taken from the keyboard and output was displayed onto the monitor. When the data to
be read from the keyboard is very large, console input becomes a laborious job. Also, the
output or result of the program has to be used for some other purpose later, it has to be
stored permanently. Hence, reading/writing from/to files are very essential requirement of
programming.

We know that the programs stored in the hard disk are brought into main memory to
execute them. These programs generally communicate with CPU using conditional
execution, iteration, functions etc. But, the content of main memory will be erased when we
turn-off our computer. We have discussed these concepts in Module1 with the help of
Figure 1.1. Here we will discuss about working with secondary memory or files. The files
stored on the secondary memory are permanent and can be transferred to other machines
using pen-drives/CD.

2.3.2 Opening Files
To perform any operation on a file, one must open a file. File opening involves
communication with operating system. In Python, a file can be opened using a built-in
function open(). While opening a file, we must specify the name of the file to be opened.
Also, we must inform the OS about the purpose of opening a file, which is termed as file
opening mode. The syntax of open() function is as below -

fhand= open(“filename”, “mode”)

Here, filename is name of the file to be opened. This string may be just a name of the
file, or it may include pathname also. Pathname of the file is optional
when the file is stored in current working directory

mode This string indicates the purpose of opening a file. It takes a pre-

defined set of values as given in Table 2.1
fhand It is a reference to an object of file class, which acts as a handler or

tool for all further operations on files.

When our Python program makes a request to open a specific file in a particular mode,
then OS will try to serve the request. When a file gets opened successfully, then a file
object is returned. This is known as file handle and is as shown in Figure 2.1. It will help to

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 2)

perform various operations on a file through our program. If the file cannot be opened due to
some reason, then error message (traceback) will be displayed.

Figure 2.1 A File Handle

A file opening may cause an error due to some of the reasons as listed below -
o File may not exist in the specified path (when we try to read a file)
o File may exist, but we may not have a permission to read/write a file
o File might have got corrupted and may not be in an opening state

Since, there is no guarantee about getting a file handle from OS when we try to open a file, it
is always better to write the code for file opening using try-except block. This will help us to
manage error situation.

Mode Meaning
r Opens a file for reading purpose. If the specified file does not exist in the

specified path, or if you don’t have permission, error message will be
displayed. This is the default mode of open() function in Python.

w Opens a file for writing purpose. If the file does not exist, then a new file
with the given name will be created and opened for writing. If the file
already exists, then its content will be over-written.

a Opens a file for appending the data. If the file exists, the new content will
be appended at the end of existing content. If no such file exists, it will be
created and new content will be written into it.

r+ Opens a file for reading and writing.
w+ Opens a file for both writing and reading. Overwrites the existing file if the

file exists. If the file does not exist, creates a new file for reading and
writing.

a+ Opens a file for both appending and reading. The file pointer is at

the end of the file if the file exists. The file opens in the append

mode. If the file does not exist, it creates a new file for reading and
writing.

rb Opens a file for reading only in binary format
wb Opens a file for writing only in binary format
ab Opens a file for appending only in binary format

http://www.chetanahegde.in/

. 3)

2.3.3 Text Files and Lines
A text file is a file containing a sequence of lines. It contains only the plain text without any
images, tables etc. Different lines of a text file are separated by a newline character \n. In
the text files, this newline character may be invisible, but helps in identifying every line in
the file. There will be one more special entry at the end to indicate end of file (EOF).

NOTE: There is one more type of file called binary file, which contains the data in the form of
bits. These files are capable of storing text, image, video, audio etc. All these data will be
stored in the form of a group of bytes whose formatting will be known. The supporting
program can interpret these files properly, whereas when opened using normal text editor,
they look like messy, unreadable set of characters.

2.3.4 Reading Files
When we successfully open a file to read the data from it, the open() function returns the file
handle (or an object reference to file object) which will be pointing to the first character in the
file. A text file containing lines can be iterated using a for-loop starting from the beginning
with the help of this file handle. Consider the following example of counting number of lines
in a file.

NOTE: Before executing the below given program, create a text file (using Notepad or
similar editor) myfile.txt in the current working directory (The directory where you are going
store your Python program). Open this text file and add few random lines to it and then
close. Now, open a Python script file, say countLines.py and save it in the same directory
as that of your text file myfile.txt. Then, type the following code in Python script
countLines.py and execute the program. (You can store text file and Python script file in
different directories. But, if you do so, you have to mention complete path of text file in the
open() function.)

Sample Text file myfile.txt:
hello how are you?
I am doing fine
what about you?

Python script file countLines.py
fhand=open('myfile.txt','r')

count =0

for line in fhand:

count+=1

print("Line Number ",count, ":", line)

print("Total lines=",count)

fhand.close()

Output:
Line Number 1 : hello how are you?

Line Number 2 : I am doing fine

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 4)

Line Number 3 : what about you?

Total lines= 3

In the above program, initially, we will try to open the file 'myfile.txt. As we have

already created that file, the file handler will be returned and the object reference to this file

will be stored in fhand. Then, in the for-loop, we are using fhand as if it is a sequence of

lines. For each line in the file, we are counting it and printing the line. In fact, a line is

identified internally with the help of new-line character present at the end of each line.

Though we have not typed \n anywhere in the file myfile.txt, after each line, we would

have pressed enter-key. This act will insert a \n, which is invisible when we view the file

through notepad. Once all lines are over, fhand will reach end-of-file and hence terminates

the loop. Note that, when end of file is reached (that is, no more characters are present in

the file), then an attempt to read will return None or empty character ‘’ (two quotes without

space in between).

Once the operations on a file is completed, it is a practice to close the file using a function
close(). Closing of a file ensures that no unwanted operations are done on a file handler.
Moreover, when a file was opened for writing or appending, closure of a file ensures that
the last bit of data has been uploaded properly into a file and the end-of-file is maintained
properly. If the file handler variable (in the above example, fhand) is used to assign some
other file object (using open() function), then Python closes the previous file automatically.

If you run the above program and check the output, there will be a gap of two lines between

each of the output lines. This is because, the new-line character \n is also a part of the

variable line in the loop, and the print() function has default behavior of adding a line at the

end (due to default setting of end parameter of print()). To avoid this double-line spacing,

we can remove the new-line character attached at the end of variable line by using built-in

string function rstrip() as below -

print("Line Number ",count, ":", line.rstrip())

It is obvious from the logic of above program that from a file, each line is read one at a time,
processed and discarded. Hence, there will not be a shortage of main memory even though we
are reading a very large file. But, when we are sure that the size of our file is quite small,
then we can use read() function to read the file contents. This function will read entire file
content as a single string. Then, required operations can be done on this string using built-in
string functions. Consider the below given example -

fhand=open('myfile.txt')

s=fhand.read()

print(“Total number of characters:”,len(s))

print(“String up to 20 characters:”, s[:20])

After executing above program using previously created file myfile.txt, then the output
would be -

Total number of characters:50

String up to 20 characters: hello how are you?

I

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 5)

2.3.5 Writing Files
To write a data into a file, we need to use the mode w in open() function.

>>> fhand=open(“mynewfile.txt","w")

>>> print(fhand)

<_io.TextIOWrapper name='mynewfile.txt' mode='w' encoding='cp1252'>

If the file specified already exists, then the old contents will be erased and it will be ready to
write new data into it. If the file does not exists, then a new file with the given name will be
created.

The write() method is used to write data into a file. This method returns number of

characters successfully written into a file. For example,

>>> s="hello how are you?"

>>> fhand.write(s)

18

Now, the file object keeps track of its position in a file. Hence, if we write one more line into the
file, it will be added at the end of previous line. Here is a complete program to write few lines
into a file -

fhand=open('f1.txt','w')

for i in range(5):

line=input("Enter a line: ")

fhand.write(line+"\n")

fhand.close()

The above program will ask the user to enter 5 lines in a loop. After every line has been
entered, it will be written into a file. Note that, as write() method doesn’t add a new-line
character by its own, we need to write it explicitly at the end of every line. Once the loop
gets over, the program terminates. Now, we need to check the file f1.txt on the disk (in
the same directory where the above Python code is stored) to find our input lines that have
been written into it.

2.3.6 Searching through a File
Most of the times, we would like to read a file to search for some specific data within it. This can
be achieved by using some string methods while reading a file. For example, we may be
interested in printing only the line which starts with a character h. Then we can use
startswith() method.

fhand=open('myfile.txt')

for line in fhand:

if line.startswith('h'):

print(line)

fhand.close()

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 6)

Assume the input file myfile.txt is containing the following lines -
hello how are you?
I am doing fine
how about you?

Now, if we run the above program, we will get the lines which starts with h -
hello how are you?
how about you?

2.3.7 Letting the User Choose the File Name
In a real time programming, it is always better to ask the user to enter a name of the file
which he/she would like to open, instead of hard-coding the name of a file inside the
program.

fname=input("Enter a file name:")

fhand=open(fname)

count =0

for line in fhand:

count+=1

print("Line Number ",count, ":", line)

print("Total lines=",count)

fhand.close()

In this program, the user input filename is received through variable fname, and the same

has been used as an argument to open() method. Now, if the user input is myfile.txt

(discussed before), then the result would be

Total lines=3

Everything goes well, if the user gives a proper file name as input. But, what if the input
filename cannot be opened (Due to some reason like - file doesn’t exists, file permission
denied etc)? Obviously, Python throws an error. The programmer need to handle such
runtime errors as discussed in the next section.

2.3.8 Using try, except to Open a File
It is always a good programming practice to write the commands related to file opening
within a try block. Because, when a filename is a user input, it is prone to errors. Hence, one
should handle it carefully. The following program illustrates this -

fname=input("Enter a file name:")

try:

fhand=open(fname)

except:

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 7)

print("File cannot be opened")

exit()

count =0

for line in fhand:

count+=1

print("Line Number ",count, ":", line)

print("Total lines=",count)

fhand.close()

In the above program, the command to open a file is kept within try block. If the specified file

cannot be opened due to any reason, then an error message is displayed saying File

cannot be opened, and the program is terminated. If the file could able to open

successfully, then we will proceed further to perform required task using that file.

2.3.9 Debugging
While performing operations on files, we may need to extract required set of lines or words
or characters. For that purpose, we may use string functions with appropriate delimiters
that may exist between the words/lines of a file. But, usually, the invisible characters like
white-space, tabs and new-line characters are confusing and it is hard to identify them
properly. For example,

>>> s="1 2\t 3\n 4"

>>> print(s)

1 2 3

4

Here, by looking at the output, it may be difficult to make out where there is a space, where is
a tab etc. Python provides a utility function called as repr() to solve this problem. This
method takes any object as an argument and returns a string representation of that object. For
example, the print() in the above code snippet can be modified as -

>>> print(repr(s))

'1 2\t 3\n 4'

Note that, some of the systems use \n as new-line character, and few others may use \r
(carriage return) as a new-line character. The repr() method helps in identifying that too.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 1)

MODULE - 3

3.1 LISTS
A list is an ordered sequence of values. It is a data structure in Python. The values inside
the lists can be of any type (like integer, float, strings, lists, tuples, dictionaries etc) and are
called as elements or items. The elements of lists are enclosed within square brackets. For
example,

ls1=[10,-4, 25, 13]
ls2=[“Tiger”, “Lion”, “Cheetah”]

Here, ls1 is a list containing four integers, and ls2 is a list containing three strings. A list

need not contain data of same type. We can have mixed type of elements in list. For

example,
ls3=[3.5, ‘Tiger’, 10, [3,4]]

Here, ls3 contains a float, a string, an integer and a list. This illustrates that a list can be
nested as well.

An empty list can be created any of the following ways -
>>> ls =[]
>>> type(ls)

<class 'list'>
or

>>> ls =list()
>>> type(ls)

<class 'list'>

In fact, list() is the name of a method (special type of method called as constructor -
which will be discussed in Module 4) of the class list. Hence, a new list can be created
using this function by passing arguments to it as shown below -

>>> ls2=list([3,4,1])
>>> print(ls2)

[3, 4, 1]

3.1.1 Lists are Mutable

The elements in the list can be accessed using a numeric index within square-brackets. It is
similar to extracting characters in a string.

>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[1])

hi
>>> print(ls[2])

[2, 3]

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 2)

Observe here that, the inner list is treated as a single element by outer list. If we would like
to access the elements within inner list, we need to use double-indexing as shown below -

>>> print(ls[2][0])
2

>>> print(ls[2][1])
3

Note that, the indexing for inner-list again starts from 0. Thus, when we are using
doubleindexing, the first index indicates position of inner list inside outer list, and the second
index means the position particular value within inner list.

Unlike strings, lists are mutable. That is, using indexing, we can modify any value within list. In
the following example, the 3rd element (i.e. index is 2) is being modified -

>>> ls=[34, 'hi', [2,3],-5]
>>> ls[2]='Hello'
>>> print(ls)

[34, 'hi', 'Hello', -5]

The list can be thought of as a relationship between indices and elements. This relationship is
called as a mapping. That is, each index maps to one of the elements in a list.

The index for extracting list elements has following properties -

 Any integer expression can be an index.

>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[2*1])

'Hello'
Attempt to access a non-existing index will throw and IndexError.

>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[4])
IndexError: list index out of range

A negative indexing counts from backwards.

>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[-1])

-5
>>> print(ls[-3])

hi

The in operator applied on lists will results in a Boolean value.
>>> ls=[34, 'hi', [2,3],-5]
>>> 34 in ls

True
>>> -2 in ls

False

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 3)

3.1.2 Traversing a List
A list can be traversed using for loop. If we need to use each element in the list, we can use the
for loop and in operator as below -

>>> ls=[34, 'hi', [2,3],-5]
>>> for item in ls:

print(item)

34
hi
Hello
-5

List elements can be accessed with the combination of range() and len() functions as well -

ls=[1,2,3,4]
for i in range(len(ls)):

ls[i]=ls[i]**2

print(ls) #output is [1, 4, 9, 16]

Here, we wanted to do modification in the elements of list. Hence, referring indices is
suitable than referring elements directly. The len() returns total number of elements in the
list (here it is 4). Then range() function makes the loop to range from 0 to 3 (i.e. 4-1). Then,
for every index, we are updating the list elements (replacing original value by its square).

3.1.3 List Operations
Python allows to use operators + and * on lists. The operator + uses two list objects and
returns concatenation of those two lists. Whereas * operator take one list object and one
integer value, say n, and returns a list by repeating itself for n times.

>>> ls1=[1,2,3]
>>> ls2=[5,6,7]
>>> print(ls1+ls2)

[1, 2, 3, 5, 6, 7]

>>> ls1=[1,2,3]
>>> print(ls1*3)

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> [0]*4
[0, 0, 0, 0]

3.1.4 List Slices

#concatenation using +

#repetition using *

#repetition using *

Similar to strings, the slicing can be applied on lists as well. Consider a list t given below, and
a series of examples following based on this object.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 4)

t=['a','b','c','d','e']

Extracting full list without using any index, but only a slicing operator -
>>> print(t[:])

['a', 'b', 'c', 'd', 'e']

Extracting elements from 2nd position -
>>> print(t[1:])

['b', 'c', 'd', 'e']

Extracting first three elements -
>>> print(t[:3])

['a', 'b', 'c']

Selecting some middle elements -
>>> print(t[2:4])

['c', 'd']

Using negative indexing -
>>> print(t[:-2])

['a', 'b', 'c']

Reversing a list using negative value for stride -
>>> print(t[::-1])

['e', 'd', 'c', 'b', 'a']

Modifying (reassignment) only required set of values -
>>> t[1:3]=['p','q']
>>> print(t)

['a', 'p', 'q', 'd', 'e']

Thus, slicing can make many tasks simple.

3.1.5 List Methods
There are several built-in methods in list class for various purposes. Here, we will discuss
some of them.

 append(): This method is used to add a new element at the end of a list.
>>> ls=[1,2,3]
>>> ls.append(‘hi’)
>>> ls.append(10) >>>
print(ls)

[1, 2, 3, ‘hi’, 10]

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 5)

extend(): This method takes a list as an argument and all the elements in this list

are added at the end of invoking list.
>>> ls1=[1,2,3]
>>> ls2=[5,6]
>>> ls2.extend(ls1)
>>> print(ls2)

[5, 6, 1, 2, 3]

Now, in the above example, the list ls1 is unaltered.

sort(): This method is used to sort the contents of the list. By default, the function
will sort the items in ascending order.

>>> ls=[3,10,5, 16,-2]
>>> ls.sort()
>>> print(ls)

[-2, 3, 5, 10, 16]

When we want a list to be sorted in descending order, we need to set the argument as
shown -

>>> ls.sort(reverse=True)
>>> print(ls)
[16, 10, 5, 3, -2]

reverse(): This method can be used to reverse the given list.
>>> ls=[4,3,1,6]
>>> ls.reverse()
>>> print(ls)

[6, 1, 3, 4]

count(): This method is used to count number of occurrences of a particular value
within list.

>>> ls=[1,2,5,2,1,3,2,10]
>>> ls.count(2)

3 #the item 2 has appeared 3 tiles in ls

clear(): This method removes all the elements in the list and makes the list empty.
>>> ls=[1,2,3]
>>> ls.clear()
>>> print(ls)

[]

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 6)

insert(): Used to insert a value before a specified index of the list.
>>> ls=[3,5,10]
>>> ls.insert(1,"hi")
>>> print(ls)

[3, 'hi', 5, 10]

index(): This method is used to get the index position of a particular value in the list.
>>> ls=[4, 2, 10, 5, 3, 2, 6]
>>> ls.index(2)

1
Here, the number 2 is found at the index position 1. Note that, this function will give
index of only the first occurrence of a specified value. The same function can be used

with two more arguments start and end to specify a range within which the search
should take place.

>>> ls=[15, 4, 2, 10, 5, 3, 2, 6] >>>
ls.index(2)

2
>>> ls.index(2,3,7)

6

If the value is not present in the list, it throws ValueError.
>>> ls=[15, 4, 2, 10, 5, 3, 2, 6]
>>> ls.index(53)

ValueError: 53 is not in list

Few important points about List Methods:
1. There is a difference between append() and extend() methods. The former adds the

argument as it is, whereas the latter enhances the existing list. To understand this,
observe the following example -

>>> ls1=[1,2,3]
>>> ls2=[5,6]
>>> ls2.append(ls1)
>>> print(ls2)

[5, 6, [1, 2, 3]]

Here, the argument ls1 for the append() function is treated as one item, and made as an

inner list to ls2. On the other hand, if we replace append() by extend() then the result

would be -

>>> ls1=[1,2,3]
>>> ls2=[5,6]
>>> ls2.extend(ls1)
>>> print(ls2)

[5, 6, 1, 2, 3]

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 7)

2. The sort() function can be applied only when the list contains elements of compatible
types. But, if a list is a mix non-compatible types like integers and string, the comparison
cannot be done. Hence, Python will throw TypeError. For example,

>>> ls=[34, 'hi', -5]
>>> ls.sort()
TypeError: '<' not supported between instances of 'str' and 'int'

Similarly, when a list contains integers and sub-list, it will be an error.

>>> ls=[34,[2,3],5]
>>> ls.sort()
TypeError: '<' not supported between instances of 'list' and 'int'

Integers and floats are compatible and relational operations can be performed on them.
Hence, we can sort a list containing such items.

>>> ls=[3, 4.5, 2]
>>> ls.sort()
>>> print(ls)

[2, 3, 4.5]

3. The sort() function uses one important argument keys. When a list is containing tuples,
it will be useful. We will discuss tuples later in this Module.

4. Most of the list methods like append(), extend(), sort(), reverse() etc. modify the list
object internally and return None.

>>> ls=[2,3]
>>> ls1=ls.append(5)
>>> print(ls)

[2,3,5]
>>> print(ls1)

None

3.1.6 Deleting Elements
Elements can be deleted from a list in different ways. Python provides few built-in methods for
removing elements as given below -

 pop(): This method deletes the last element in the list, by default.
>>> ls=[3,6,-2,8,10]
>>> x=ls.pop()
>>> print(ls)

[3, 6, -2, 8]
>>> print(x)

10

#10 is removed from list and stored in x

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 8)

When an element at a particular index position has to be deleted, then we can give that
position as argument to pop() function.

>>> t = ['a', 'b', 'c']
>>> x = t.pop(1)
>>> print(t)

['a', 'c']
>>> print(x)

b

#item at index 1 is popped

remove(): When we don’t know the index, but know the value to be removed, then
this function can be used.

>>> ls=[5,8, -12,34,2]
>>> ls.remove(34)
>>> print(ls)

[5, 8, -12, 2]

Note that, this function will remove only the first occurrence of the specified value, but
not all occurrences.

>>> ls=[5,8, -12, 34, 2, 6, 34] >>>
ls.remove(34)
>>> print(ls)

[5, 8, -12, 2, 6, 34]

Unlike pop() function, the remove() function will not return the value that has been
deleted.

del: This is an operator to be used when more than one item to be deleted at a time.
Here also, we will not get the items deleted.

>>> ls=[3,6,-2,8,1]
>>> del ls[2] #item at index 2 is deleted
>>> print(ls)

[3, 6, 8, 1]

>>> ls=[3,6,-2,8,1]
>>> del ls[1:4] #deleting all elements from index 1 to 3
>>> print(ls)

[3, 1]

Deleting all odd indexed elements of a list -
>>> t=[‘a’, ‘b’, ‘c’, ‘d’, ‘e’] >>>
del t[1::2]
>>> print(t)

['a', 'c', 'e']

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 9)

3.1.7 Lists and Functions
The utility functions like max(), min(), sum(), len() etc. can be used on lists. Hence most of the
operations will be easy without the usage of loops.

>>> ls=[3,12,5,26, 32,1,4]
>>> max(ls) # prints 32
>>> min(ls) # prints 1
>>> sum(ls) # prints 83
>>> len(ls) # prints 7

>>> avg=sum(ls)/len(ls)
>>> print(avg)

11.857142857142858

When we need to read the data from the user and to compute sum and average of those
numbers, we can write the code as below -

ls= list()
while (True):

x= input('Enter a number: ') if
x== 'done':

break

x= float(x)
ls.append(x)

average = sum(ls) / len(ls)
print('Average:', average)

In the above program, we initially create an empty list. Then, we are taking an infinite whileloop.
As every input from the keyboard will be in the form of a string, we need to convert x into float
type and then append it to a list. When the keyboard input is a string ‘done’, then the loop is
going to get terminated. After the loop, we will find the average of those numbers with the
help of built-in functions sum() and len().

3.1.8 Lists and Strings
Though both lists and strings are sequences, they are not same. In fact, a list of characters is
not same as string. To convert a string into a list, we use a method list() as below -

>>> s="hello"

>>> ls=list(s)

>>> print(ls)

['h', 'e', 'l', 'l', 'o']

The method list() breaks a string into individual letters and constructs a list. If we want a list of
words from a sentence, we can use the following code -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 10)

>>> s="Hello how are you?"

>>> ls=s.split()

>>> print(ls)

['Hello', 'how', 'are', 'you?']

Note that, when no argument is provided, the split() function takes the delimiter as white
space. If we need a specific delimiter for splitting the lines, we can use as shown in
following example -

>>> dt="20/03/2018"

>>> ls=dt.split('/')

>>> print(ls)

['20', '03', '2018']

There is a method join() which behaves opposite to split() function. It takes a list of strings as
argument, and joins all the strings into a single string based on the delimiter provided. For
example -

>>> ls=["Hello", "how", "are", "you"]

>>> d=' '

>>> d.join(ls)

'Hello how are you'

Here, we have taken delimiter d as white space. Apart from space, anything can be taken as
delimiter. When we don’t need any delimiter, use empty string as delimiter.

3.1.9 Parsing Lines
In many situations, we would like to read a file and extract only the lines containing required
pattern. This is known as parsing. As an illustration, let us assume that there is a log file
containing details of email communication between employees of an organization. For all
received mails, the file contains lines as -

From stephen.marquard@uct.ac.za Fri Jan 5 09:14:16 2018

From georgek@uct.ac.za Sat Jan 6 06:12:51 2018

………………

Apart from such lines, the log file also contains mail-contents, to-whom the mail has been
sent etc. Now, if we are interested in extracting only the days of incoming mails, then we can
go for parsing. That is, we are interested in knowing on which of the days, the mails have
been received. The code would be -

fhand = open(‘logFile.txt’)

for line in fhand:

line = line.rstrip()

if not line.startswith('From '):

continue

words = line.split()

print(words[2])

http://www.chetanahegde.in/
mailto:stephen.marquard@uct.ac.za
mailto:georgek@uct.ac.za
mailto:chetanahegde@ieee.org

. 11)

Obviously, all received mails starts from the word From. Hence, we search for only such lines

and then split them into words. Observe that, the first word in the line would be From, second

word would be email-ID and the 3rd word would be day of a week. Hence, we will extract

words[2] which is 3rd word.

3.1.10 Objects and Values
Whenever we assign two variables with same value, the question arises - whether both the
variables are referring to same object, or to different objects. This is important aspect to
know, because in Python everything is a class object. There is nothing like elementary data
type.

Consider a situation -
a= “hi”

b= “hi”

Now, the question is whether both a and b refer to the same string. There are two
possible states -

a hi a

hi

b hi b

In the first situation, a and b are two different objects, but containing same value. The

modification in one object is nothing to do with the other. Whereas, in the second case, both

a and b are referring to the same object. That is, a is an alias name for b and viceversa. In

other words, these two are referring to same memory location.

To check whether two variables are referring to same object or not, we can use is operator.

>>> a= “hi”

>>> b= “hi”

>>> a is b #result is True

>>> a==b #result is True

When two variables are referring to same object, they are called as identical objects.
When two variables are referring to different objects, but contain a same value, they are
known as equivalent objects. For example,

>>> s1=input(“Enter a string:”) #assume you entered hello

>>> s2= input(“Enter a string:”) #assume you entered hello

>>> s1 is s2 #check s1 and s2 are identical

False

>>> s1 == s2 #check s1 and s2 are equivalent

True

Here s1 and s2 are equivalent, but not identical.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 12)

If two objects are identical, they are also equivalent, but if they are equivalent, they are not
necessarily identical.

String literals are interned by default. That is, when two string literals are created in the
program with a same value, they are going to refer same object. But, string variables read
from the key-board will not have this behavior, because their values are depending on the
user’s choice.

Lists are not interned. Hence, we can see following result -

>>> ls1=[1,2,3]

>>> ls2=[1,2,3]

>>> ls1 is ls2 #output is False

>>> ls1 == ls2 #output is True

3.1.11 Aliasing
When an object is assigned to other using assignment operator, both of them will refer to
same object in the memory. The association of a variable with an object is called as
reference.

>>> ls1=[1,2,3]

>>> ls2= ls1

>>> ls1 is ls2 #output is True

Now, ls2 is said to be reference of ls1. In other words, there are two references to the
same object in the memory.

An object with more than one reference has more than one name, hence we say that object
is aliased. If the aliased object is mutable, changes made in one alias will reflect the other.

>>> ls2[1]= 34

>>> print(ls1) #output is [1, 34, 3]

Strings are safe in this regards, as they are immutable.

3.1.12 List Arguments
When a list is passed to a function as an argument, then function receives reference to this list.
Hence, if the list is modified within a function, the caller will get the modified version. Consider
an example -

def del_front(t):

del t[0]

ls = ['a', 'b', 'c']

del_front(ls)

print(ls) # output is ['b', 'c']

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 13)

Here, the argument ls and the parameter t both are aliases to same object.

One should understand the operations that will modify the list and the operations that
create a new list. For example, the append() function modifies the list, whereas the +
operator creates a new list.

>>> t1 = [1, 2]

>>> t2 = t1.append(3)

>>> print(t1)

>>> print(t2)

>>> t3 = t1 + [5]

>>> print(t3)

>>> t2 is t3

#output is [1 2 3]

#prints None

#output is [1 2 3 5]

#output is False

Here, after applying append() on t1 object, the t1 itself has been modified and t2 is not going
to get anything. But, when + operator is applied, t1 remains same but t3 will get the updated
result.

The programmer should understand such differences when he/she creates a function
intending to modify a list. For example, the following function has no effect on the original
list -

def test(t):

t=t[1:]

ls=[1,2,3]

test(ls)

print(ls) #prints [1, 2, 3]

One can write a return statement after slicing as below -

def test(t):

return t[1:]

ls=[1,2,3]

ls1=test(ls)

print(ls1) #prints [2, 3]

print(ls) #prints [1, 2, 3]

In the above example also, the original list is not modified, because a return statement
always creates a new object and is assigned to LHS variable at the position of function call.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 14)

3.2 DICTIONARIES
A dictionary is a collection of unordered set of key:value pairs, with the requirement that keys
are unique in one dictionary. Unlike lists and strings where elements are accessed using
index values (which are integers), the values in dictionary are accessed using keys. A key in
dictionary can be any immutable type like strings, numbers and tuples. (The tuple can be
made as a key for dictionary, only if that tuple consist of string/number/ sub-tuples). As lists
are mutable - that is, can be modified using index assignments, slicing, or using methods like
append(), extend() etc, they cannot be a key for dictionary.

One can think of a dictionary as a mapping between set of indices (which are actually keys)
and a set of values. Each key maps to a value.

An empty dictionary can be created using two ways -
d= {}

OR
d=dict()

To add items to dictionary, we can use square brackets as -
>>> d={}

>>> d["Mango"]="Fruit"

>>> d["Banana"]="Fruit"

>>> d["Cucumber"]="Veg"

>>> print(d)

{'Mango': 'Fruit', 'Banana': 'Fruit', 'Cucumber': 'Veg'}

To initialize a dictionary at the time of creation itself, one can use the code like -
>>> tel_dir={'Tom': 3491, 'Jerry':8135}

>>> print(tel_dir)

{'Tom': 3491, 'Jerry': 8135}

>>> tel_dir['Donald']=4793

>>> print(tel_dir)

{'Tom': 3491, 'Jerry': 8135, 'Donald': 4793}

NOTE that the order of elements in dictionary is unpredictable. That is, in the above
example, don’t assume that 'Tom': 3491 is first item, 'Jerry': 8135 is second item
etc. As dictionary members are not indexed over integers, the order of elements inside it
may vary. However, using a key, we can extract its associated value as shown below -

>>> print(tel_dir['Jerry'])

8135

Here, the key 'Jerry' maps with the value 8135, hence it doesn’t matter where exactly it is

inside the dictionary.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 15)

If a particular key is not there in the dictionary and if we try to access such key, then the
KeyError is generated.

>>> print(tel_dir['Mickey'])

KeyError: 'Mickey'

The len() function on dictionary object gives the number of key-value pairs in that object.
>>> print(tel_dir)

{'Tom': 3491, 'Jerry': 8135, 'Donald': 4793} >>>

len(tel_dir)

3

The in operator can be used to check whether any key (not value) appears in the dictionary
object.

>>> 'Mickey' in tel_dir #output is False

>>> 'Jerry' in tel_dir #output is True

>>> 3491 in tel_dir #output is False

We observe from above example that the value 3491 is associated with the key 'Tom' in

tel_dir. But, the in operator returns False.

The dictionary object has a method values() which will return a list of all the values
associated with keys within a dictionary. If we would like to check whether a particular value
exist in a dictionary, we can make use of it as shown below -

>>> 3491 in tel_dir.values() #output is True

The in operator behaves differently in case of lists and dictionaries as explained
hereunder-

When in operator is used to search a value in a list, then linear search algorithm is

used internally. That is, each element in the list is checked one by one sequentially.
This is considered to be expensive in the view of total time taken to process.
Because, if there are 1000 items in the list, and if the element in the list which we are
search for is in the last position (or if it does not exists), then before yielding result of
search (True or False), we would have done 1000 comparisons. In other words,
linear search requires n number of comparisons for the input size of n elements.
Time complexity of the linear search algorithm is O(n).

The keys in dictionaries of Python are basically hashable elements. The concept of
hashing is applied to store (or maintain) the keys of dictionaries. Normally hashing
techniques have the time complexity as O(log n) for basic operations like insertion,
deletion and searching. Hence, the in operator applied on keys of dictionaries works
better compared to that on lists. (Hashing technique is explained at the end of this
Section, for curious readers)

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 16)

3.2.1 Dictionary as a Set of Counters
Assume that we need to count the frequency of alphabets in a given string. There are
different methods to do it -

 Create 26 variables to represent each alphabet. Traverse the given string and
increment the corresponding counter when an alphabet is found.
 Create a list with 26 elements (all are zero in the beginning) representing alphabets.
Traverse the given string and increment corresponding indexed position in the list
when an alphabet is found.

 Create a dictionary with characters as keys and counters as values. When we find a
character for the first time, we add the item to dictionary. Next time onwards, we
increment the value of existing item.

Each of the above methods will perform same task, but the logic of implementation will be
different. Here, we will see the implementation using dictionary.

s=input("Enter a string:")

d=dict()

for ch in s:

if ch not in d:

d[ch]=1

else:

d[ch]+=1

print(d)

The sample output would be -

Enter a string: Hello World

#read a string

#create empty dictionary

#traverse through string

#if new character found

#initialize counter to 1

#otherwise, increment counter

#display the dictionary

{'H': 1, 'e': 1, 'l': 3, 'o': 2, ' ': 1, 'W': 1, 'r': 1, 'd': 1}

It can be observed from the output that, a dictionary is created here with characters as keys
and frequencies as values. Note that, here we have computed histogram of counters.

Dictionary in Python has a method called as get(), which takes key and a default value as
two arguments. If key is found in the dictionary, then the get() function returns
corresponding value, otherwise it returns default value. For example,

>>> tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}

>>> print(tel_dir.get('Jerry',0))

8135

>>> print(tel_dir.get('Donald',0))

0

In the above example, when the get() function is taking 'Jerry' as argument, it returned

corresponding value, as 'Jerry' is found in tel_dir . Whereas, when get() is used with

'Donald' as key, the default value 0 (which is provided by us) is returned.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 17)

The function get() can be used effectively for calculating frequency of alphabets in a string.
Here is the modified version of the program -

s=input("Enter a string:")

d=dict()

for ch in s:

d[ch]=d.get(ch,0)+1

print(d)

In the above program, for every character ch in a given string, we will try to retrieve a

value. When the ch is found in d, its value is retrieved, 1 is added to it, and restored. If ch is

not found, 0 is taken as default and then 1 is added to it.

3.2.2 Looping and Dictionaries
When a for-loop is applied on dictionaries, it will iterate over the keys of dictionary. If we want
to print key and values separately, we need to use the statements as shown -

tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}

for k in tel_dir:

print(k, tel_dir[k])

Output would be -
Tom 3491

Jerry 8135

Mickey 1253

Note that, while accessing items from dictionary, the keys may not be in order. If we want to
print the keys in alphabetical order, then we need to make a list of the keys, and then sort that
list. We can do so using keys() method of dictionary and sort() method of lists. Consider
the following code -

tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}

ls=list(tel_dir.keys())

print("The list of keys:",ls)

ls.sort()

print("Dictionary elements in alphabetical order:")

for k in ls:

print(k, tel_dir[k])

The output would be -
The list of keys: ['Tom', 'Jerry', 'Mickey']

Dictionary elements in alphabetical order:

Jerry 8135

Mickey 1253

Tom 3491

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 18)

Note: The key-value pair from dictionary can be together accessed with the help of a
method items() as shown -

>>> d={'Tom':3412, 'Jerry':6781, 'Mickey':1294}

>>> for k,v in d.items():

print(k,v)

Output:
Tom 3412

Jerry 6781

Mickey 1294

The usage of comma-separated list k,v here is internally a tuple (another data structure in
Python, which will be discussed later).

3.2.3 Dictionaries and Files
A dictionary can be used to count the frequency of words in a file. Consider a file myfile.txt

consisting of following text -
hello, how are you?
I am doing fine.
How about you?

Now, we need to count the frequency of each of the word in this file. So, we need to take an
outer loop for iterating over entire file, and an inner loop for traversing each line in a file. Then
in every line, we count the occurrence of a word, as we did before for a character. The
program is given as below -

fname=input("Enter file name:")

try:

fhand=open(fname)

except:

print("File cannot be opened")

exit()

d=dict()

for line in fhand:

for word in line.split():

d[word]=d.get(word,0)+1

print(d)

The output of this program when the input file is myfile.txt would be -

Enter file name: myfile.txt

{'hello,': 1, 'how': 1, 'are': 1, 'you?': 2, 'I': 1, 'am': 1,

'doing': 1, 'fine.': 1, 'How': 1, 'about': 1}

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 19)

Few points to be observed in the above output -
 The punctuation marks like comma, full point, question mark etc. are also
considered as a part of word and stored in the dictionary. This means, when a
particular word appears in a file with and without punctuation mark, then there will be
multiple entries of that word.

 The word ‘how’ and ‘How’ are treated as separate words in the above example
because of uppercase and lowercase letters.

While solving problems on text analysis, machine learning, data analysis etc. such kinds of
treatment of words lead to unexpected results. So, we need to be careful in parsing the text
and we should try to eliminate punctuation marks, ignoring the case etc. The procedure is
discussed in the next section.

3.2.4 Advanced Text Parsing
As discussed in the previous section, during text parsing, our aim is to eliminate
punctuation marks as a part of word. The string module of Python provides a list of all
punctuation marks as shown -

>>> import string

>>> string.punctuation

'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

The str class has a method maketrans() which returns a translation table usable for another
method translate(). Consider the following syntax to understand it more clearly -

line.translate(str.maketrans(fromstr, tostr, deletestr))

The above statement replaces the characters in fromstr with the character in the same

position in tostr and delete all characters that are in deletestr. The fromstr and

tostr can be empty strings and the deletestr parameter can be omitted.

Using these functions, we will re-write the program for finding frequency of words in a file.

import string

fname=input("Enter file name:")

try:

fhand=open(fname)

except:

print("File cannot be opened")

exit()

d=dict()

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 20)

for line in fhand:

line=line.rstrip()

line=line.translate(line.maketrans('','',string.punctuation))

line=line.lower()

for word in line.split():

d[word]=d.get(word,0)+1

print(d)

Now, the output would be -
Enter file name:myfile.txt

{'hello': 1, 'how': 2, 'are': 1, 'you': 2, 'i': 1, 'am': 1,

'doing': 1, 'fine': 1, 'about': 1}

Comparing the output of this modified program with the previous one, we can make out that
all the punctuation marks are not considered for parsing and also the case of the alphabets
are ignored.

3.2.5 Debugging
When we are working with big datasets (like file containing thousands of pages), it is
difficult to debug by printing and checking the data by hand. So, we can follow any of the
following procedures for easy debugging of the large datasets -

Scale down the input: If possible, reduce the size of the dataset. For example if the
program reads a text file, start with just first 10 lines or with the smallest example you
can find. You can either edit the files themselves, or modify the program so it reads only
the first n lines. If there is an error, you can reduce n to the smallest value that
manifests the error, and then increase it gradually as you correct the errors.
Check summaries and types: Instead of printing and checking the entire dataset,

consider printing summaries of the data: for example, the number of items in a
dictionary or the total of a list of numbers. A common cause of runtime errors is a value
that is not the right type. For debugging this kind of error, it is often enough to print the
type of a value.
Write self-checks: Sometimes you can write code to check for errors automatically. For
example, if you are computing the average of a list of numbers, you could check that the
result is not greater than the largest element in the list or less than the smallest. This is
called a sanity check because it detects results that are “completely illogical”. Another
kind of check compares the results of two different computations to see if they are
consistent. This is called a consistency check.

Pretty print the output: Formatting debugging output can make it easier to spot an
error.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 21)

Hashing Technique (For curious minds - Only for understanding, not for
Exams!!)
Hashing is a way of representing dictionaries (Not a Python data structure Dictionary!!).
Dictionary is an abstract data type with a set of operations searching, insertion and deletion
defined on its elements. The elements of dictionary can be numeric or characters or most
of the times, records. Usually, a record consists of several fields; each may be of different
data types. For example, student record may contain student id, name, gender, marks etc.
Every record is usually identified by some key. Hashing technique is very useful in
database management, because it is considered to be very efficient searching technique.

Here we will consider the implementation of a dictionary of n records with keys k1, k2 …kn.
Hashing is based on the idea of distributing keys among a one-dimensional array

H[0…m-1], called hash table.

For each key, a value is computed using a predefined function called hash function. This
function assigns an integer, called hash address, between 0 to m-1 to each key. Based on
the hash address, the keys will be distributed in a hash table.

For example, if the keys k1, k2, …., kn are integers, then a hash function can be
h(K) = K mod m.

Let us take keys as 65, 78, 22, 30, 47, 89. And let hash function be,
h(k) = k%10.

Then the hash addresses may be any value from 0 to 9. For each key, hash address will be
computed as -

h(65) = 65 %10 = 5
h(78) = 78%10 = 8
h(22)= 22 % 10 =2
h(30)= 30 %10 =0
h(47) = 47 %10 = 7
h(89)=89 % 10 = 9

Now, each of these keys can be hashed into a hash table as -

0 1 2 3 4 5 6 7 8 9

30 22 65 47 78 89

In general, a hash function should satisfy the following requirements:
 A hash function needs to distribute keys among the cells of hash table as evenly as
possible.

 A hash function has to be easy to compute.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 22)

Hash Collisions: Let us have n keys and the hash table is of size m such that m<n. As each
key will have an address with any value between 0 to m-1, it is obvious that more than one key
will have same hash address. That is, two or more keys need to be hashed into the same cell of
hash table. This situation is called as hash collision.

In the worst case, all the keys may be hashed into same cell of hash table. But, we can avoid
this by choosing proper size of hash table and hash function. Anyway, every hashing scheme
must have a mechanism for resolving hash collision. There are two methods for hash collision
resolution, viz.

 Open hashing

 closed hashing

Open Hashing (or Separate Chaining): In open hashing, keys are stored in linked lists
attached to cells of a hash table. Each list contains all the keys hashed to its cell. For
example, consider the elements

65, 78, 22, 30, 47, 89, 55, 42, 18, 29, 37.

If we take the hash function as h(k)= k%10, then the hash addresses will be -

h(65) = 65 %10 = 5
h(22)= 22 % 10 =2
h(47) = 47 %10 = 7
h(55)=55%10 =5
h(18)=18%10 =8
h(37)=37%10 =7

The hash table would be -

0 1 2

h(78) = 78%10 = 8
h(30)= 30 %10 =0
h(89)=89 % 10 = 9
h(42)=42%10 =2
h(29)=29%10=9

3 4 5 6 7 8 9

30 22 65 47 78 89

42 55 37 18 29

Operations on Hashing:

 Searching: Now, if we want to search for the key element in a hash table, we need
to find the hash address of that key using same hash function. Using the obtained
hash address, we need to search the linked list by tracing it, till either the key is
found or list gets exhausted.
 Insertion: Insertion of new element to hash table is also done in similar manner.
Hash key is obtained for new element and is inserted at the end of the list for that
particular cell.

 Deletion: Deletion of element is done by searching that element and then deleting it
from a linked list.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 23)

Closed Hashing (or Open Addressing): In this technique, all keys are stored in the
hash table itself without using linked lists. Different methods can be used to resolve hash
collisions. The simplest technique is linear probing.

This method suggests to check the next cell from where the collision occurs. If that cell is
empty, the key is hashed there. Otherwise, we will continue checking for the empty cell in a
circular manner. Thus, in this technique, the hash table size must be at least as large as the
total number of keys. That is, if we have n elements to be hashed, then the size of hash table
should be greater or equal to n.

Example: Consider the elements 65, 78, 18, 22, 30, 89, 37, 55, 42
Let us take the hash function as h(k)= k%10, then the hash addresses will be -

h(65) = 65 %10 = 5 h(78) = 78%10 = 8
h(18)=18%10 =8 h(22)= 22 % 10 =2
h(30)= 30 %10 =0 h(89)=89 % 10 = 9
h(37)=37%10 =7 h(55)=55%10 =5
h(42)=42%10 =2

Since there are 9 elements in the list, our hash table should at least be of size 9. Here we are
taking the size as 10.

Now, hashing is done as below -

0 1 2 3 4 5 6 7 8 9

30 89 22 42 65 55 37 78 18

Drawbacks:

 Searching may become like a linear search and hence not efficient.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 24)

3.3 TUPLES
A tuple is a sequence of items, similar to lists. The values stored in the tuple can be of any type
and they are indexed using integers. Unlike lists, tuples are immutable. That is, values within
tuples cannot be modified/reassigned. Tuples are comparable and hashable objects. Hence,
they can be made as keys in dictionaries.

A tuple can be created in Python as a comma separated list of items - may or may not be
enclosed within parentheses.

>>> t='Mango', 'Banana', 'Apple'

>>> print(t)

('Mango', 'Banana', 'Apple')

>>> t1=('Tom', 341, 'Jerry')

>>> print(t1)

('Tom', 341, 'Jerry')

Observe that tuple values can be of mixed types.

#without parentheses

#with parentheses

If we would like to create a tuple with single value, then just a parenthesis will not suffice. For
example,

>>> x=(3) #trying to have a tuple with single item >>>

print(x)

3 #observe, no parenthesis found

>>> type(x)

<class 'int'> #not a tuple, it is integer!!

Thus, to have a tuple with single item, we must include a comma after the item. That is,

>>> t=3, #or use the statement t=(3,)

>>> type(t) #now this is a tuple

<class 'tuple'>

An empty tuple can be created either using a pair of parenthesis or using a function tuple() as
below -

>>> t1=()

>>> type(t1)

<class 'tuple'>

>>> t2=tuple()

>>> type(t2)

<class 'tuple'>

If we provide an argument of type sequence (a list, a string or tuple) to the method tuple(),
then a tuple with the elements in a given sequence will be created -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 25)

Create tuple using string:

>>> t=tuple('Hello')

>>> print(t)

('H', 'e', 'l', 'l', 'o')

Create tuple using list:

>>> t=tuple([3,[12,5],'Hi'])

>>> print(t)

(3, [12, 5], 'Hi')

Create tuple using another tuple:

>>> t=('Mango', 34, 'hi')

>>> t1=tuple(t)

>>> print(t1)

('Mango', 34, 'hi')

>>> t is t1

True

Note that, in the above example, both t and t1 objects are referring to same memory
location. That is, t1 is a reference to t.

Elements in the tuple can be extracted using square-brackets with the help of indices.
Similarly, slicing also can be applied to extract required number of items from tuple.

>>> t=('Mango', 'Banana', 'Apple')

>>> print(t[1])

Banana

>>> print(t[1:])

('Banana', 'Apple')

>>> print(t[-1])

Apple

Modifying the value in a tuple generates error, because tuples are immutable -
>>> t[0]='Kiwi'

TypeError: 'tuple' object does not support item assignment

We wanted to replace ‘Mango’ by ‘Kiwi’, which did not work using assignment. But, a tuple
can be replaced with another tuple involving required modifications -

>>> t=('Kiwi',)+t[1:]

>>> print(t)

('Kiwi', 'Banana', 'Apple')

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 26)

3.3.1 Comparing Tuples
Tuples can be compared using operators like >, <, >=, == etc. The comparison happens
lexicographically. For example, when we need to check equality among two tuple objects, the
first item in first tuple is compared with first item in second tuple. If they are same, 2nd items
are compared. The check continues till either a mismatch is found or items get over. Consider
few examples -

>>> (1,2,3)==(1,2,5)

False

>>> (3,4)==(3,4)

True

The meaning of < and > in tuples is not exactly less than and greater than, instead, it
means comes before and comes after. Hence in such cases, we will get results different from
checking equality (==).

>>> (1,2,3)<(1,2,5)

True

>>> (3,4)<(5,2)

True

When we use relational operator on tuples containing non-comparable types, then
TypeError will be thrown.

>>> (1,'hi')<('hello','world')

TypeError: '<' not supported between instances of 'int' and 'str'

The sort() function internally works on similar pattern - it sorts primarily by first element, in
case of tie, it sorts on second element and so on. This pattern is known as DSU -

 Decorate a sequence by building a list of tuples with one or more sort keys
preceding the elements from the sequence,

 Sort the list of tuples using the Python built-in sort(), and
 Undecorate by extracting the sorted elements of the sequence.

Consider a program of sorting words in a sentence from longest to shortest, which
illustrates DSU property.

txt = 'Ram and Seeta went to forest with Lakshman' words

= txt.split()

t = list()

for word in words:

t.append((len(word), word))

print(‘The list is:’,t)

t.sort(reverse=True) res

= list()

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 27)

for length, word in t:

res.append(word)

print(‘The sorted list:’,res)

The output would be -

The list is: [(3, 'Ram'), (3, 'and'), (5, 'Seeta'), (4, 'went'),

(2, 'to'), (6, 'forest'), (4, 'with'), (8, 'Lakshman')]

The sorted list: ['Lakshman', 'forest', 'Seeta', 'went', 'with',

'and', 'Ram', 'to']

In the above program, we have split the sentence into a list of words. Then, a tuple
containing length of the word and the word itself are created and are appended to a list.
Observe the output of this list - it is a list of tuples. Then we are sorting this list in
descending order. Now for sorting, length of the word is considered, because it is a first
element in the tuple. At the end, we extract length and word in the list, and create another list
containing only the words and print it.

3.3.2 Tuple Assignment
Tuple has a unique feature of having it at LHS of assignment operator. This allows us to
assign values to multiple variables at a time.

>>> x,y=10,20

>>> print(x) #prints 10

>>> print(y) #prints 20

When we have list of items, they can be extracted and stored into multiple variables as
below -

>>> ls=["hello", "world"]

>>> x,y=ls

>>> print(x) #prints hello

>>> print(y) #prints world

This code internally means that -
x= ls[0]

y= ls[1]

The best known example of assignment of tuples is swapping two values as below -
>>> a=10

>>> b=20

>>> a, b = b, a

>>> print(a, b) #prints 20 10

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 28)

In the above example, the statement a, b = b, a is treated by Python as - LHS is a set
of variables, and RHS is set of expressions. The expressions in RHS are evaluated and
assigned to respective variables at LHS.

Giving more values than variables generates ValueError -
>>> a, b=10,20,5

ValueError: too many values to unpack (expected 2)

While doing assignment of multiple variables, the RHS can be any type of sequence like
list, string or tuple. Following example extracts user name and domain from an email ID.

>>> email='chetanahegde@ieee.org'

>>> usrName, domain = email.split('@')

>>> print(usrName) #prints chetanahegde

>>> print(domain) #prints ieee.org

3.3.3 Dictionaries and Tuples
Dictionaries have a method called items() that returns a list of tuples, where each tuple is a
key-value pair as shown below -

>>> d = {'a':10, 'b':1, 'c':22} >>>

t = list(d.items())

>>> print(t)

[('b', 1), ('a', 10), ('c', 22)]

As dictionary may not display the contents in an order, we can use sort() on lists and then
print in required order as below -

>>> d = {'a':10, 'b':1, 'c':22} >>>

t = list(d.items())

>>> print(t)

[('b', 1), ('a', 10), ('c', 22)] >>>

t.sort()

>>> print(t)

[('a', 10), ('b', 1), ('c', 22)]

3.3.4 Multiple Assignment with Dictionaries
We can combine the method items(), tuple assignment and a for-loop to get a pattern for
traversing dictionary:

d={'Tom': 1292, 'Jerry': 3501, 'Donald': 8913} for

key, val in list(d.items()):
print(val,key)

The output would be -
1292 Tom

3501 Jerry

8913 Donald

http://www.chetanahegde.in/
mailto:email='chetanahegde@ieee.org'
mailto:chetanahegde@ieee.org

. 29)

This loop has two iteration variables because items() returns a list of tuples. And key, val

is a tuple assignment that successively iterates through each of the key-value pairs in the

dictionary. For each iteration through the loop, both key and value are advanced to the next

key-value pair in the dictionary in hash order.

Once we get a key-value pair, we can create a list of tuples and sort them -

d={'Tom': 9291, 'Jerry': 3501, 'Donald': 8913}

ls=list()

for key, val in d.items():

ls.append((val,key)) #observe inner parentheses

print("List of tuples:",ls)

ls.sort(reverse=True)

print("List of sorted tuples:",ls)

The output would be -
List of tuples: [(9291, 'Tom'), (3501, 'Jerry'), (8913, 'Donald')]

List of sorted tuples: [(9291, 'Tom'), (8913, 'Donald'), (3501,

'Jerry')]

In the above program, we are extracting key, val pair from the dictionary and appending it to

the list ls. While appending, we are putting inner parentheses to make sure that each pair is

treated as a tuple. Then, we are sorting the list in the descending order. The sorting would

happen based on the telephone number (val), but not on name (key), as first element in

tuple is telephone number (val).

3.3.5 The Most Common Words
We will apply the knowledge gained about strings, tuple, list and dictionary till here to solve a
problem - write a program to find most commonly used words in a text file.

The logic of the program is -

Open a file

Take a loop to iterate through every line of a file.
Remove all punctuation marks and convert alphabets into lower case (Reason
explained in Section 3.2.4)

Take a loop and iterate over every word in a line.
If the word is not there in dictionary, treat that word as a key, and initialize its value
as 1. If that word already there in dictionary, increment the value.

Once all the lines in a file are iterated, you will have a dictionary containing distinct
words and their frequency. Now, take a list and append each key-value
(wordfrequency) pair into it.
Sort the list in descending order and display only 10 (or any number of) elements
from the list to get most frequent words.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 30)

import string
fhand = open('test.txt')
counts = dict()
for line in fhand:

line = line.translate(str.maketrans('', '',string.punctuation))
line = line.lower()

for word in line.split():
if word not in counts:

counts[word] = 1
else:

counts[word] += 1

lst = list()
for key, val in list(counts.items()):

lst.append((val, key))

lst.sort(reverse=True)
for key, val in lst[:10]:

print(key, val)

Run the above program on any text file of your choice and observe the output.

3.3.6 Using Tuples as Keys in Dictionaries
As tuples and dictionaries are hashable, when we want a dictionary containing composite
keys, we will use tuples. For Example, we may need to create a telephone directory where
name of a person is Firstname-last name pair and value is the telephone number. Our job
is to assign telephone numbers to these keys. Consider the program to do this task -

names=(('Tom','Cat'),('Jerry','Mouse'), ('Donald', 'Duck'))
number=[3561, 4014, 9813]

telDir={}

for i in range(len(number)):
telDir[names[i]]=number[i]

for fn, ln in telDir:

print(fn, ln, telDir[fn,ln])

The output would be -
Tom Cat 3561
Jerry Mouse 4014
Donald Duck 9813

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

.

3
1

31)

3.3.7 Summary on Sequences: Strings, Lists and Tuples
Till now, we have discussed different types of sequences viz. strings, lists and tuples. In
many situations these sequences can be used interchangeably. Still, due their difference in
behavior and ability, we may need to understand pros and cons of each of them and then
to decide which one to use in a program. Here are few key points -

1. Strings are more limited compared to other sequences like lists and Tuples.
Because, the elements in strings must be characters only. Moreover, strings are
immutable. Hence, if we need to modify the characters in a sequence, it is better to
go for a list of characters than a string.

2. As lists are mutable, they are most common compared to tuples. But, in some
situations as given below, tuples are preferable.

a. When we have a return statement from a function, it is better to use tuples
rather than lists.

b. When a dictionary key must be a sequence of elements, then we must use
immutable type like strings and tuples

c. When a sequence of elements is being passed to a function as arguments,
usage of tuples reduces unexpected behavior due to aliasing.

3. As tuples are immutable, the methods like sort() and reverse() cannot be applied on
them. But, Python provides built-in functions sorted() and reversed() which will take
a sequence as an argument and return a new sequence with modified results.

3.3.8 Debugging
Lists, Dictionaries and Tuples are basically data structures. In real-time programming, we
may require compound data structures like lists of tuples, dictionaries containing tuples and
lists etc. But, these compound data structures are prone to shape errors - that is, errors
caused when a data structure has the wrong type, size, composition etc. For example,
when your code is expecting a list containing single integer, but you are giving a plain
integer, then there will be an error.

When debugging a program to fix the bugs, following are the few things a programmer can
try -

Reading: Examine your code, read it again and check that it says what you meant
to say.

Running: Experiment by making changes and running different versions. Often if
you display the right thing at the right place in the program, the problem becomes
obvious, but sometimes you have to spend some time to build scaffolding.

 Ruminating: Take some time to think! What kind of error is it: syntax, runtime,
semantic? What information can you get from the error messages, or from the output
of the program? What kind of error could cause the problem you’re seeing? What did
you change last, before the problem appeared?

Retreating: At some point, the best thing to do is back off, undoing recent changes,

until you get back to a program that works and that you understand. Then you can
start rebuilding.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 32

32)

3.4 REGULAR EXPRESSIONS
Searching for required patterns and extracting only the lines/words matching the pattern is a
very common task in solving problems programmatically. We have done such tasks earlier
using string slicing and string methods like split(), find() etc. As the task of searching and
extracting is very common, Python provides a powerful library called regular
expressions to handle these tasks elegantly. Though they have quite complicated syntax,
they provide efficient way of searching the patterns.

The regular expressions are themselves little programs to search and parse strings. To use
them in our program, the library/module re must be imported. There is a search() function in
this module, which is used to find particular substring within a string. Consider the
following example -

import re

fhand = open('myfile.txt')

for line in fhand:

line = line.rstrip()

if re.search('how', line):

print(line)

By referring to file myfile.txt that has been discussed in previous Chapters, the output would
be -

hello, how are you?

how about you?

In the above program, the search() function is used to search the lines containing a word
how.

One can observe that the above program is not much different from a program that uses
find() function of strings. But, regular expressions make use of special characters with
specific meaning. In the following example, we make use of caret (^) symbol, which
indicates beginning of the line.

import re

hand = open('myfile.txt')

for line in hand:

line = line.rstrip()

if re.search('^how', line):

print(line)

The output would be -
how about you?

Here, we have searched for a line which starts with a string how. Again, this program will
not makes use of regular expression fully. Because, the above program would have been

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 33)

written using a string function startswith(). Hence, in the next section, we will understand the

true usage of regular expressions.

3.4.1 Character Matching in Regular Expressions
Python provides a list of meta-characters to match search strings. Table 3.1 shows the

details of few important metacharacters. Some of the examples for quick and easy
understanding of regular expressions are given in Table 3.2.

Table 3.1 List of Important Meta-Characters

Character Meaning
^ (caret) Matches beginning of the line
$ Matches end of the line
. (dot) Matches any single character except newline. Using option m, then

newline also can be matched
[…] Matches any single character in brackets
[^…] Matches any single character NOT in brackets
re* Matches 0 or more occurrences of preceding expression.
re+ Matches 1 or more occurrence of preceding expression.
re? Matches 0 or 1 occurrence of preceding expression.
re{ n} Matches exactly n number of occurrences of preceding expression.
re{ n,} Matches n or more occurrences of preceding expression.
re{ n, m} Matches at least n and at most m occurrences of preceding expression.
a| b Matches either a or b.
(re) Groups regular expressions and remembers matched text.
\d Matches digits. Equivalent to [0-9].
\D Matches non-digits.
\w Matches word characters.
\W Matches non-word characters.
\s Matches whitespace. Equivalent to [\t\n\r\f].
\S Matches non-whitespace.
\A Matches beginning of string.
\Z Matches end of string. If a newline exists, it matches just before

newline.
\z Matches end of string.
\b Matches the empty string, but only at the start or end of a word.
\B Matches the empty string, but not at the start or end of a word.
() When parentheses are added to a regular expression, they are ignored

for the purpose of matching, but allow you to extract a particular subset
of the matched string rather than the whole string when using
findall()

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 34)

Table 3.2 Examples for Regular Expressions

Expression Description
[Pp]ython Match "Python" or "python"
rub[ye] Match "ruby" or "rube"
[aeiou] Match any one lowercase vowel
[0-9] Match any digit; same as [0123456789]
[a-z] Match any lowercase ASCII letter
[A-Z] Match any uppercase ASCII letter
[a-zA-Z0-9] Match any of uppercase, lowercase alphabets and digits
[^aeiou] Match anything other than a lowercase vowel
[^0-9] Match anything other than a digit

Most commonly used metacharacter is dot, which matches any character. Consider the

following example, where the regular expression is for searching lines which starts with I

and has any two characters (any character represented by two dots) and then has a

character m.

import re

fhand = open('myfile.txt')

for line in fhand:

line = line.rstrip()

if re.search('^I..m', line):

print(line)

The output would be -
I am doing fine.

Note that, the regular expression ^I..m not only matches ‘I am’, but it can match ‘Isdm’,

‘I*3m’ and so on. That is, between I and m, there can be any two characters.

In the previous program, we knew that there are exactly two characters between I and m.
Hence, we could able to give two dots. But, when we don’t know the exact number of
characters between two characters (or strings), we can make use of dot and + symbols
together. Consider the below given program -

import re

hand = open('myfile.txt')

for line in hand:

line = line.rstrip()

if re.search('^h.+u', line):

print(line)

The output would be -

hello, how are you?

how about you?

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 35)

Observe the regular expression ^h.+u here. It indicates that, the string should be starting

with h and ending with u and there may by any number of (dot and +) characters in-

between.

Few examples:

To understand the behavior of few basic meta characters, we will see some examples. The

file used for these examples is mbox-short.txt which can be downloaded from -
https://www.py4e.com/code3/mbox-short.txt

Use this as input and try following examples -

Pattern to extract lines starting with the word From (or from) and ending with edu:
import re

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

pattern = ‘^[Ff]rom.*edu$’

if re.search(pattern, line):

print(line)

Here the pattern given for regular expression indicates that the line should start with
either From or from. Then there may be 0 or more characters, and later the line should
end with edu.

Pattern to extract lines ending with any digit:

Replace the pattern by following string, rest of the program will remain the same.

pattern = ‘[0-9]$’

Using Not :
pattern = ‘^[^a-z0-9]+’

Here, the first ^ indicates we want something to match in the beginning of a line. Then, the
^ inside square-brackets indicate do not match any single character within bracket. Hence,
the whole meaning would be - line must be started with anything other than a lower-case
alphabets and digits. In other words, the line should not be started with lowercase
alphabet and digits.

Start with upper case letters and end with digits:
pattern = '^[A-Z].*[0-9]$'

Here, the line should start with capital letters, followed by 0 or more characters, but must
end with any digit.

http://www.chetanahegde.in/
https://www.py4e.com/code3/mbox-short.txt
mailto:chetanahegde@ieee.org

. 36)

3.4.2 Extracting Data using Regular Expressions
Python provides a method findall() to extract all of the substrings matching a regular
expression. This function returns a list of all non-overlapping matches in the string. If there is
no match found, the function returns an empty list. Consider an example of extracting
anything that looks like an email address from any line.

import re

s = 'A message from csev@umich.edu to cwen@iupui.edu about meeting

@2PM'

lst = re.findall('\S+@\S+', s)

print(lst)

The output would be -
['csev@umich.edu', 'cwen@iupui.edu']

Here, the pattern indicates at least one non-white space characters (\S) before @ and at

least one non-white space after @. Hence, it will not match with @2pm, because of a

whitespace before @.

Now, we can write a complete program to extract all email-ids from the file.

import re

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

x = re.findall('\S+@\S+', line) if

len(x) > 0:

print(x)

Here, the condition len(x) > 0 is checked because, we want to print only the line which

contain an email-ID. If any line do not find the match for a pattern given, the findall()

function will return an empty list. The length of empty list will be zero, and hence we would like

to print the lines only with length greater than 0.

The output of above program will be something as below -

['stephen.marquard@uct.ac.za']

['<postmaster@collab.sakaiproject.org>']

['<200801051412.m05ECIaH010327@nakamura.uits.iupui.edu>']

['<source@collab.sakaiproject.org>;']

['<source@collab.sakaiproject.org>;']

['<source@collab.sakaiproject.org>;']

['apache@localhost)']

……………………………….

………………………………..

http://www.chetanahegde.in/
mailto:csev@umich.edu
mailto:cwen@iupui.edu
mailto:'cwen@iupui.edu'
mailto:'stephen.marquard@uct.ac.za'
mailto:postmaster@collab.sakaiproject.org
mailto:200801051412.m05ECIaH010327@nakamura.uits.iupui.edu
mailto:source@collab.sakaiproject.org
mailto:source@collab.sakaiproject.org
mailto:source@collab.sakaiproject.org
mailto:chetanahegde@ieee.org

. 37)

Note that, apart from just email-ID’s, the output contains additional characters (<, >, ; etc)
attached to the extracted pattern. To remove all that, refine the pattern. That is, we want
email-ID to be started with any alphabets or digits, and ending with only alphabets. Hence, the
statement would be -

x = re.findall('[a-zA-Z0-9]\S*@\S*[a-zA-Z]', line)

3.4.3 Combining Searching and Extracting
Assume that we need to extract the data in a particular syntax. For example, we need to
extract the lines containing following format -

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

The line should start with X-, followed by 0 or more characters. Then, we need a colon and

white-space. They are written as it is. Then there must be a number containing one or more

digits with or without a decimal point. Note that, we want dot as a part of our pattern string, but

not as meta character here. The pattern for regular expression would be -
^X-.*: [0-9.]+

The complete program is -
import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('^X\S*: [0-9.]+', line):

print(line)

The output lines will as below -
X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

X-DSPAM-Confidence: 0.6178

X-DSPAM-Probability: 0.0000

X-DSPAM-Confidence: 0.6961

X-DSPAM-Probability: 0.0000

……………………………………………………

……………………………………………………

Assume that, we want only the numbers (representing confidence, probability etc) in the
above output. We can use split() function on extracted string. But, it is better to refine

regular expression. To do so, we need the help of parentheses.

When we add parentheses to a regular expression, they are ignored when matching the
string. But when we are using findall(), parentheses indicate that while we want the whole
expression to match, we only are interested in extracting a portion of the substring that
matches the regular expression.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 38)

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('^X-\S*: ([0-9.]+)', line) if

len(x) > 0:

print(x)

Because of the parentheses enclosing the pattern above, it will match the pattern starting with
X- and extracts only digit portion. Now, the output would be -

['0.8475']

['0.0000']

['0.6178']

['0.0000']

['0.6961']

…………………

………………..

Another example of similar form: The file mbox-short.txt contains lines like -

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

We may be interested in extracting only the revision numbers mentioned at the end of
these lines. Then, we can write the statement -

x = re.findall('^Details:.*rev=([0-9.]+)', line)

The regex here indicates that the line must start with Details:, and has something with

rev= and then digits. As we want only those digits, we will put parenthesis for that portion

of expression. Note that, the expression [0-9] is greedy, because, it can display very

large number. It keeps grabbing digits until it finds any other character than the digit. The

output of above regular expression is a set of revision numbers as given below -
['39772']

['39771']

['39770']

['39769']

………………………

………………………

Consider another example - we may be interested in knowing time of a day of each email. The
file mbox-short.txt has lines like -

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Here, we would like to extract only the hour 09. That is, we would like only two digits

representing hour. Hence, we need to modify our expression as -
x = re.findall('^From .* ([0-9][0-9]):', line)

http://www.chetanahegde.in/
http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772
mailto:stephen.marquard@uct.ac.za
mailto:chetanahegde@ieee.org

. 39)

Here, [0-9][0-9] indicates that a digit should appear only two times. The alternative way of

writing this would be -

x = re.findall('^From .* ([0-9]{2}):', line)

The number 2 within flower-brackets indicates that the preceding match should appear

exactly two times. Hence [0-9]{2} indicates there can be exactly two digits. Now, the output

would be -

['09']

['18']

['16']

['15']

…………………

…………………

3.4.4 Escape Character
As we have discussed till now, the character like dot, plus, question mark, asterisk, dollar etc.
are meta characters in regular expressions. Sometimes, we need these characters
themselves as a part of matching string. Then, we need to escape them using a backslash.
For example,

import re

x = 'We just received $10.00 for cookies.' y =

re.findall('\$[0-9.]+',x)

Output:
['$10.00']

Here, we want to extract only the price $10.00. As, $ symbol is a metacharacter, we need to use
\ before it. So that, now $ is treated as a part of matching string, but not as metacharacter.

3.4.5 Bonus Section for Unix/Linux Users
Support for searching files using regular expressions was built into the Unix OS. There is a

command-line program built into Unix called grep (Generalized Regular Expression Parser) that
behaves similar to search() function.

$ grep '^From:' mbox-short.txt

Output:
From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

Note that, grep command does not support the non-blank character \S, hence we need to use [^

] indicating not a white-space.

http://www.chetanahegde.in/
mailto:stephen.marquard@uct.ac.za
mailto:louis@media.berkeley.edu
mailto:zqian@umich.edu
mailto:rjlowe@iupui.edu
mailto:chetanahegde@ieee.org

. 1)

MODULE - 4

4.1 CLASSES AND OBJECTS
Python is an object-oriented programming language, and class is a basis for any object
oriented programming language. Class is a user-defined data type which binds data and
functions together into single entity. Class is just a prototype (or a logical entity/blue print)
which will not consume any memory. An object is an instance of a class and it has physical
existence. One can create any number of objects for a class. A class can have a set of
variables (also known as attributes, member variables) and member functions (also known
as methods).

(Overview of general OOP concepts is given at the end of this module as an extra topic.
Those who are new to OOP concepts, it is suggested to have a glance and then continue
reading).

4.1.1 Programmer-defined Types
A class in Python can be created using a keyword class. Here, we are creating an empty

class without any members by just using the keyword pass within it.

class Point:

pass

print(Point)

The output would be -
<class '__main__.Point'>

The term __main__ indicates that the class Point is in the main scope of the current

module. In other words, this class is at the top level while executing the program.

Now, a user-defined data type Point got created, and this can be used to create any
number of objects of this class. Observe the following statements -

p=Point()

Now, a reference (for easy understanding, treat reference as a pointer) to Point object is

created and is returned. This returned reference is assigned to the object p. The process

of creating a new object is called as instantiation and the object is instance of a class.

When we print an object, Python tells which class it belongs to and where it is stored in the

memory.
print(p)

The output would be -
<__main__.Point object at 0x003C1BF0>

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 2)

The output displays the address (in hexadecimal format) of the object in the memory. It is
now clear that, the object occupies the physical space, whereas the class does not.

4.1.2 Attributes
An object can contain named elements known as attributes. One can assign values to
these attributes using dot operator. For example, keeping coordinate points in mind, we can
assign two attributes x and y for the object p of a class Point as below -

p.x =10.0

p.y =20.0

A state diagram that shows an object and its attributes is called as object diagram. For the
object p, the object diagram is shown in Figure 4.1.

Point

p
x 10.0

y 20.0

Figure 4.1 Object Diagram

The diagram indicates that a variable (i.e. object) p refers to a Point object, which

contains two attributes. Each attributes refers to a floating point number.

One can access attributes of an object as shown -

>>> print(p.x)

10.0

>>> print(p.y)

20.0

Here, p.x means “Go to the object p refers to and get the value of x”. Attributes of an
object can be assigned to other variables -

>>> x= p.x

>>> print(x)

10.0

Here, the variable x is nothing to do with attribute x. There will not be any name conflict
between normal program variable and attributes of an object.

A complete program: Write a class Point representing a point on coordinate system.
Implement following functions -

 A function read_point() to receive x and y attributes of a Point object as user

input.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 3)

A function distance() which takes two objects of Point class as arguments and
computes the Euclidean distance between them.

A function print_point() to display one point in the form of ordered-pair.

import math

class Point:

""" This is a class Point representing a

coordinate point

"""

def read_point(p):

p.x=float(input("x coordinate:"))

p.y=float(input("y coordinate:"))

def print_point(p):

print("(%g,%g)"%(p.x, p.y))

def distance(p1,p2):

d=math.sqrt((p1.x-p2.x)**2+(p1.y-p2.y)**2)

return d

p1=Point() #create first object

print("Enter First point:")

read_point(p1) #read x and y for p1

p2=Point() #create second object

print("Enter Second point:")

read_point(p2) #read x and y for p2

dist=distance(p1,p2) #compute distance

print("First point is:")

print_point(p1) #print p1

print("Second point is:")

print_point(p2) #print p2

print("Distance is: %g" %(distance(p1,p2))) #print d

The sample output of above program would be -
Enter First point:

x coordinate:10

y coordinate:20

Enter Second point: x

coordinate:3

y coordinate:5

First point is: (10,20)

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 4)

Second point is:(3,5)

Distance is: 16.5529

Let us discuss the working of above program thoroughly -

The class Point contains a string enclosed within 3 double-quotes. This is known
as docstring. Usually, a string literal is written within 3 consecutive double-quotes
inside a class, module or function definition. It is an important part of documentation
and is to help someone to understand the purpose of the said class/module/function.
The docstring becomes a value for the special attribute viz. __doc__ available for any
class (and objects of that class). To get the value of docstring associated with a class,
one can use the statements like -

>>> print(Point.__doc__)

This is a class Point representing a coordinate point

>>> print(p1.__doc__)

This is a class Point representing a coordinate point

Note that, you need to type two underscores, then the word doc and again two
underscores.

In the above program, there is no need of docstring and we would have just used

pass to indicate an empty class. But, it is better to understand the professional way of

writing user-defined types and hence, introduced docstring.

The function read_point() take one argument of type Point object. When we

use the statements like,
read_point(p1)

the parameter p of this function will act as an alias for the argument p1. Hence, the

modification done to the alias p reflects the original argument p1. With the help of

this function, we are instructing Python that the object p1 has two attributes x and y.

The function print_point() also takes one argument and with the help of format-

strings, we are printing the attributes x and y of the Point object as an ordered-pair
(x,y).

As we know, the Euclidean distance between two points (x1,y1) and (x2,y2) is

2

x1 x2 y1 y2 2

In this program, we have Point objects as (p1.x, p1.y) and (p2.x, p2.y). Apply the
formula on these points by passing objects p1 and p2 as parameters to the function
distance(). And then return the result.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 5)

Thus, the above program gives an idea of defining a class, instantiating objects, creating
attributes, defining functions that takes objects as arguments and finally, calling (or
invoking) such functions whenever and wherever necessary.

NOTE: User-defined classes in Python have two types of attributes viz. class attributes and
instance attributes. Class attributes are defined inside the class (usually, immediately after
class header). They are common to all the objects of that class. That is, they are shared by
all the objects created from that class. But, instance attributes defined for individual
objects. They are available only for that instance (or object). Attributes of one instance are
not available for another instance of the same class. For example, consider the class Point as
discussed earlier -

class Point:

pass

p1= Point()

p1.x=10.0

p1.y=20.0

print(p1.x, p1.y)

p2= Point()

print(p2.x)

#first object of the class

#attributes for p1

#prints 10.0 20.0

#second object of the class

#displays error as below

AttributeError: 'Point' object has no attribute 'x'

This clearly indicates that the attributes x and y created are available only for the object p1, but
not for p2. Thus, x and y are instance attributes but not class attributes.

We will discuss class attributes late in-detail. But, for the understanding purpose, observe the
following example -

class Point:

x=2

y=3

p1=Point() #first object of the class

print(p1.x, p1.y) # prints 2 3

p2=Point() #second object of the class

print(p2.x, p2.y) # prints 2 3

Here, the attributes x and y are defined inside the definition of the class Point itself.

Hence, they are available to all the objects of that class.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 6)

4.1.3 Rectangles
It is possible to make an object of one class as an attribute to other class. To illustrate this,
consider an example of creating a class called as Rectangle. A rectangle can be created
using any of the following data -

 By knowing width and height of a rectangle and one corner point (ideally, a bottom-
 left corner) in a coordinate system

 By knowing two opposite corner points
Let us consider the first technique and implement the task: Write a class Rectangle
containing numeric attributes width and height. This class should contain another attribute
corner which is an instance of another class Point. Implement following functions -

 A function to print corner point as an ordered-pair

 A function find_center() to compute center point of the rectangle

 A function resize() to modify the size of rectangle

The program is as given below -

class Point:

""" This is a class Point

representing coordinate point

"""

class Rectangle:

""" This is a class Rectangle.

Attributes: width, height and Corner Point

"""

def find_center(rect):

p=Point()

p.x = rect.corner.x + rect.width/2

p.y = rect.corner.y + rect.height/2

return p

def resize(rect, w, h):

rect.width +=w

rect.height +=h

def print_point(p):

print("(%g,%g)"%(p.x, p.y))

box=Rectangle()

box.corner=Point()

box.width=100

box.height=200

box.corner.x=0

box.corner.y=0

#create Rectangle object

#define an attribute corner for box

#set attribute width to box

#set attribute height to box

#corner itself has two attributes x and y

#initialize x and y to 0

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 7)

print("Original Rectangle is:")

print("width=%g, height=%g"%(box.width, box.height))

center=find_center(box)

print("The center of rectangle is:")

print_point(center)

resize(box,50,70)

print("Rectangle after resize:")

print("width=%g, height=%g"%(box.width, box.height))

center=find_center(box)

print("The center of resized rectangle is:")

print_point(center)

A sample output would be:
Original Rectangle is: width=100, height=200

The center of rectangle is: (50,100)

Rectangle after resize: width=150, height=270

The center of resized rectangle is: (75,135)

The working of above program is explained in detail here -

Two classes Point and Rectangle have been created with suitable docstrings. As
of now, they do not contain any class-level attributes.

The following statement instantiates an object of Rectangle class.
box=Rectangle()

The statement
box.corner=Point()

indicates that corner is an attribute for the object box and this attribute itself is an

object of the class Point. The following statements indicate that the object box has

two more attributes -
box.width=100 #give any numeric value

box.height=200 #give any numeric value

In this program, we are treating the corner point as the origin in coordinate system and

hence the following assignments -
box.corner.x=0

box.corner.y=0

(Note that, instead of origin, any other location in the coordinate system can be
given as corner point.)

Based on all above statements, an object diagram can be drawn as -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 8)

Rectangle

box width 100

height 200

x
corner y

Point

0

0

The expression box.corner.x means, “Go to the object box refers to and select
the attribute named corner; then go to that object and select the attribute named x.”

The function find_center() takes an object rect as an argument. So, when a
call is made using the statement -

center=find_center(box)

the object rect acts as an alias for the argument box.

A local object p of type Point has been created inside this function. The attributes

of p are x and y, which takes the values as the coordinates of center point of

rectangle. Center of a rectangle can be computed with the help of following diagram.

Half of height (x+ half of width, y+ half of height)

(x,y)
Half of width

The function find_center() returns the computed center point. Note that, the

return value of a function here is an instance of some class. That is, one can have an
instance as return values from a function.

The function resize() takes three arguments: rect - an instance of Rectangle

class and two numeric variables w and h. The values w and h are added to existing

attributes width and height. This clearly shows that objects are mutable. State of

an object can be changed by modifying any of its attributes. When this function is called

with a statement -
resize(box,50,70)

the rect acts as an alias for box. Hence, width and height modified within the
function will reflect the original object box.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 9)

Thus, the above program illustrates the concepts: object of one class is made as
attribute for object of another class, returning objects from functions and objects are
mutable.

4.1.4 Copying
An object will be aliased whenever there an object is assigned to another object of same
class. This may happen in following situations -

 Direct object assignment (like p2=p1)

 When an object is passed as an argument to a function

 When an object is returned from a function

The last two cases have been understood from the two programs in previous sections. Let us

understand the concept of aliasing more in detail using the following program -
>>> class Point:

pass

>>> p1=Point()

>>> p1.x=10

>>> p1.y=20

>>> p2=p1

>>> print(p1)

<__main__.Point object at 0x01581BF0>

>>> print(p2)

<__main__.Point object at 0x01581BF0>

Observe that both p1 and p2 objects have same physical memory. It is clear now that the
object p2 is an alias for p1. So, we can draw the object diagram as below -

p1
x 10

y 20
p2

Hence, if we check for equality and identity of these two objects, we will get following result.

>>> p1 is p2

True

>>> p1==p2

True

But, the aliasing is not good always. For example, we may need to create a new object
using an existing object such that - the new object should have a different physical
memory, but it must have same attribute (and their values) as that of existing object.
Diagrammatically, we need something as below -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 10)

p1
x 10 x 10

y 20 y 20
p2

In short, we need a copy of an object, but not an alias. To do this, Python provides a
module called copy and a method called copy(). Consider the below given program to
understand the concept.

>>> class Point:

pass

>>> p1=Point()

>>> p1.x=10

>>> p1.y=20

>>> import copy #import module copy

>>> p3=copy.copy(p1) #use the method copy()

>>> print(p1)

<__main__.Point object at 0x01581BF0>

>>> print(p3)

<__main__.Point object at 0x02344A50>

>>> print(p3.x,p3.y)

10 20

Observe that the physical address of the objects p1 and p3 are now different. But, values of

attributes x and y are same. Now, use the following statements -

>>> p1 is p3

False

>>> p1 == p3

False

Here, the is operator gives the result as False for the obvious reason of p1 and p3 are

being two different entities on the memory. But, why == operator is generating False as the

result, though the contents of two objects are same? The reason is - p1 and p3 are the

objects of user-defined type. And, Python cannot understand the meaning of equality on

the new data type. The default behavior of equality (==) is identity (is operator) itself.

Hence, Python applies this default behavior on p1 == p3 and results in False.

(NOTE: If we need to define the meaning of equality (==) operator explicitly on user-defined

data types (i.e. on class objects), then we need to override the method __eq__() inside the

class. This will be discussed later in detail.)

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 11)

The copy() method of copy module duplicates the object. The content (i.e. attributes) of
one object is copied into another object as we have discussed till now. But, when an object
itself is an attribute inside another object, the duplication will result in a strange manner. To
understand this concept, try to copy Rectangle object (created in previous section) as given
below -

import copy

class Point:

""" This is a class Point

representing coordinate point

"""

class Rectangle:

""" This is a class Rectangle.

Attributes: width, height and Corner Point

"""

box1=Rectangle()

box1.corner=Point()

box1.width=100

box1.height=200

box1.corner.x=0

box1.corner.y=0

box2=copy.copy(box1)

print(box1 is box2) #prints False

print(box1.corner is box2.corner) #prints True

Now, the question is - why box1.corner and box2.corner are same objects, when

box1 and box2 are different? Whenever the statement

box2=copy.copy(box1)

is executed, the contents of all the attributes of box1 object are copied into the respective

attributes of box2 object. That is, box1.width is copied into box2.width,

box1.height is copied into box2.height. Similarly, box1.corner is copied into

box2.corner. Now, recollect the fact that corner is not exactly the object itself, but it is a

reference to the object of type Point (Read the discussion done for Figure 4.1 at the

beginning of this Chapter). Hence, the value of reference (that is, the physical address)

stored in box1.corner is copied into box2.corner. Thus, the physical object to which

box1.corner and box2.corner are pointing is only one. This type of copying the

objects is known as shallow copy. To understand this behavior, observe the following

diagram -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 12)

Rectangle

box1 width
height

corner

100
Point

200
x 0

y 0

Rectangle

width 100 box2

height 200

corner

Now, the attributes width and height for two objects box1 and box2 are independent.

Whereas, the attribute corner is shared by both the objects. Thus, any modification done

to box1.corner will reflect box2.corner as well. Obviously, we don’t want this to

happen, whenever we create duplicate objects. That is, we want two independent physical

objects. Python provides a method deepcopy() for doing this task. This method copies not

only the object but also the objects it refers to, and the objects they refer to, and so on.

box3=copy.deepcopy(box1)

print(box1 is box3) #prints False

print(box1.corner is box3.corner) #prints False

Thus, the objects box1 and box3 are now completely independent.

4.1.5 Debugging
While dealing with classes and objects, we may encounter different types of errors. For
example, if we try to access an attribute which is not there for the object, we will get
AttributeError. For example -

>>> p= Point()

>>> p.x = 10

>>> p.y = 20

>>> print(p.z)

AttributeError: 'Point' object has no attribute 'z'

To avoid such error, it is better to enclose such codes within try/except as given below -
try:

z = p.x

except AttributeError:

z = 0

When we are not sure, which type of object it is, then we can use type() as -
>>> type(box1)

<class '__main__.Rectangle'>

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 13)

Another method isinstance() helps to check whether an object is an instance of a
particular class -

>>> isinstance(box1,Rectangle)

True

When we are not sure whether an object has a particular attribute or not, use a function
hasattr() -

>>> hasattr(box1, 'width')

True

Observe the string notation for second argument of the function hasattr(). Though the
attribute width is basically numeric, while giving it as an argument to function hasattr(), it
must be enclosed within quotes.

4.2 CLASSES AND FUNCTIONS
Though Python is object oriented programming languages, it is possible to use it as
functional programming. There are two types of functions viz. pure functions and
modifiers. A pure function takes objects as arguments and does some work without
modifying any of the original argument. On the other hand, as the name suggests, modifier
function modifies the original argument.

In practical applications, the development of a program will follow a technique called as
prototype and patch. That is, solution to a complex problem starts with simple prototype
and incrementally dealing with the complications.

4.2.1 Pure Functions
To understand the concept of pure functions, let us consider an example of creating a class
called Time. An object of class Time contains hour, minutes and seconds as attributes.
Write a function to print time in HH:MM:SS format and another function to add two time
objects. Note that, adding two time objects should yield proper result and hence we need to
check whether number of seconds exceeds 60, minutes exceeds 60 etc, and take
appropriate action.

class Time:

"""Represents the time of a day

Attributes: hour, minute, second """

def printTime(t):

print("%.2d:%.2d:%.2d"%(t.hour,t.minute,t.second))

def add_time(t1,t2):

sum=Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 14)

if sum.second >= 60:

sum.second -= 60

sum.minute += 1 if

sum.minute >= 60:

sum.minute -= 60

sum.hour += 1

return sum

t1=Time()

t1.hour=10

t1.minute=34

t1.second=25

print("Time1 is:")

printTime(t1)

t2=Time()

t2.hour=2

t2.minute=12

t2.second=41

print("Time2 is :")

printTime(t2)

t3=add_time(t1,t2)

print("After adding two time objects:")

printTime(t3)

The output of this program would be -
Time1 is: 10:34:25
Time2 is : 02:12:41
After adding two time objects: 12:47:06

Here, the function add_time() takes two arguments of type Time, and returns a Time

object, whereas, it is not modifying contents of its arguments t1 and t2. Such functions are
called as pure functions.

4.2.2 Modifiers
Sometimes, it is necessary to modify the underlying argument so as to reflect the caller. That
is, arguments have to be modified inside a function and these modifications should be
available to the caller. The functions that perform such modifications are known as
modifier function. Assume that, we need to add few seconds to a time object, and get a
new time. Then, we can write a function as below -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 15)

def increment(t, seconds):

t.second += seconds

while t.second >= 60:

t.second -= 60

t.minute += 1

while t.minute >= 60:

t.minute -= 60

t.hour += 1

In this function, we will initially add the argument seconds to t.second. Now, there is a

chance that t.second is exceeding 60. So, we will increment minute counter till

t.second becomes lesser than 60. Similarly, till the t.minute becomes lesser than 60, we

will decrement minute counter. Note that, the modification is done on the argument t itself.

Thus, the above function is a modifier.

4.2.3 Prototyping v/s Planning
Whenever we do not know the complete problem statement, we may write the program
initially, and then keep of modifying it as and when requirement (problem definition)
changes. This methodology is known as prototype and patch. That is, first design the
prototype based on the information available and then perform patch-work as and when
extra information is gathered. But, this type of incremental development may end-up in
unnecessary code, with many special cases and it may be unreliable too.

An alternative is designed development, in which high-level insight into the problem can
make the programming much easier. For example, if we consider the problem of adding two
time objects, adding seconds to time object etc. as a problem involving numbers with base
60 (as every hour is 60 minutes and every minute is 60 seconds), then our code can be
improved. Such improved versions are discussed later in this chapter.

4.2.4 Debugging
In the program written in Section 4.2.1, we have treated time objects as valid values. But,
what if the attributes (second, minute, hour) of time object are given as wrong values like
negative number, or hours with value more than 24, minutes/seconds with more than 60 etc?
So, it is better to write error-conditions in such situations to verify the input. We can write a
function similar to as given below -

def valid_time(time):

if time.hour < 0 or time.minute < 0 or time.second < 0:

return False

if time.minute >= 60 or time.second >= 60:

return False

return True

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 16)

Now, at the beginning of add_time() function, we can put a condition as -

def add_time(t1, t2):

if not valid_time(t1) or not valid_time(t2):

raise ValueError('invalid Time object in add_time')

#remaining statements of add_time() functions

Python provides another debugging statement assert. When this keyword is used, Python
evaluates the statement following it. If the statement is True, further statements will be
evaluated sequentially. But, if the statement is False, then AssertionError exception is

raised. The usage of assert is shown here -

def add_time(t1, t2):

assert valid_time(t1) and valid_time(t2)

#remaining statements of add_time() functions

The assert statement clearly distinguishes the normal conditional statements as a part of the
logic of the program and the code that checks for errors.

4.3 CLASSES AND METHODS
The classes that have been considered till now were just empty classes without having any
definition. But, in a true object oriented programming, a class contains class-level
attributes, instance-level attributes, methods etc. There will be a tight relationship between the
object of the class and the function that operate on those objects. Hence, the object oriented
nature of Python classes will be discussed here.

4.3.1 Object-Oriented Features
As an object oriented programming language, Python possess following characteristics:

 Programs include class and method definitions.
 Most of the computation is expressed in terms of operations on objects.

 Objects often represent things in the real world, and methods often correspond to
the ways objects in the real world interact.

To establish relationship between the object of the class and a function, we must define a
function as a member of the class. A function which is associated with a particular class is
known as a method. Methods are semantically the same as functions, but there are two
syntactic differences:

 Methods are defined inside a class definition in order to make the relationship
between the class and the method explicit.

 The syntax for invoking a method is different from the syntax for calling a function.

Now onwards, we will discuss about classes and methods.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 17)

4.3.2 The __init__() Method
(A method __init__() has to be written with two underscores before and after the word init)

Python provides a special method called as __init__() which is similar to constructor

method in other programming languages like C++/Java. The term init indicates initialization. As
the name suggests, this method is invoked automatically when the object of a class is
created. Consider the example given here -

import math

class Point:

def __init__(self,a,b):

self.x=a

self.y=b

def dist(self,p2):

d=math.sqrt((self.x-p2.x)**2 + (self.y-p2.y)**2)

return d

def __str__(self):

return "(%d,%d)"%(self.x, self.y)

p1=Point(10,20)

p2=Point(4,5)

print("P1 is:",p1)

print("P2 is:",p2)

d=p1.dist(p2)

#__init__() is called automatically

#__init__() is called automatically

#__str__() is called automatically

#__str__() is called automatically

#explicit call for dist()

print("The distance is:",d)

The sample output is -
P1 is: (10,20)

P2 is: (4,5)

Distance is: 16.15549442140351

Let us understand the working of this program and the concepts involved:

 Keep in mind that every method of any class must have the first argument as self.
The argument self is a reference to the current object. That is, it is reference to the
object which invoked the method. (Those who know C++, can relate self with this
pointer). The object which invokes a method is also known as subject.

 The method __init__() inside the class is an initialization method, which will be

invoked automatically when the object gets created. When the statement like -

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 18)

p1=Point(10,20)

is used, the __init__() method will be called automatically. The internal meaning of

the above line is -
p1.__init__(10,20)

Here, p1 is the object which is invoking a method. Hence, reference to this object is

created and passed to __init__() as self. The values 10 and 20 are passed to

formal parameters a and b of __init__() method. Now, inside __init__()

method, we have statements

self.x=10

self.y=20

This indicates, x and y are instance attributes. The value of x for the object p1 is 10

and, the value of y for the object p1 is 20.

When we create another object p2, it will have its own set of x and y. That is,

memory locations of instance attributes are different for every object.

Thus, state of the object can be understood by instance attributes.

The method dist() is an ordinary member method of the class Point. As

mentioned earlier, its first argument must be self. Thus, when we make a call as -

d=p1.dist(p2)

a reference to the object p1 is passed as self to dist() method and p2 is

passed explicitly as a second argument. Now, inside the dist()method, we are

calculating distance between two point (Euclidian distance formula is used) objects.

Note that, in this method, we cannot use the name p1, instead we will use self

which is a reference (alias) to p1.

The next method inside the class is __str__(). It is a special method used for

string representation of user-defined object. Usually, print() is used for

printing basic types in Python. But, user-defined types (class objects) have their own

meaning and a way of representation. To display such types, we can write functions
or methods like print_point() as we did in Section 4.1.2. But, more polymorphic

way is to use __str__() so that, when we write just print() in the main part of

the program, the __str__() method will be invoked automatically. Thus, when we

use the statement like -
print("P1 is:",p1)

the ordinary print() method will print the portion “P1 is:” and the remaining portion is
taken care by __str__() method. In fact, __str__() method will return the string

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 19)

format what we have given inside it, and that string will be printed by print()

method.

4.3.3 Operator Overloading
Ability of an existing operator to work on user-defined data type (class) is known as
operator overloading. It is a polymorphic nature of any object oriented programming. Basic
operators like +, -, * etc. can be overloaded. To overload an operator, one needs to write a
method within user-defined class. Python provides a special set of methods which have to be
used for overloading required operator. The method should consist of the code what the
programmer is willing to do with the operator. Following table shows gives a list of
operators and their respective Python methods for overloading.

Operator Special Function Operator Special Function
in Python in Python

+ __add__() <= __le__()

- __sub__() >= __ge__()

* __mul__() == __eq__()

/ __truediv__() != __ne__()

% __mod__() in __contains__()

< __lt__() len __len__()

> __gt__() str __str__()

Let us consider an example of Point class considered earlier. Using operator overloading, we
can try to add two point objects. Consider the program given below -

class Point:

def __init__(self,a=0,b=0):

self.x=a

self.y=b

def __add__(self, p2):

p3=Point()

p3.x=self.x+p2.x

p3.y=self.y+p2.y

return p3

def __str__(self):

return "(%d,%d)"%(self.x, self.y)

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 20)

p1=Point(10,20)

p2=Point(4,5)

print("P1 is:",p1)

print("P2 is:",p2)

p4=p1+p2

print("Sum is:",p4)

The output would be -
P1 is: (10,20)

P2 is: (4,5)

Sum is: (14,25)

#call for __add__() method

In the above program, when the statement p4 = p1+p2 is used, it invokes a special
method __add__() written inside the class. Because, internal meaning of this statement

is-
p4 = p1.__add__(p4)

Here, p1 is the object invoking the method. Hence, self inside __add__() is the

reference (alias) of p1. And, p4 is passed as argument explicitly.

In the definition of __add__(), we are creating an object p3 with the statement -
p3=Point()

The object p3 is created without initialization. Whenever we need to create an object with

and without initialization in the same program, we must set arguments of __init__() for

some default values. Hence, in the above program arguments a and b of __init__() are

made as default arguments with values as zero. Thus, x and y attributes of p3 will be now

zero. In the __add__() method, we are adding respective attributes of self and p2 and

storing in p3.x and p3.y. Then the object p3 is returned. This returned object is received

as p4 and is printed.

NOTE that, in a program containing operator overloading, the overloaded operator behaves
in a normal way when basic types are given. That is, in the above program, if we use the
statements

m= 3+4
print(m)

it will be usual addition and gives the result as 7. But, when user-defined types are used as
operands, then the overloaded method is invoked.

Let us consider a more complicated program involving overloading. Consider a problem of
creating a class called Time, adding two Time objects, adding a number to Time object etc.
that we had considered in previous section. Here is a complete program with more of OOP
concepts.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 21)

class Time:

def __init__(self, h=0,m=0,s=0):

self.hour=h

self.min=m

self.sec=s

def time_to_int(self):

minute=self.hour*60+self.min

seconds=minute*60+self.sec

return seconds

def int_to_time(self, seconds):

t=Time()

minutes, t.sec=divmod(seconds,60)

t.hour, t.min=divmod(minutes,60)

return t

def __str__(self):

return "%.2d:%.2d:%.2d"%(self.hour,self.min,self.sec)

def __eq__(self,t):

return self.hour==t.hour and self.min==t.min and self.sec==t.sec

def __add__(self,t):

if isinstance(t, Time):

return self.addTime(t)

else:

return self.increment(t)

def addTime(self, t):

seconds=self.time_to_int()+t.time_to_int()

return self.int_to_time(seconds)

def increment(self, seconds):

seconds += self.time_to_int()

return self.int_to_time(seconds)

def __radd__(self,t):

return self.__add__(t)

T1=Time(3,40)

T2=Time(5,45)

print("T1 is:",T1)

print("T2 is:",T2)

print("Whether T1 is same as T2?",T1==T2) #call for __eq__()

T3=T1+T2 #call for __add__()

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 22)

print("T1+T2 is:",T3)

T4=T1+75

print("T1+75=",T4)

T5=130+T1

print("130+T1=",T5)

T6=sum([T1,T2,T3,T4])

#call for __add__()

#call for __radd__()

print("Using sum([T1,T2,T3,T4]):",T6)

The output would be -
T1 is: 03:40:00

T2 is: 05:45:00

Whether T1 is same as T2? False

T1+T2 is: 09:25:00

T1+75= 03:41:15

130+T1= 03:42:10
Using sum([T1,T2,T3,T4]): 22:31:15

Working of above program is explained hereunder -

The class Time has __init__() method for initialization of instance attributes

hour, min and sec. The default values of all these are being zero.

The method time_to_int() is used convert a Time object (hours, min and sec)

into single integer representing time in number of seconds.

The method int_to_time() is written to convert the argument seconds into time

object in the form of hours, min and sec. The built-in method divmod() gives the
quotient as well as remainder after dividing first argument by second argument given
to it.

Special method __eq__() is for overloading equality (==) operator. We can say one

Time object is equal to the other Time object if underlying hours, minutes and
seconds are equal respectively. Thus, we are comparing these instance attributes
individually and returning either True of False.
When we try to perform addition, there are 3 cases -

o Adding two time objects like T3=T1+T2.

o Adding integer to Time object like T4=T1+75

o Adding Time object to an integer like T5=130+T1

Each of these cases requires different logic. When first two cases are considered,

the first argument will be T1 and hence self will be created and passed to

__add__() method. Inside this method, we will check the type of second argument

using isinstance() method. If the second argument is Time object, then we call

addTime() method. In this method, we will first convert both Time objects to integer

(seconds) and then the resulting sum into Time object again. So, we make use

time_to_int() and int_to_time() here. When the 2nd argument is an integer,

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 23)

it is obvious that it is number of seconds. Hence, we need to call increment()

method.

Thus, based on the type of argument received in a method, we take appropriate
action. This is known as type-based dispatch.

In the 3rd case like T5=130+T1, Python tries to convert first argument 130 into self,
which is not possible. Hence, there will be an error. This indicates that for Python,
T1+5 is not same as 5+T1 (Commutative law doesn’t hold good!!). To avoid the

possible error, we need to implement right-side addition method __radd__().

Inside this method, we can call overloaded method __add__().

 The beauty of Python lies in surprising the programmer with more facilities!! As we
have implemented __add__() method (that is, overloading of + operator), the builtin

sum() will is capable of adding multiple objects given in a sequence. This is due to

Polymorphism in Python. Consider a list containing Time objects, and then call

sum() on that list as -

T6=sum([T1,T2,T3,T4])

The sum() internally calls __add__() method multiple times and hence gives the

appropriate result. Note down the square-brackets used to combine Time objects as a

list and then passing it to sum().

Thus, the program given here depicts many features of OOP concepts.

4.3.4 Debugging
We have seen earlier that hasattr() method can be used to check whether an object has
particular attribute. There is one more way of doing it using a method vars(). This method
maps attribute names and their values as a dictionary. For example, for the Point class
defined earlier, use the statements -

>>> p = Point(3, 4)

>>> vars(p) #output is {'y': 4, 'x': 3}

For purposes of debugging, you might find it useful to keep this function handy:

def print_attributes(obj):

for attr in vars(obj):

print(attr, getattr(obj, attr))

Here, print_attributes() traverses the dictionary and prints each attribute name and its

corresponding value. The built-in function getattr() takes an object and an attribute name

(as a string) and returns the attribute’s value.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 24)

GENERAL OOP CONCEPTS

At the earlier age of computers, the programming was done using assembly language.
Even though, the assembly language can be used to produce highly efficient programs, it is
not easy to learn or to use effectively. Moreover, debugging assembly code is quite
difficult. At the later stage, the programming languages like BASIC, COBOL and FORTRAN
came into existence. But, these languages are non-structured and consisting of a mass of
tangled jumps and conditional branches that make a program virtually impossible to
understand.

To overcome these problems, the structured or procedural programming methodology was
developed. Here, the actual problem is divided into small independent tasks/modules. Then
the programs are written for each of these tasks and they are grouped together to get the
final solution for the given problem. Thus, the solution design technique for this method is
known as top-down approach. C is the one successful language that adopted structured
programming style. However, even with the structured programming methods, once a
project/program reaches a certain size, its complexity exceeds what a programmer can
manage.

The new approach - object oriented programming was developed to overcome the
problems with structured approach. In this methodology, the actual data and the operations to
be performed on that are grouped as a single entity called object. The objects necessary to get
the solution of a problem are identified initially. The interactions between various objects are
then identified to achieve the solution of original problem. Thus, it is also known as bottom-up
approach. Object oriented concepts inhabits many advantages like reusability of the code,
security etc.

In structured programming approach, the programs are written around what is happening
rather than who is being affected. That is, structured programming focuses more on the
process or operation and not on the data to be processed. This is known as process
oriented model and this can be thought of as code acting on data. For example, a program
written in C is defined by its functions, any of which may operate on any type of data used
by the program.

But, the real world problems are not organized into data and functions independent of each
other and are tightly closed. So, it is better to write a program around ‘who is being
affected’. This kind of data-centered programming methodology is known as object oriented
programming (OOP) and this can be thought of as data controlling access to code. Here,
the behavior and/or characteristics of the data/objects are used to determine the function to
be written for applying them. Thus, the basic idea behind OOP language is to combine both
data and the function that operates on data into a single unit. Such a unit is called as an
object. A function that operates on data is known as a member function and it is the only
means of accessing an object’s data.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 25)

Elements of OOP: The object oriented programming supports some of the basic
concepts as building blocks. Every OOPs language normally supports and developed
around these features. They are discussed hereunder.

Class: A class is a user defined data type which binds data and functions together
into a single entity.

Class is a building block of any object oriented language. As it is discussed earlier, object
oriented programming treats data and the code acting on that data as a connected
component. That is, data and code are not treated separately as procedure oriented
languages do. Thus, OOPs suggests to wrap up the data and functions together into a
single entity. Normally, a class represents the prototype of a real world entity. Hence, a
class, by its own, is not having any physical existence. It can be treated as a user-defined
data type.

Since a class is a prototype or blueprint of a real world entity, it consists of number of
properties (known as data members) and behavior (known as member functions). To
illustrate this, consider an example of a class representing a human being shown in the
following Figure -

Human Being
- Hair Color

- Number of legs

- Number of eyes

- Skin Color

- Gender

+ Walking
+ Talking

+ Eating

Class diagram for Human Being

Few of the properties of human can be number of legs, number of eyes, gender, number of
hands, hair color, skin color etc. And the functionality or behavior of a human may be
walking, talking, eating, thinking etc.

Object : An object is an instance of a class.
A class is just a prototype, representing a new data type. To use this new data type, we
need to create a variable of this type. Such a variable is known as an object. Thus, an

object is a physical entity, which consumes memory. In OOPs, the object represents a real
world data which defines the properties and behavior of any real world entity. Every object
has its unique existence and it is different from the other objects of a same class.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 26)

Let us refer to the class of human being discussed in previous section. Assume that there are
two persons: Ramu and Radha. Now, properties of Ramu and Radha may be having
different values as shown in the following Table.

Properties of Objects

Property/Attribute Objects
Ramu Radha

Skin color Wheatish Fair
Hair gray black
Number of legs 2 2
Number of eyes 2 2

Also, the walking and talking style of both of them may be different. Hence there are two
different objects of the same class.

Thus, two or more objects of the same class will differ in the values of their properties and
way they behave. But, they share common set of types of properties and behavior.

Encapsulation: The process of binding data and code together into a single entity is
called encapsulation.

It is the mechanism that binds code and the data it manipulates together and keeps both
safe from misuse and unauthorized manipulation. In any OOP language, the basis of
encapsulation is the class. Class defines the structure and behavior (i.e. data and code)
that will be shared by a set of objects. Each object of a given class contains the structure
and behavior defined by the class. So, object is also referred to as an instance of a class
and it is thought just as a variable of user-defined data type. Thus, class is a logical
construct and an object is a physical entity. The data defined by the class are known as
member variables and the functions written to operate on that data are known as member
functions or methods. The member variables and functions can be private or public. If a
particular member is private, then only the other members of that class can access that
member. That is, a private member of the class can’t be accessed from outside the class.
But, if any member is public, then it can be accessed from anywhere in the program. Thus,
through encapsulation, an OOP technique provides high security for user’s data and for the
entire system.

Data Abstraction: Hiding the implementation details from the end user.

Many a times, abstraction and encapsulation are used interchangeably. But, actually, they
are not same. In OOPs, the end user of the program need not know how the actual function
works, or what is being done inside a function to make it work. The user must know only
the abstract meaning of the task, and he can freely call a function to do that task. The
internal details of function may not be known to the user. Designing the program in such a
way is called as abstraction.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 27)

To understand the concept of abstraction, consider a scenario: When you are using
Microsoft Word, if you click on Save icon, a dialogue box appears which allows you to save
the document in a physical location of your choice. Similarly, when you click Open icon,
another dialogue box appears to select a file to be opened from the hard disk. You, as a
user will not be knowing how the internal code would have written so as to open a dialogue
box when an icon is being clicked. As a user, those details are not necessary for you. Thus,
such implementation details are hidden from the end user. This is an abstraction.

Being an OOPs programmer, one should design a class (with data members and member
functions) such a way that, the internal code details are hidden from the end user. OOPs
provide a facility of having member functions to achieve this technique and the external
world (normally, a main() function) needs to call the member function using an object to
achieve a particular task.

Inheritance: Making use of existing code.
It is a process by which one object can acquire the properties of another object. It supports
the concept of hierarchical (top-down) classification. For example, consider a large set of
animals having their own behaviors. In that, mammals are of one kind having all the
properties of animals with some additional behaviors that are unique to them. Again, we
can divide mammals class into various mammals like dogs, cats, human etc. Again among
the dogs, differentiation is there like Doberman, German-shepherd, Labrador etc. Thus, if
we consider a German-shepherd, it is having all the qualities of a dog along with its own
special features. Moreover, it exhibits all the properties of a mammal, and in turn of an
animal. Hence it is inheriting the properties of animals, then of mammals and then of dogs
along with its own specialties. We can depict it as shown in the Figure given below.

Animal

Reptile Mammal

Human Cat

Doberman

Example of Inheritance

Dog

German-
Shepherd

Normally, inheritance of this type is also known as “is-a” relationship. Because, we can
easily say “Doberman is a dog”, “Dog is a mammal” etc. Hence, inheritance is termed as
Generalization to Specialization if we consider from top-to-bottom level. On the other
hands, it can be treated as Specialization to Generalization if it is bottom-to-top level.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 28)

This indicates, in inheritance, the topmost base class will be more generalized with only
properties which are common to all of its derived classes (various levels) and the bottom-
most class is most specialized version of the class which is ready to use in a real-world.

If we apply this concept for programming, it can be easily understood that a code written is
reusable. Thus, in this mechanism, it is possible for one object to be a specific instance of
a more general case. Using inheritance, an object need only define those qualities that
make it unique object within its class. It can inherit its general attributes from its parent.

Polymorphism: This can be thought of as one interface, multiple methods.

It is a feature that allows one interface to be used for a general class of actions. The
specific action is determined by the exact nature of the situation. Using this mechanism,
function overloading and operator overloading can be done.

Consider an example of performing stack operation on three different types of data viz.
integer, floating-point and characters. In a non-object oriented programming, we have to write
functions with different name for push and pop operations for all these types of data even
though the logic is same for all the data types. But in OOP languages, we can use the same
function names with the data types of the parameters being different. This is an example for
function overloading.

We know that the ‘+’ operator is used for adding two numbers. Conceptually, the
concatenation of two strings is also an addition. But, in non-object oriented programming
language, we cannot use ‘+’ operator to concatenate two strings. This is possible in object
oriented programming language by overloading the ‘+’ operator for string operands.

Polymorphism is also meant for economy of expression. That is, the way you express
things is more economical when you use polymorphism. For example, if you have a
function to add two matrices, you can use just a + symbol as:

m3 = m1 + m2;

here, m1, m2 and m3 are objects of matrix class and + is an overloaded operator. In the
same program, if you have a function to concatenate two strings, you can write an
overloaded function for + operator to do so -

s3= s1+ s2; where s1, s2 and s3 are strings.

Moreover, for adding two numbers, the same + operator is used with its default behavior.
Thus, one single operator + is being used for multiple purposes without disturbing its
abstract meaning - addition. But, type of data it is adding is different. Hence, the way you
have expressed your statements is more economical rather than having multiple functions
like -

addMat(m1, m2);
concat(s1, s2); etc.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 1)

MODULE - 5

5.1 NETWORKED PROGRAMS
In this era of internet, it is a requirement in many situations to retrieve the data from web and
to process it. In this section, we will discuss basics of network protocols and Python libraries
available to extract data from web.

5.1.1 HyperText Transfer Protocol (HTTP)
HTTP (HyperText Transfer Protocol) is the media through which we can retrieve web-
based data. The HTTP is an application protocol for distributed and hypermedia information
systems. HTTP is the foundation of data communication for the World Wide Web.
Hypertext is structured text that uses logical links (hyperlinks) between nodes containing
text. HTTP is the protocol to exchange or transfer hypertext.

Consider a situation:

 you try to read a socket, but the program on the other end of the socket has not sent
any data, then you need to wait.

 If the programs on both ends of the socket simply wait for some data without
sending anything, they will wait for a very long time.

So an important part of programs that communicate over the Internet is to have some sort of
protocol. A protocol is a set of precise rules that determine

 Who will send request for what purpose

 What action to be taken
 What response to be given

To send request and to receive response, HTTP uses GET and POST methods.

NOTE: To test all the programs in this section, you must be connected to internet.

5.1.2 The World’s Simplest Web Browser
The built-in module socket of Python facilitates the programmer to make network
connections and to retrieve data over those sockets in a Python program. Socket is
bidirectional data path to a remote system. A socket is much like a file, except that a
single socket provides a two-way connection between two programs. You can both
read from and write to the same socket. If you write something to a socket, it is sent to the
application at the other end of the socket. If you read from the socket, you are given the data
which the other application has sent.

Consider a simple program to retrieve the data from a web page. To understand the
program given below, one should know the meaning of terminologies used there.

 AF_INET is an address family (IP) that is used to designate the type of addresses
that your socket can communicate with. When you create a socket, you have to

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 2)

specify its address family, and then you can use only addresses of that type with the
socket.
SOCK_STREAM is a constant indicating the type of socket (TCP). It works as a file

stream and is most reliable over the network.
Port is a logical end-point. Port 80 is one of the most commonly used port numbers
in the Transmission Control Protocol (TCP) suite.

The command to retrieve the data must use CRLF(Carriage Return Line Feed) line
endings, and it must end in \r\n\r\n (line break in protocol specification).
encode() method applied on strings will return bytes-representation of the string.

Instead of encode() method, one can attach a character b at the beginning of the
string for the same effect.

decode() method returns a string decoded from the given bytes.

A socket connection between the user program and the webpage is shown in Figure 5.1.

Figure 5.1 A Socket Connection

Now, observe the following program -

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mysock.connect(('data.pr4e.org', 80))

cmd='GET http://data.pr4e.org/romeo.txt HTTP/1.0\r\n\r\n'.encode()

mysock.send(cmd)

while True:

data = mysock.recv(512)

if (len(data) < 1):

break

print(data.decode(),end='')

mysock.close()

http://www.chetanahegde.in/
http://data.pr4e.org/romeo.txt
mailto:chetanahegde@ieee.org

. 3)

When we run above program, we will get some information related to web-server of the
website which we are trying to scrape. Then, we will get the data written in that web-page.
In this program, we are extracting 512 bytes of data at a time. (One can use one’s
convenient number here). The extracted data is decoded and printed. When the length of
data becomes less than one (that is, no more data left out on the web page), the loop is
terminated.

5.1.3 Retrieving an Image over HTTP
In the previous section, we retrieved the text data from the webpage. Similar logic can be
used to extract images on the webpage using HTTP. In the following program, we extract
the image data in the chunks of 5120 bytes at a time, store that data in a string, trim off the
headers and then store the image file on the disk.

import socket

import time

HOST = 'data.pr4e.org' #host name

PORT = 80 #port number

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mysock.connect((HOST, PORT))

mysock.sendall(b'GET http://data.pr4e.org/cover3.jpg HTTP/1.0\r\n\r\n')

count = 0

picture = b""

while True:

data = mysock.recv(5120)

if (len(data) < 1):

break

#empty string in binary format

#retrieve 5120 bytes at a time

time.sleep(0.25) #programmer can see data retrieval easily

count = count + len(data)

print(len(data), count) #display cumulative data retrieved

picture = picture + data

mysock.close()

pos = picture.find(b"\r\n\r\n") #find end of the header (2 CRLF)

print('Header length', pos)

print(picture[:pos].decode())

Skip past the header and save the picture data

picture = picture[pos+4:]

fhand = open("stuff.jpg", "wb") #image is stored as stuff.jpg

http://www.chetanahegde.in/
http://data.pr4e.org/cover3.jpg
mailto:chetanahegde@ieee.org

. 4)

fhand.write(picture)

fhand.close()

When we run the above program, the amount of data (in bytes) retrieved from the internet
is displayed in a cumulative format. At the end, the image file ‘stuff.jpg’ will be stored in the
current working directory. (One has to verify it by looking at current working directory of the
program).

5.1.4 Retrieving Web Pages with urllib
Python provides simpler way of webpage retrieval using the library urllib. Here, webpage is
treated like a file. urllib handles all of the HTTP protocol and header details. Following is
the code equivalent to the program given in Section 5.1.2.

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

for line in fhand:

print(line.decode().strip())

Once the web page has been opened with urllib.urlopen, we can treat it like a file and

read through it using a for-loop. When the program runs, we only see the output of the

contents of the file. The headers are still sent, but the urllib code consumes the headers and

only returns the data to us.

Following is the program to retrieve the data from the file romeo.txt which is residing at
www.data.pr4e.org, and then to count number of words in it.

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

counts = dict()

for line in fhand:

words = line.decode().split()

for word in words:

counts[word] = counts.get(word, 0) + 1

print(counts)

5.1.5 Reading Binary Files using urllib
Sometimes you want to retrieve a non-text (or binary) file such as an image or video file.
The data in these files is generally not useful to print out, but you can easily make a copy of
a URL to a local file on your hard disk using urllib. In Section 5.1.3, we have seen how to
retrieve image file from the web using sockets. Now, here is an equivalent program using
urllib.

http://www.chetanahegde.in/
http://data.pr4e.org/romeo.txt')
http://www.data.pr4e.org,/
http://data.pr4e.org/romeo.txt')
mailto:chetanahegde@ieee.org

. 5)

import urllib.request

img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg').read()

fhand = open('cover3.jpg', 'wb')

fhand.write(img)

fhand.close()

Once we execute the above program, we can see a file cover3.jpg in the current
working directory in our computer.

The program reads all of the data in at once across the network and stores it in the variable img
in the main memory of your computer, then opens the file cover.jpg and writes the data
out to your disk. This will work if the size of the file is less than the size of the memory (RAM)
of your computer. However, if this is a large audio or video file, this program may crash or at
least run extremely slowly when your computer runs out of memory. In order to avoid memory
overflow, we retrieve the data in blocks (or buffers) and then write each block to your disk
before retrieving the next block. This way the program can read any size file without using up
all of the memory you have in your computer.

Following is another version of above program, where data is read in chunks and then
stored onto the disk.

import urllib.request

img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg')

fhand = open('cover3.jpg', 'wb')

size = 0

while True:

info = img.read(100000)

if len(info) < 1:

break

size = size + len(info)

fhand.write(info)

print(size, 'characters copied.')

fhand.close()

Once we run the above program, an image file cover3.jpg will be stored on to the

current working directory.

5.1.6 Parsing HTML and Scraping the Web
One of the common uses of the urllib capability in Python is to scrape the web. Web
scraping is when we write a program that pretends to be a web browser and retrieves
pages, then examines the data in those pages looking for patterns. Example: a search
engine such as Google will look at the source of one web page and extract the links to
other pages and retrieve those pages, extracting links, and so on. Using this technique,

http://www.chetanahegde.in/
http://data.pr4e.org/cover3.jpg').read()
http://data.pr4e.org/cover3.jpg')
mailto:chetanahegde@ieee.org

. 6)

Google spiders its way through nearly all of the pages on the web. Google also uses
the frequency of links from pages it finds to a particular page as one measure of how
“important” a page is and how high the page should appear in its search results.

5.1.7 Parsing HTML using Regular Expressions
Sometimes, we may need to parse the data on the web which matches a particular pattern.
For this purpose, we can use regular expressions. Now, we will consider a program that
extracts all the hyperlinks given in a particular webpage. To understand the Python
program for this purpose, one has to know the pattern of an HTML file. Here is a simple
HTML file -

<h1>The First Page</h1>

<p>

If you like, you can switch to the

Second Page.

</p>

Here,

<h1> and </h1> are the beginning and end of header tags

<p> and </p> are the beginning and end of paragraph tags

<a> and are the beginning and end of anchor tag which is used for giving links

href is the attribute for anchor tag which takes the value as the link for another page.

The above information clearly indicates that if we want to extract all the hyperlinks in a

webpage, we need a regular expression which matches the href attribute. Thus, we can

create a regular expression as -

href="http://.+?"

Here, the question mark in .+? indicate that the match should find smallest possible

matching string.

Now, consider a Python program that uses the above regular expression to extract all
hyperlinks from the webpage given as input.

import urllib.request

import re

url = input('Enter - ') #give URL of any website

html = urllib.request.urlopen(url).read()

links = re.findall(b'href="(http://.*?)"', html)

for link in links:

print(link.decode())

http://www.chetanahegde.in/
http://www.dr-chuck.com/page2.htm
http://.+/?
http://.*/?)
mailto:chetanahegde@ieee.org

. 7)

When we run this program, it prompts for user input. We need to give a valid URL of any
website. Then all the hyperlinks on that website will be displayed.

5.1.8 Parsing HTML using BeautifulSoup
There are a number of Python libraries which can help you parse HTML and extract data
from the pages. Each of the libraries has its strengths and weaknesses and you can pick one
based on your needs. BeautifulSoup library is one of the simplest libraries available for
parsing. To use this, download and install the BeautifulSoup code from:

http://www.crummy.com/software/

Consider the following program which uses urllib to read the page and uses

BeautifulSoup to extract href attribute from the anchor tag.

import urllib.request

from bs4 import BeautifulSoup

import ssl #Secure Socket Layer

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urllib.request.urlopen(url,context=ctx).read()

soup = BeautifulSoup(html, 'html.parser')

tags = soup('a')

for tag in tags:

print(tag.get('href', None))

A sample output would be -
Enter - http://www.dr-chuck.com/page1.htm

http://www.dr-chuck.com/page2.htm

The above program prompts for a web address, then opens the web page, reads the data
and passes the data to the BeautifulSoup parser, and then retrieves all of the anchor tags
and prints out the href attribute for each tag.

The BeautifulSoup can be used to extract various parts of each tag as shown below -

from urllib.request import urlopen

from bs4 import BeautifulSoup

import ssl

ctx = ssl.create_default_context()

http://www.chetanahegde.in/
http://www.crummy.com/software/
http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm
mailto:chetanahegde@ieee.org

. 8)

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urlopen(url, context=ctx).read()

soup = BeautifulSoup(html, "html.parser")

tags = soup('a')

for tag in tags:

print('TAG:', tag)

print('URL:', tag.get('href', None))

print('Contents:', tag.contents[0])

print('Attrs:', tag.attrs)

The sample output would be -
Enter - http://www.dr-chuck.com/page1.htm

TAG:

Second Page

URL: http://www.dr-chuck.com/page2.htm

Contents:

Second Page

Attrs: {'href': 'http://www.dr-chuck.com/page2.htm'}

5.2 USING WEB SERVICES
There are two common formats that are used while exchanging data across the web. One is
HTML and the other is XML (eXtensible Markup Language). In the previous section we have
seen how to retrieve the data from a web-page which is in the form of HTML. Now, we will
discuss the retrieval of data from web-page designed using XML.

XML is best suited for exchanging document-style data. When programs just want to
exchange dictionaries, lists, or other internal information with each other, they use
JavaScript Object Notation or JSON (refer www.json.org). We will look at both formats.

5.2.1 eXtensible Markup Language (XML)

XML looks very similar to HTML, but XML is more structured than HTML. Here is a sample of
an XML document:

<person>

<name>Chuck</name>

<phone type="intl">

+1 734 303 4456

</phone>

<email hide="yes"/>

</person>

http://www.chetanahegde.in/
http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm'
http://www.json.org)./
mailto:chetanahegde@ieee.org

. 9)

Often it is helpful to think of an XML document as a tree structure where there is a top tag
person and other tags such as phone are drawn as children of their parent nodes. Figure
5.2 is the tree structure for above given XML code.

Figure 5.2 Tree Representation of XML

5.2.2 Parsing XML
Python provides library xml.etree.ElementTree to parse the data from XML files. One

has to provide XML code as a string to built-in method fromstring() of ElementTree

class. ElementTree acts as a parser and provides a set of relevant methods to extract the

data. Hence, the programmer need not know the rules and the format of XML document

syntax. The fromstring()method will convert XML code into a tree-structure of XML

nodes. When the XML is in a tree format, Python provides several methods to extract data

from XML. Consider the following program.

import xml.etree.ElementTree as ET

#XML code embedded in a string format

data = '''

<person>

<name>Chuck</name>

<phone type="intl">

+1 734 303 4456

</phone>

<email hide="yes"/>

</person>'''

tree = ET.fromstring(data)

print('Attribute for tag email:', tree.find('email').get('hide'))

print('Attribute for tag phone:', tree.find('phone').get('type'))

The output would be -
Name: Chuck

Attribute for the tag email: yes

Attribute for the tag phone: intl

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 10)

In the above example, fromstring() is used to convert XML code into a tree. The

find() method searches XML tree and retrieves a node that matches the specified tag. The

get() method retrieves the value associated with the specified attribute of that tag. Each

node can have some text, some attributes (like hide), and some “child” nodes. Each node can

be the parent for a tree of nodes.

5.2.3 Looping Through Nodes
Most of the times, XML documents are hierarchical and contain multiple nodes. To process
all the nodes, we need to loop through all those nodes. Consider following example as an
illustration.

import xml.etree.ElementTree as ET

input = '''

<stuff>

<users>

<user x="2">

<id>001</id>

<name>Chuck</name>

</user>

<user x="7">

<id>009</id>

<name>Brent</name>

</user>

</users>

</stuff>'''

stuff = ET.fromstring(input)

lst = stuff.findall('users/user')

print('User count:', len(lst))

for item in lst:

print('Name', item.find('name').text)

print('Id', item.find('id').text)

print('Attribute', item.get("x"))

The output would be -
User count: 2

Name Chuck

Id 001

Attribute 2

Name Brent

Id 009
Attribute 7

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 11)

The findall() method retrieves a Python list of subtrees that represent the user

structures in the XML tree. Then we can write a for-loop that extracts each of the user

nodes, and prints the name and id, which are text elements as well as the attribute x from

the user node.

5.2.4 JavaScript Object Notation (JSON)
The JSON format was inspired by the object and array format used in the JavaScript
language. But since Python was invented before JavaScript, Python’s syntax for
dictionaries and lists influenced the syntax of JSON. So the format of JSON is a
combination of Python lists and dictionaries. Following is the JSON encoding that is roughly
equivalent to the XML code (the string data) given in the program of Section 5.2.2.

{

"name" : "Chuck",

"phone": {"type" : "intl", "number" : "+1 734 303 4456"},

"email": {"hide" : "yes"}

}

Observe the differences between XML code and JSON code:

 In XML, we can add attributes like “intl” to the “phone” tag. In JSON, we simply have
key-value pairs.
 XML uses tag “person”, which is replaced by a set of outer curly braces in JSON.

In general, JSON structures are simpler than XML because JSON has fewer capabilities
than XML. But JSON has the advantage that it maps directly to some combination of
dictionaries and lists. And since nearly all programming languages have something
equivalent to Python’s dictionaries and lists, JSON is a very natural format to have two
compatible programs exchange data. JSON is quickly becoming the format of choice for
nearly all data exchange between applications because of its relative simplicity compared
to XML.

5.2.5 Parsing JSON
Python provides a module json to parse the data in JSON pages. Consider the following
program which uses JSON equivalent of XML string written in Section 5.2.3. Note that, the
JSON string has to embed a list of dictionaries.

import json

data = '''

[

{ "id" : "001",

"x" : "2",

"name" : "Chuck"

} ,

{ "id" : "009",

"x" : "7",

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 12)

"name" : "Chuck"

}

]'''

info = json.loads(data)

print('User count:', len(info))

for item in info:

print('Name', item['name'])

print('Id', item['id'])

print('Attribute', item['x'])

The output would be -
User count: 2

Name Chuck

Id 001

Attribute 2

Name Chuck

Id 009

Attribute 7

Here, the string data contains a list of users, where each user is a key-value pair. The

method loads() in the json module converts the string into a list of dictionaries. Now

onwards, we don’t need anything from json, because the parsed data is available in

Python native structures. Using a for-loop, we can iterate through the list of dictionaries and

extract every element (in the form of key-value pair) as if it is a dictionary object. That is, we

use index operator (a pair of square brackets) to extract value for a particular key.

NOTE: Current IT industry trend is to use JSON for web services rather than XML.
Because, JSON is simpler than XML and it directly maps to native data structures we
already have in the programming languages. This makes parsing and data extraction
simpler compared to XML. But XML is more self descriptive than JSON and so there are
some applications where XML retains an advantage. For example, most word processors
store documents internally using XML rather than JSON.

5.2.6 Application Programming Interface (API)
Till now, we have discussed how to exchange data between applications using HTTP, XML
and JSON. The next step is to understand API. Application Programming Interface defines
and documents the contracts between the applications. When we use an API, generally
one program makes a set of services available for use by other applications and publishes
the APIs (i.e., the “rules”) that must be followed to access the services provided by the
program.

When we begin to build our programs where the functionality of our program includes
access to services provided by other programs, we call the approach a Service-Oriented
Architecture(SOA). A SOA approach is one where our overall application makes use of

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 13)

the services of other applications. A non-SOA approach is where the application is a single
stand-alone application which contains all of the code necessary to implement the
application.

Consider an example of SOA: Through a single website, we can book flight tickets and
hotels. The data related to hotels is not stored in the airline servers. Instead, airline servers
contact the services on hotel servers and retrieve the data from there and present it to the
user. When the user agrees to make a hotel reservation using the airline site, the airline site
uses another web service on the hotel systems to actually make the reservation.
Similarly, to reach airport, we may book a cab through a cab rental service. And when it
comes time to charge your credit card for the whole transaction, still other computers
become involved in the process. This process is depicted in Figure 5.3.

Figure 5.3 Server Oriented Architecture

SOA has following major advantages:
 we always maintain only one copy of data (this is particularly important for things like
hotel reservations where we do not want to over-commit)

 the owners of the data can set the rules about the use of their data.

With these advantages, an SOA system must be carefully designed to have good
performance and meet the user’s needs. When an application makes a set of services in its
API available over the web, then it is called as web services.

5.2.7 Google Geocoding Web Service

Google has a very good web service which allows anybody to use their large database of
geographic information. We can submit a geographic search string like “Rajarajeshwari
Nagar” to their geocoding API. Then Google returns the location details of the string
submitted.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 14)

The following program asks the user to provide the name of a location to be searched for.
Then, it will call Google geocoding API and extracts the information from the returned
JSON.

import urllib.request, urllib.parse, urllib.error

import json

serviceurl = 'http://maps.googleapis.com/maps/api/geocode/json?'

address = input('Enter location: ')

if len(address) < 1:

exit()

url = serviceurl + urllib.parse.urlencode({'address': address})

print('Retrieving', url)

uh = urllib.request.urlopen(url)

data = uh.read().decode()

print('Retrieved', len(data), 'characters')

try:

js = json.loads(data)

except:

js = None

if not js or 'status' not in js or js['status'] != 'OK':

print('==== Failure To Retrieve ====')

print(data)

print(json.dumps(js, indent=4))

lat = js["results"][0]["geometry"]["location"]["lat"]

lng = js["results"][0]["geometry"]["location"]["lng"]

print('lat', lat, 'lng', lng)

location = js['results'][0]['formatted_address']

print(location)

(Students are advised to run the above program and check the output, which will
contain several lines of Google geographical data).

The above program retrieves the search string and then encodes it. This encoded string
along with Google API link is treated as a URL to fetch the data from the internet. The data
retrieved from the internet will be now passed to JSON to put it in JSON object format. If
the input string (which must be an existing geographical location like Channasandra,
Malleshwaram etc!!) cannot be located by Google API either due to bad internet or due to
unknown location, we just display the message as ‘Failure to Retrieve’. If Google
successfully identifies the location, then we will dump that data in JSON object. Then, using

http://www.chetanahegde.in/
http://maps.googleapis.com/maps/api/geocode/json?'
mailto:chetanahegde@ieee.org

. 15)

indexing on JSON (as JSON will be in the form of dictionary), we can retrieve the location
address, longitude, latitude etc.

5.2.8 Security and API Usage
Public APIs can be used by anyone without any problem. But, if the API is set up by some
private vendor, then one must have API key to use that API. If API key is available, then it
can be included as a part of POST method or as a parameter on the URL while calling API.

Sometimes, vendor wants more security and expects the user to provide cryptographically
signed messages using shared keys and secrets. The most common protocol used in the
internet for signing requests is OAuth.

As the Twitter API became increasingly valuable, Twitter went from an open and public API to
an API that required the use of OAuth signatures on each API request. But, there are still a
number of convenient and free OAuth libraries so you can avoid writing an OAuth
implementation from scratch by reading the specification. These libraries are of varying
complexity and have varying degrees of richness. The OAuth web site has information
about various OAuth libraries.

5.3 USING DATABASES AND SQL
A structured set of data stored in a permanent storage is called as database. Most of the
databases are organized like a dictionary - that is, they map keys to values. Unlike
dictionaries, databases can store huge set of data as they reside on permanent storage like
hard disk of the computer.

There are many database management softwares like Oracle, MySQL, Microsoft SQL
Server, PostgreSQL, SQLite etc. They are designed to insert and retrieve data very fast,
however big the dataset is. Database software builds indexes as data is added to the
database so as to provider quicker access to particular entry.

In this course of study, SQLite is used because it is already built into Python. SQLite is a C
library that provides a lightweight disk-based database that doesn’t require a separate
server process and allows accessing the database using a non-standard variant of the SQL
query language. SQLite is designed to be embedded into other applications to provide
database support within the application. For example, the Firefox browser also uses the
SQLite database internally. SQLite is well suited to some of the data manipulation problems in
Informatics such as the Twitter spidering application etc.

5.3.1 Database Concepts

For the first look, database seems to be a spreadsheet consisting of multiple sheets. The
primary data structures in a database are tables, rows and columns. In a relational
database terminology, tables, rows and columns are referred as relation, tuple and
attribute respectively. Typical structure of a database table is as shown below. Each table
may consist of n number of attributes and m number of tuples (or records). Every tuple
gives the information about one individual. Every cell(i, j) in the table indicates value of j th

attribute for ith tuple.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 16)

Attribute1 Attribute2 ……………… Attribute_n

Tuple1 V11 V12 ……………… V1n
Tuple2 V21 V22 ……………… V2n

………….. ……… ……. ……………… ……….

…………. ………… ………. …………….. ………..
Tuple_m Vm1 Vm2 …………….. Vmn

Consider the problem of storing details of students in a database table. The format may
look like -

RollNo Name DoB Marks

Student1 1 Ram 22/10/2001 82.5

Student2 2 Shyam 20/12/2000 81.3

………….. ……… ……. ……………… ……….

…………. ………… ………. …………….. ………..

Student_m ………….. ………. ……………. …………

Thus, table columns indicate the type of information to be stored, and table rows gives
record pertaining to every student. We can create one more table say addressTable
consisting of attributes like DoorNo, StreetName, Locality, City, PinCode. To relate this
table with a respective student stored in studentTable, we need to store RollNo also in
addressTable (Note that, RollNo will be unique for every student, and hence there won’t be
any confusion). Thus, there is a relationship between two tables in a single database.
There are softwares that can maintain proper relationships between multiple tables in a
single database and are known as Relational Database Management Systems (RDBMS).
The detailed discussion on RDBMS is out of the scope of this study.

5.3.2 Structured Query Language (SQL) Summary
To perform operations on databases, one should use structured query language. SQL is a
standard language for storing, manipulating and retrieving data in databases. Irrespective of
RDBMS software (like Oracle, MySQL, MS Access, SQLite etc) being used, the syntax of
SQL remains the same. The usage of SQL commands may vary from one RDBMS to the other
and there may be little syntactical difference. Also, when we are using some
programming language like Python as a front-end to perform database applications, the way
we embed SQL commands inside the program source-code is as per the syntax of
respective programming language. Still, the underlying SQL commands remain the same.
Hence, it is essential to understand basic commands of SQL.

There are some clauses like FROM, WHERE, ORDER BY, INNER JOIN etc. that are used
with SQL commands, which we will study in a due course. The following table gives few of the
SQL commands.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 17)

Command Meaning

CREATE DATABASE creates a new database

ALTER DATABASE modifies a database

CREATE TABLE creates a new table

ALTER TABLE modifies a table

DROP TABLE deletes a table

SELECT extracts data from a database

INSERT INTO inserts new data into a database

UPDATE updates data in a database

DELETE deletes data from a database

As mentioned earlier, every RDBMS has its own way of storing the data in tables. Each of
RDBMS uses its own set of data types for the attribute values to be used. SQLite uses the
data types as mentioned in the following table -

Data Type Description

NULL The value is a NULL value.

INTEGER The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes
depending on the magnitude of the value.

REAL The value is a floating point value, stored as an 8-byte floating point
number

TEXT The value is a text string, stored using the database encoding (UTF-
8, UTF-16BE or UTF-16LE)

BLOB The value is a blob (Binary Large Object) of data, stored exactly as it
was input

Note that, SQL commands are case-insensitive. But, it is a common practice to write
commands and clauses in uppercase alphabets just to differentiate them from table name
and attribute names.

Now, let us see some of the examples to understand the usage of SQL statements -

 CREATE TABLE Tracks (title TEXT, plays INTEGER)

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 18)

This command creates a table called as Tracks with the attributes title and

plays where title can store data of type TEXT and plays can store data of

type INTEGER.

INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)

This command inserts one record into the table Tracks where values for the

attributes title and plays are ‘My Way’ and 15 respectively.

SELECT * FROM Tracks

Retrieves all the records from the table Tracks

SELECT * FROM Tracks WHERE title = 'My Way’

Retrieves the records from the table Tracks having the value of attribute
title as ‘My Way’

SELECT title, plays FROM Tracks ORDER BY title

The values of attributes title and plays are retrieved from the table

Tracks with the records ordered in ascending order of title.

UPDATE Tracks SET plays = 16 WHERE title = 'My Way‘

Whenever we would like to modify the value of any particular attribute in the

table, we can use UPDATE command. Here, the value of attribute plays is

assigned to a new value for the record having value of title as ‘My Way’.

DELETE FROM Tracks WHERE title = 'My Way'

A particular record can be deleted from the table using DELETE command.

Here, the record with value of attribute title as ‘My Way’ is deleted from the

table Tracks.

5.3.3 Database Browser for SQLite
Many of the operations on SQLite database files can be easily done with the help of
software called Database Browser for SQLite which is freely available from:

http://sqlitebrowser.org/

Using this browser, one can easily create tables, insert data, edit data, or run simple SQL
queries on the data in the database. This database browser is similar to a text editor when
working with text files. When you want to do one or very few operations on a text file, you
can just open it in a text editor and make the changes you want. When you have many
changes that you need to do to a text file, often you will write a simple Python program. You
will find the same pattern when working with databases. You will do simple operations in
the database manager and more complex operations will be most conveniently done in
Python.

http://www.chetanahegde.in/
http://sqlitebrowser.org/
mailto:chetanahegde@ieee.org

. 19)

5.3.4 Creating a Database Table
When we try to create a database table, we must specify the names of table columns and the
type of data to be stored in those columns. When the database software knows the type of data
in each column, it can choose the most efficient way to store and look up the data based on
the type of data. Here is the simple code to create a database file and a table named Tracks
with two columns in the database:

Ex1.
import sqlite3

conn = sqlite3.connect('music.sqlite')

cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

conn.close()

The connect() method of sqlite3 makes a “connection” to the database stored in the file

music.sqlite3 in the current directory. If the file does not exist, it will be created.

Sometimes, the database is stored on a different database server from the server on which we

are running our program. But, all the examples that we consider here will be local file in the

current working directory of Python code.

A cursor() is like a file handle that we can use to perform operations on the data stored in

the database. Calling cursor() is very similar conceptually to calling open() when

dealing with text files. Hence, once we get a cursor, we can execute the commands on the

contents of database using execute() method.

Figure 5.4 A Database Cursor

In the above program, we are trying to remove the database table Tracks, if at all it

existed in the current working directory. The DROP TABLE command deletes the table

along with all its columns and rows. This procedure will help to avoid a possible error of

trying to create a table with same name. Then, we are creating a table with name Tracks

which has two columns viz. title, which can take TEXT type data and plays, which can

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 20)

take INTEGER type data. Once our job with the database is over, we need to close the

connection using close() method.

In the previous example, we have just created a table, but not inserted any records into it. So,
consider below given program, which will create a table and then inserts two rows and finally
delete records based on some condition.

Ex2.
import sqlite3

conn = sqlite3.connect('music.sqlite')

cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

cur.execute(“INSERT INTO Tracks (title, plays) VALUES

('Thunderstruck', 20)”)

cur.execute(“INSERT INTO Tracks (title, plays) VALUES (?, ?)”,

('My Way', 15))

conn.commit()

print('Tracks:')

cur.execute('SELECT title, plays FROM Tracks')

for row in cur:

print(row)

cur.execute('DELETE FROM Tracks WHERE plays < 100')

cur.close()

In the above program, we are inserting first record with the SQL command -

“INSERT INTO Tracks (title, plays) VALUES('Thunderstruck', 20)”

Note that, execute() requires SQL command to be in string format. But, if the value to be
store in the table is also a string (TEXT type), then there may be a conflict of string
representation using quotes. Hence, in this example, the entire SQL is mentioned within
double-quotes and the value to be inserted in single quotes. If we would like to use either

single quote or double quote everywhere, then we need to use escape-sequences like \’
or \”.

While inserting second row in a table, SQL statement is used with a little different syntax -

“INSERT INTO Tracks (title, plays) VALUES (?, ?)”,('My Way', 15)

Here, the question mark acts as a place-holder for particular value. This type of syntax is
useful when we would like to pass user-input values into database table.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 21)

After inserting two rows, we must use commit() method to store the inserted records
permanently on the database table. If this method is not applied, then the insertion (or any
other statement execution) will be temporary and will affect only the current run of the
program.

Later, we use SELECT command to retrieve the data from the table and then use for-loop
to display all records. When data is retrieved from database using SELECT command, the
cursor object gets those data as a list of records. Hence, we can use for-loop on the cursor
object. Finally, we have used a DELETE command to delete all the records WHERE plays
is less than 100.

Let us consider few more examples -

Ex3.

import sqlite3

from sqlite3 import Error

def create_connection():

""" create a database connection to a database that resides

in the memory
"""

try:

conn = sqlite3.connect(':memory:')

print("SQLite Version:",sqlite3.version)

except Error as e:

print(e)

finally:

conn.close()

create_connection()

Few points about above program:

 Whenever we try to establish a connection with database, there is a possibility of
error due to non-existing database, authentication issues etc. So, it is always better

to put the code for connection inside try-except block.
 While developing real time projects, we may need to create database connection
and close it every now-and-then. Instead of writing the code for it repeatedly, it is
better to write a separate function for establishing connection and call that function
whenever and wherever required.

 If we give the term :memory: as an argument to connect() method, then the

further operations (like table creation, insertion into tables etc) will be on memory
(RAM) of the computer, but not on the hard disk.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 22)

Ex4. Write a program to create a Student database with a table consisting of student name
and age. Read n records from the user and insert them into database. Write queries to
display all records and to display the students whose age is 20.

import sqlite3

conn=sqlite3.connect('StudentDB.db')

c=conn.cursor()

c.execute('CREATE TABLE tblStudent(name text, age Integer)')

n=int(input(“Enter number of records:”))

for i in range(n):

nm=input("Enter Name:")

ag=int(input("Enter age:"))

c.execute("INSERT INTO tblStudent VALUES(?,?)",(nm,ag))

conn.commit()

c.execute("select * from tblStudent ")

print(c.fetchall())

c.execute("select * from tblStudent where age=20")

print(c.fetchall())

conn.close()

In the above program we take a for-loop to get user-input for student’s name and age.
These data are inserted into the table. Observe the question mark acting as a placeholder
for user-input variables. Later we use a method fetchall() that is used to display all the
records form the table in the form of a list of tuples. Here, each tuple is one record from the
table.

5.3.5 Three Kinds of Keys
Sometimes, we need to build a data model by putting our data into multiple linked tables and
linking the rows of those tables using some keys. There are three types of keys used in
database model:

 A logical key is a key that the “real world” might use to look up a row. It defines the
relationship between primary keys and foreign keys. Most of the times, a UNIQUE
constraint is added to a logical key. Since the logical key is how we look up a row from
the outside world, it makes little sense to allow multiple rows with the same value in
the table.

 A primary key is usually a number that is assigned automatically by the database. It
generally has no meaning outside the program and is only used to link rows from
different tables together. When we want to look up a row in a table, usually
searching for the row using the primary key is the fastest way to find the row. Since
primary keys are integer numbers, they take up very little storage and can be
compared or sorted very quickly.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 23)

 A foreign key is usually a number that points to the primary key of an associated
row in a different table.

Consider a table consisting of student details like RollNo, name, age, semester and
address as shown below -

RollNo Name Age Sem Address
1 Ram 29 6 Bangalore
2 Shyam 21 8 Mysore
3 Vanita 19 4 Sirsi
4 Kriti 20 6 Tumkur

In this table, RollNo can be considered as a primary key because it is unique for every
student in that table. Consider another table that is used for storing marks of students in all
the three tests as below -

RollNo Sem M1 M2 M3
1 6 34 45 42.5
2 6 42.3 44 25
3 4 38 44 41.5
4 6 39.4 43 40
2 8 37 42 41

To save the memory, this table can have just RollNo and marks in all the tests. There is no
need to store the information like name, age etc of the students as these information can
be retrieved from first table. Now, RollNo is treated as a foreign key in the second table.

5.3.6 Basic Data Modeling
The relational database management system (RDBMS) has the power of linking multiple
tables. The act of deciding how to break up your application data into multiple tables and
establishing the relationships between the tables is called data modeling. The design
document that shows the tables and their relationships is called a data model. Data
modeling is a relatively sophisticated skill. The data modeling is based on the concept of
database normalization which has certain set of rules. In a raw-sense, we can mention
one of the basic rules as never put the same string data in the database more than once. If
we need the data more than once, we create a numeric key (primary key) for the data and
reference the actual data using this key. This is because string requires more space on the
disk compared to integer, and data retrieval (by comparing) using strings is difficult
compared to that with integer.

Consider the example of Student database discussed in Section 5.3.5. We can create a
table using following SQL command -

CREATE TABLE tblStudent
(RollNo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem INTEGER, address TEXT)

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 24)

Here, RollNo is a primary key and by default it will be unique in one table. Now, another take
can be created as -

CREATE TABLE tblMarks
(RollNo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL, UNIQUE(RollNo,sem))

Now, in the tblMarks consisting of marks of 3 tests of all the students, RollNo and sem are
together unique. Because, in one semester, only one student can be there having a
particular RollNo. Whereas in another semester, same RollNo may be there.

Such types of relationships are established between various tables in RDBMS and that will
help better management of time and space.

5.3.7 Using JOIN to Retrieve Data
When we follow the rules of database normalization and have data separated into multiple
tables, linked together using primary and foreign keys, we need to be able to build a
SELECT that reassembles the data across the tables. SQL uses the JOIN clause to
reconnect these tables. In the JOIN clause you specify the fields that are used to reconnect the
rows between the tables.

Consider the following program which creates two tables tblStudent and tblMarks as
discussed in the previous section. Few records are inserted into both the tables. Then we
extract the marks of students who are studying in 6th semester.

import sqlite3

conn=sqlite3.connect('StudentDB.db')

c=conn.cursor()

c.execute('CREATE TABLE tblStudent

(RollNo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem INTEGER,

address TEXT)')

c.execute('CREATE TABLE tblMarks

(RollNo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL,

UNIQUE(RollNo,sem))')

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(1,'Ram',20,6,'Bangalore'))

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(2,'Shyam',21,8,'Mysore'))

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(3,'Vanita',19,4,'Sirsi'))

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(4,'Kriti',20,6,'Tumkur'))

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

. 25)

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(1,6,34,45,42.5))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(2,6,42.3,44,25))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(3,4,38,44,41.5))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(4,6,39.4,43,40))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(2,8,37,42,41))

conn.commit()

query="SELECT tblStudent.RollNo, tblStudent.Name, tblMarks.sem,

tblMarks.m1, tblMarks.m2, tblMarks.m3

FROM tblStudent JOIN tblMarks ON

tblStudent.sem = tblMarks.sem AND

tblStudent.RollNo = tblMarks.RollNo

WHERE tblStudent.sem=6"

c.execute(query)

for row in c:

print(row)

conn.close()

The output would be -
(1, 'Ram', 6, 34.0, 45.0, 42.5)

(4, 'Kriti', 6, 39.4, 43.0, 40.0)

The query joins two tables and extracts the records where RollNo and sem matches in both the
tables, and sem must be 6.

http://www.chetanahegde.in/
mailto:chetanahegde@ieee.org

