
 

Vector Calculus 

  

 

In this part of the presentation, we will learn what is known as multivariable calculus. 

Prerequisites are calculus of functions of one variable, vector algebra and partial differentiation. 

We borrow the Physics terminology for vectors, which mean that they have magnitude and 

direction. Examples include velocity, force and the like. We also use the word scalar, which (for 

this course) means real numbers. Examples include temperature, potential energy and the like. 

The stage for performing our calculus would be a region of 3-dimensional space we live in. You 

are all familiar with the Cartesian co-ordinate system and the unit vectors  and   in the 

canonical directions. You also need to know how to take partial differentiation of functions with 

more than one variable. You also need to know how to take dot and cross products of two 

vectors. 

You must have seen a temperature map of Karnataka like the one below.  

 

Every point in the region is labeled with the temperature of that point. Note that temperature is a 

scalar. This is an example of a scalar field.  



 

You might have seen a contour map of India like the one below. 

 

Every point in the region is labeled with the height of the point. This is another example of a 

scalar field.  

Definition:  A scalar field in a region is a function from the region to the scalars (real numbers) 

Example: The distance  of any point from origin is a scalar field. In Cartesian coordinate 

system  

 

 



 

Another important concept is vector field. If you have seen a wind map like this, you have seen a 

vector field. 

 

Arrow marked at a point tells us the magnitude and direction of the movement of wind at that 

point. To make it precise, an arrow must be attached to every point in the region, but we do not 

draw all of them.  

Another example is map of ocean current like this 



 

 

Arrow marked at a point tells the velocity of the water particle at that point. To make it precise, 

an arrow must be attached to every point in the region.  

Definition:  A vector field in a region is a function from the region to set of vectors. 

Example: In Cartesian coordinate system consider  In this 

vector field, the point (1,0,0) has the vector 2  (0,1,0) has   and (1,0,1) has  etc. At 

different points one can evaluate and see the vector attached to that point. 

Before we dive into the mathematics, let me bring broader stage to your attention about why we 

are doing this. Many different physical quantities have different values at different points in 

space. For example temperature in kitchen is different at different points – high near the burning 

gas flame and cool near an open window. Electric field around an electric charge varies – high 

near the charge and decreases when moved away from it. Gravitational force acting on a satellite 

depends on its distance from the earth. Velocity of flow of water in a stream is large when it is 

narrow and small where the stream is wide. In all these problems, there is a particular region of 

space, which is of interest for the problem at hand. May be we want to study temperature 

distribution of kitchen or orbit of a satellite or flow of a river. Each of these is called a field – 

vector field or scalar field depending on whether the physical quantity under study is a vector or 

scalar. For this course all fields are in 2 or 3 dimensions and differentiable as many times as we 

want. What this means is that there are no sudden changes and sharp turns. 

The three important associated mathematical concepts are gradient of a scalar field, divergence 

of a vector field and curl of a vector field. Let us understand each of these carefully. 



 

Suppose a marble is released from a point on an uneven surface like a hill. Of course, the marble 

will roll straight down the hill, but this straight down keeps changing from point to point. 

Essentially, it falls down in the direction in which height changes most rapidly. This direction is 

what we call as gradient of the hill at that point. There is nothing sacrosanct about height 

function. In general, let  be a scalar field in some region. At a point P the direction in 

which  changes maximum and the magnitude of the change represents gradient of  at that 

point.  

Definition: Gradient of a scalar field   is defined by  

 

Risking repetition I will illustrate this once more. Consider heat distribution in a region in space. 

This is a scalar field. We all know heat flows from hotter region to colder region. The question 

we want to ask is: at any given point, how much heat is flowing and in what direction? Answer to 

this question is the gradient at that point. 

Observe that grad  is a vector field.  

Example: Let  Find grad  at (1,2, 1) 

By definition,  

Thus . 

At (1, 2, 1) this become  

In addition to gradient being denoted by grad  it is also denoted by . Due to historical and 

computational reasons following notational conveniences are developed. 

Definition: Let  

Observe that this  (pronounced nabla) is an operator and not a true vector as etc are not 

scalars. The result is a scalar only when  is operated or applied on some real valued function. 

is called an operator because when it is applied on a scalar function, it results in a vector. We 

shall clarify this with one more example. 

Example: Find the gradient of  



 

 

 

Clearly,  is a vector field. 

I would like to bring it to your notice that  is an operator. It has no meaning on its own; much 

like d/dx has no meaning unless you specify a function f in x and operate d/dx on f to obtain df/dx 

which is the derivative of f with respect to x. In fact, there are many properties of  much like 

d/dx, like linearity, Leibnitz rule, quotient rule which are beyond the scope of this course. 

To summarize, gradient of a scalar field is a vector field which denotes the greatest change in 

scalar field.  i.e., at every point, gradient of a scalar field denotes the vector which is the 

magnitude and direction of the greatest change in the scalar function.  If  is the scalar field,  

grad  denoted by  

So, remember to find gradient of a (scalar) function you differentiate with respect to x, put it as x 

–component by writing  after that and similarly for y and z components. 

Now let us move onto capturing change in a vector field. Imagine a widening river. Think of a 

small (imaginary) sphere fixed at a point. It is easy to convince that total velocity of water 

particles coming into the sphere is less than the total velocity of water particles coming out of the 

sphere. i.e., there is net flow of water out of the sphere. In some sense water is becoming less 

compressed, it is spreading out or it is diverging. One says such a vector field has positive 

divergence. Similarly one has negative divergence when water flow is constricted. Of course one 

can have 0 divergence scenario too. Essentially divergence captures the difference in outflow to 

inflow of vectors at a point. Clearly net outflow is a scalar and thus we come to associate a scalar 

to every point. Once we do this at all point we get a scalar field.  

Another physical situation where divergence comes in handy is magnets. Magnetic field near 

north pole has positive divergence whereas near south pole it has negative divergence. 

Mathematical expression for divergence is as follows. 

Definition: Let  be a vector field in a 

region. Then divergence of V is defined as  

.  



 

Observe that this expression gives a scalar which is the sum of change in x-component of V with 

respect to x, change in y-component of V with respect to y and change in z-component of V with 

respect to z. This is precisely the total change in V at a point. 

In our previous notation this corresponds to the dot product of  

 and . Hence   

 

 

Example: Let  be a vector field. Its divergence is given by 

 where  and .  

Hence  and . Then div  

Example: Find divergence of gradient of  

Note that here a scalar function is given and first we have to find its gradient. We know that 

 

 

 

Now we have to find  where 

 

= 

 



 

Here is terminology. A vector field is said to be solenoidal if its divergence is identically zero. 

This means that total outflow of the field is equal to the total inflow at every point. Trivial 

example is that of a constant vector field. Another example is the magnetic field in the region of 

perpendicular bisector of a bar magnet. Terminology comes from the fact that when an electric 

current passes through a solenoid, the magnetic field in the interior of the coil has no divergence. 

Example: Show that  is solenoidal. 

=  

. 

Hence, V is solenoidal. 

Example: Find the value of a so that  is 

solenoidal. 

Again =  

. 

If V has to be solenoidal, div V = 0 and hence  = 0 which means a = 2. 

Now let us move onto the concept of directional derivative. Let  be scalar field in a 

region. Let P be a point in that region. Moving in different directions from P,  could change by 

different amounts. Change in  in the direction of  is called directional 

derivative of  with respect to v. It is denoted by  

 

where Q is a variable point on the ray C in the direction of .  

Definition: Let P be a point in a region where the scalar field  is defined. For any 

vector v, directional derivative of  in the direction of v is defined to be  

 where  is the unit vector in the direction of v. 

An example should clarify this 

Example: Find the directional derivative of  at the point P(1, 1,2) 

in the direction of the vector  



 

First we find that grad . This evaluated at (1, 1,2) 

gives  

The unit vector in the direction of v is   

Thus  

So, anytime you want to find the directional derivative of a scalar field in the direction of v, just 

take the dot product of grad ( ) and . 

Another geometric property of gradient we need to understand is that whenever it is non-zero, it 

is normal to a particularly important surface. Let me explain this in detail. Let be a 

scalar field. Consider S = {(x,y,z) | = c}. This means S is the set of all points in 

the region where  will take value c. In case of height function you may think of this as all 

points with same height. In case of temperature distribution, you may think of this as isotherms. 

One can show that such points form a surface.  Gradient (if it is non-zero) at any point on S will 

be the normal to the surface S at that point. Proof  of this is beyond the scope of this talk, but we 

will illustrate this using a couple of examples. 

Example: Find normal to the surface at the point (2, 0, 0). 

Those of you who have understood your analytical geometry well will see that the given surface 

is a sphere centered at origin with radius 2. At (2, 0, 0) the normal to the surface is the vector (1, 

0, 0). We will see how it is possible to conclude this geometric insight using gradient 

computations. 

Take   

 

 

 

At (2,0,0),  

Required normal is the unit vector in the direction of  which is  as 

expected. 



 

Example: Find the unit normal vector of  at (1, 0, 2). 

Let  

 

 

 

At (1,0,2),  

Unit vector in the direction of  

Example: Find the angle between the surfaces  and  at the point 

(1,1,1). 

First note that (1,1,1) is indeed a point on both the surfaces by substituting x = y = z = 1 in both 

the surfaces. Next recall that angle between the surfaces at a point of their intersection is defined 

to be the angle between the normals to the surfaces at the point of intersection. Thus we need to 

find the normals to both the surfaces at (1,1,1). 

Let    and  

 

 

 

 at (1,1,1) is  

 

 



 

 

 at (1,1,1) is  

We know that where  is the angle between  and  

From the above ,   and . 

Thus  

 

Now we turn our attention to curl of a vector field.  

 

Definition: Let  be a vector field in some 

region. Then  

 

 

What exactly this unnerving, but algebraically symmetric definition capture physically? Assume 

the above vector field represents flow of water in some region of space. Imagine a tiny sphere 

whose center is fixed at a point. Of course, if the sphere is not fixed, it would flow away with the 

flow. So imagine it is fixed to a point by an imaginary pin. Because of push and pulls of the flow, 

this sphere would rotate along some axis passing through the center of the sphere. The speed of  

rotation and the axis of rotation is what is captured by Curl. Proof of this beyond the scope of 

this presentation, but keep in mind when you are dealing with curl. Computation of curl is 

straightforward from definition. 

Example:  If V is a constant vector field, meaning if  are all some constants (real 

numbers), then clearly Curl V = 0 



 

Example: Compute curl of V(x,y,z) = z + x + y  

 

 

Example: Compute curl of = + +  

 

 

Here is an obvious terminology. If the curl of a vector field is identically 0 (ie 0 everywhere), 

then such a vector field is called an irrotational  vector field. 

Example: = +  

 

 



 

 

Example: Show that the vector field  is both solenoidal and irrotational. 

Whenever you see r in this course, remember it stands for the position vector defined by 

. And  Thus, the given vector field is 

 

 

 

 

= 0 

Since the divergence of V is zero, it is solenoidal. 

 



 

 

 

 

Since Curl V is zero, V is irrotational. 

We now look at integration over vector fields. Let 

 be a vector field in some region of space. 

Let C be a path in the region. We want to make sense of integral of  along the path C. 

Naively we want to sum up values of along C. Rephrasing this amounts to asking sum of 

components of along C. What this means is: Take component of  along tangent to C and sum 

them all. To take tangent to C at any point we take a parameterization of C. Let 

 be the position vector of any point on C. Then tangent vector to C at 

 would be  Taking component of along C means taking dot 

product of and Thus we have the following definition. 



 

Definition:  Let   be a vector field in some 

region of space. Let C be a path in the region. Then line integral of  over C is defined by 

 

 

To give a more physical intuition, if  denotes a fluid flow in some region and C is a 

path in that region, the above integral gives us a measure of total component of along C. 

Example: Consider the constant vector field  Physically this means that flow is in 

the x-direction and magnitude of vector at every point is 1. Let C denote the straight line from 

(0,0,0) to (1,0,0). Then  and hence  Therefore 

 

Example: Consider the constant 2 dimensional vector field  Let us find the 

integral of this along the path  from (0,0) to (1,1). In this we note that  and hence  are 

both zero. Also, since  we have  Further, as one moves from (0,0) to (1,0),  

changes from 0 to 1.Thus 

 

For the same vector field, let us integral along the path from (0,0) to (1,1) along  In this 

case  and as one moves from (0,0) to (1,0),  changes from 0 to 1. Thus 

 

Observe that the value of the integral is same in either of the paths. 

Example: Let  Find  along the curve C given by  



 

Here  and as one moves from (0,0) to (1,2),  changes from 0 to 1. Thus 

 

Often we need to consider paths such that the starting and ending points of the path coincide and 

we end up with a simple loop. In this case the integral over the entire loop is denoted by the 

symbol  to emphasize that we are considering a closed loop as against open ended path. 

Example: Find along the whole circle  when 

 

Parameterization for the circle is  and  To get the whole circle, t need to 

vary from 0 to . Also  and  Thus 

 

 

 

 

Example: Find the work done in moving a particle in the force field 

along (a) : a straight line from (0,0,0) to (2,1,3) and (b) 

: the curve defined by  from x = 0 to x = 2. 

Recall that work done in moving a particle along a curve C is the integral  along the curve 

C. 



 

For part (a), parameterization is got by  Then  which 

implies  When x varies from 0 to 2, t varies from 0 to 1. Thus 

along  

 

 

 

For part (b) parameterization is got by putting  Then 

 and t varies from 0 to 2. Thus along  

 

=16 

Again, we note that in either of the paths the work done is the same. 

Example: Compute  along C where C is the triangle whose vertices are (1,0), (0,1) 

and . 

Since C is piecewise smooth, we have the following result. 

 where each 

path is the straight line joining appropriate starting and end points.  

Observe that for the 1
st
 integral in RHS, y =0 and dy = 0. Thus the 1

st
 integral is zero.  

For the second integral, parameterization is got by writing the equation of the line joining (1,0) 

and (0,1) which is  Putting  we have  and hence 

  Also t varies from 1 to 0. Thus 

 



 

For the third integral, parameterization is got by writing the equation of the line joining (0,1) and  

which is  Putting  we have  and hence   

Also t varies from 0 to -1. Thus 

 

Thus 

 

Now let us turn our attention towards understanding the three of the fundamental theorems of 

vector calculus. In fact these are the generalizations of the fundamental theorem of Calculus. 

Fundamental theorem of calculus of one variable says  What this says is 

the definite integral of differential of a function between two values can be expressed in terms of 

the values of the function at the two values which are the boundary points of the interval over 

which the integration is being carried out. Below we make analogous statements for 

multivariable case. We start with Green’s theorem, a generalization to the 2 dimensional case. 

 

Green’s theorem: Let  be a smooth vector field in a region R. 

Let C be a simple closed curve (loop) in R enclosing a region D. Then 

 

Note that LHS is a surface integral and RHS is a line integral and C is the boundary of D. It is 

instructive to stare at this formula for some time and convince yourself that it is indeed a 

generalization of the fundamental theorem of calculus of one variable. Usefulness of this 

theorem stems from the fact that it equates a surface integral to a line integral; it may happen in 

some situations that it is computationally simpler to carry out one rather than the other. For 

physical interpretation of this visit www.mathinsight.org 

Example: Evaluate  where  and C is the counterclockwise 

oriented boundary of the upper-half unit disk D. 

www.mathinsight.org


 

Here  So  Using these in Green’s 

theorem we have  

 

One of the fallouts of Green’s theorem is that it may be used to find areas of smooth shapes. The 

heart of the matter is that if we can choose  such that  then surface 

integral in Green’s theorem is nothing but the area of D. Then one can parameterize C and 

evaluate the line integral on the RHS to get the area. The following example should clarify this 

idea. 

Example: Find the area of the disk D of radius a defined by  

We first try to find a  such that . There are many candidates for this, but 

we stick to . Parameterization of circle is given by 

where t varies from 0 to 2π. Then  By 

Green’s theorem 

 

 

. 

Example: Find the area enclosed between the parabolas  

Draw the two parabolas and find that the points of intersections are (0,0) and (4,4). Denote the 

enclosed region by D and the two parabolas by C1 and C2. 

As before we choose  so that . Parameterization for C1 is 

given by  So  

When x varies from 0 to 4, t varies from 0 to 1. Similarly for C2  

So When x varies from 4 to 0, t varies from 1 to 0. Let C denote the 

closed curve from (0,0) to (4,4) along C1 and from (4,4) to (0,0) along C2. Dente the required 

area by A. 



 

By Green’s theorem we have 

 

 

 

 

 

Thus  

Intuitively Green’s theorem can be explained as follows. Imagine a thin sheet of metal plate with 

uneven temperature distribution. Consider a region on the plate whose boundary is a loop. Then 

Green’s theorem says that total amount of heat circulating in the region is equal to the total 

amount of heat circulating on the boundary.  

Stokes’ Theorem which is a three dimensional generalization says that this plate need not be in a 

plane, but a curved surface in 3 dimensions. This kind of intuitive explanations help in 

understanding concepts, but should not be taken literally as we have not developed enough 

mathematical machinery. So without much ado, we will state Stokes’ theorem. 

Stokes’ Theorem: Let  be a vector field in 

some region of space. Let S be a smooth surface bounded by a closed curve C. Then 

 

Where  is the unit normal at any point of S. Note that there are two unit normal at any point 

(one is negative of the other!). One makes a choice based on the following: Orient C arbitrarily. 

If we curl our right hand and keep the thumb in the direction of C, the direction in which the four 

fingers point would define the direction of  Note that RHS in Stokes’ theorem is a line integral 

and LHS is a surface integral. 



 

Example: Evaluate   using Stokes’ theorem where  and C is 

the boundary of the upper half of the sphere  

To apply Stokes’ theorem we need to find curl of the vector field and unit normal to the surface 

at every point on the surface. 

 and  

 

By Stokes’ theorem  

To evaluate the last surface integral we use parameterization of unit sphere and the elemental 

area, which are given by  For 

the upper half of the sphere, we have  varying from 0 to  and  varying from 0 to  

Substituting all these in the surface integral we get its value to be equal to 0. 

Finally, we now state the divergence theorem due to Gauss. 

Divergence Theorem: Let F be a vector field in a region R. Let S be a closed surface bounding a 

volume D. Then  where  is the unit normal to S at any point. 

Observe that LHS is a volume integral and RHS is a surface integral. Observe that   denotes 

component of  in the outward direction from S. Thus the integral on the RHS denotes net 

volumetric flow of out of S. Another term physicists use for this is net flux of  through S. 

Divergence theorem says that this net flux is equal to the volume integral of divergence of  over 

D. 

Example: Compute net flux out of a unit cube placed in a vector field defined by 

 

By Gauss’ theorem net flux equals  Recall  and hence 

 

 



 

Following are some of the good websites which could give students a fantastic learning 

experience. Enjoy. 

https://betterexplained.com 

https://www.3blue1brown.com/ 

https://mathinsight.org/ 

https://www.khanacademy.org/math/multivariable-calculus 
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https://www.3blue1brown.com/
https://mathinsight.org/
https://www.khanacademy.org/math/multivariable-calculus

