1. Design and performance analysis of axial flow turbines:

- Turbine stage, work done, degree of reaction,
- losses and efficiency, flow passage;
- subsonic, transonic and supersonic turbines,
- multi-staging of turbine; exit flow conditions;
- turbine cooling.

2. Design and performance analysis of radial turbines:

- Thermodynamics and aerodynamics of radial turbines;
- radial turbine characteristics;
- losses and efficiency;
- design of radial turbine

10 hrs

1. Design and performance analysis of axial flow turbines:

- Turbine stage, work done, degree of reaction,
- losses and efficiency, flow passage;
- subsonic, transonic and supersonic turbines,
- multi-staging of turbine; exit flow conditions;
- turbine cooling.

Turbine Stage

Supersonic Turbine

Supersonic Turbine

Multi-staging of turbines

- 1. Impulse Turbine
 - 1. Velocity compounded impulse turbine
 - 2. Pressure compounded impulse turbine
- 2. Reaction Turbine

Velocity compounded impulse turbine

Velocity compounded impulse turbine

Pressure compounded impulse turbine

Pressure compounded impulse turbine

Reaction Turbine

1. Design and performance analysis of axial flow turbines:

- Turbine stage, work done, degree of reaction,
- losses and efficiency, flow passage;
- subsonic, transonic and supersonic turbines,
- multi-staging of turbine; exit flow conditions;
- turbine cooling.

2. Design and performance analysis of radial turbines:

- Thermodynamics and aerodynamics of radial turbines;
- radial turbine characteristics;
- losses and efficiency;
- design of radial turbine

10 hrs

2. Design and performance analysis of radial turbines:

- Thermodynamics and aerodynamics of radial turbines;
- radial turbine characteristics;
- losses and efficiency;
- design of radial turbine

Radial Turbines

- 1. A radial turbine looks similar to a centrifugal compressor.
- 2. The diffuser vanes are replaced by a ring of nozzle guide vanes.
- 3. Gas flow with a high tangential velocity is directed inwards and leaves the rotor with a small whirl velocity as practicable near the axis of rotation.
- 4. The rotor is normally followed by a diffuser at the outlet to reduce the exhaust velocity to a negligible value.
- 5. Under normal design conditions, the relative velocity at the rotor tip is radial (zero incidence) and the absolute velocity at the exit is axial (α_3 =0).

- Radial turbines are capable of extracting a large stage shaft work in situations with low mass-flow rates.
- Radial turbine also offers little sensitivity to tip clearances, in contrast to axialflow turbines.
- Bulkiness and heavy weight virtually prohibits its use in propulsion devices.
- Radial turbines are best used in micro gas turbines, turbochargers and stationery power plants.

Stage losses

Thermodynamics and Aerodynamics of Radial Turbines

Expansion process in turbine.

Ideal and actual expansion processes in a stage.

Enthalpy-entropy diagram for flow through an IFR turbine stage

Thermodynamics and Aerodynamics of Radial Turbines

