Module 4 Satellite Telemetry, Tracking And Telecommand

Introduction

- Satellite communications system can be broadly divided into two segments, ground segment and a space segment.
- The space segment include the satellites, but also includes the ground facilities needed to keep the satellites operational, referred to as the tracking, telemetry, and command (TT&C).
- Telemetry, tracking, and command functions are complex operations which require special ground facilities in addition to the TT&C subsystems aboard the satellite.

Three major tasks of TT&C

- Monitoring of the health and status of the satellite through the collection, processing, and transmission of data from the various spacecraft subsystem.
- Determination of the satellite's exact location through the reception, processing, and transmitting of ranging signals.
- Proper control of satellite through the reception, processing, and implementation of commands transmitted from the ground.

Satellite Control System (TT&C)

Figure 7.11 Satellite control system. (From Telesat Canada, 1983; courtesy of Telesat Canada.)

Telemetry

- The telemetry, or telemetering, is *measurement at a distance*.
- Telemetry signals include attitude information, obtained from sun and earth sensors; environmental information such as the magnetic field intensity & direction and the frequency of meteorite impact.
- Spacecraft information such as temperatures, power supply, voltages, and stored-fuel pressure.
- Certain frequencies have been designated by international agreement for satellite telemetry transmissions.
- The telemetry subsystem transmits information about the satellite to the earth station.

Data Collection

- Measurements and status of health
- Power functions
- Telemetry functions
- Telecommand functions
- Attitude control functions
- Propulsion functions
- Structure functions
- Antenna functions
- Tracking functions
- Payload functions
- Miscellaneous functions
- Measurements:
 - Acceleration, velocity, displacement
 - Angular rate, angular position
 - Pressure
 - Temperature
 - Density
 - Resistance
 - Voltage, current
 - Intensity
 - Electric field, magnetic field

Tracking

- Tracking of the satellite is accomplished by the satellite beacon signals which are received at the TT&C earth stations.
- Tracking is important during the transfer and drift orbital phases of the satellite launch.
- Once it is on station, the position of a satellite will tend to be shifted as a result of various disturbing forces.
- Therefore, it is necessary to track the satellite's movement and send correction signals as required.
- Tracking beacons are transmitted in the telemetry channel, or by pilot carriers at frequencies in one of the main communications channels, or by special tracking antennas.
- Satellite range from the ground station is required from time to time. This can be determined by measurement of the propagation delay of signals.

Doppler Effect for tracking a Satellite

Command

- The command subsystem receives command signals from the earth station, often in response to telemetered information.
- The command subsystem demodulates and decodes the command signals and routes these to the appropriate equipment needed to execute the necessary action.
- Attitude changes, communication transponders switched in and out of circuits, antennas redirected, and station keeping maneuvers carried out based on command signals.
- To prevent unauthorized commands from being received and decoded, the command signals are often encrypted.

- Decoders reproduce command messages and produce lock/enable and clock signals.
- Command logic validates the command
- -Default is to reject if any uncertainty of validity
- -Drives appropriate interface circuitry

- GSE operator selects command mnemonic
- Software creates command message in appropriate format and encodes it.
- Pulse code modulation (PCM)
- Phase shift keying (PSK)
- Frequency shift keying (FSK)

Transducers

- Transducers convert energy from one form to another
- Outputs can be
- Resistance
- –Capacitance
- -Current
- –Voltage

Signal Conditioning and Selection

- Signal conditioner: may be passive or active
- Conditioning ensures Amplification, Noise filtering, proper level, dynamic range, frequency response, impedance, ground reference, common mode rejection and automatic gain control.
- Commutation selects the proper sensor at a given time
- Sampling frequency determined by the Nyquist criteria.

Multiplexing

- When a series of input signals from different sources have to be transmitted along the same physical channel, multiplexing is used to allow several communication signals to be transmitted over a single medium.
- Frequency division multiplexing (FDM)
 - FDM places multiple incoming signals on different frequencies. Then are they are all transmitted at the same time.
 - The receiving FDM splits the frequencies into multiple signals again
- Time division multiplexing (TDM)
 - TDM slices multiple incoming signals into small time intervals.
 - Multiple incoming lines are merged into time slices that are transmitted via satellite
 - The receiving TDM splits the time slices back into separate signals

FDM

TDM

Analog to Digital Conversion

- Converts voltages (0 5.1 v, or -2.56 to 2.54 v) to 2ⁿ-1 discrete values
- Quantization error decreases as n increases

Type	Conversion Rate	Word Size	Power
High Speed ADC	50*10 ⁶ /sec	8 bit	2.5 W
High Resolution ADC	1*10 ⁵ /sec	16 bit	1.5 W
Low Power ADC	2.5*10 ⁴ /sec	8 bit	0.005 W

Base Band Telemetry

FIGURE 87.3 Different configurations for base-band telemetry. In voltage-based-base band telemetry (a) the information is transmitted as variations of a voltage signal. Current-based-base band telemetry (b) is based on sending a current signal instead of a voltage signal to neutralize the signal degradation due to the voltage divider made up by the input impedance of the receiver (Z_n) and the impedance of the lines (Z_t) . In frequency-based base-band telemetry (c), the information is transmitted as variations of frequency which makes this system immune to noise and interference that affect the amplitude of the transmitted signal.

Command handling

Data Handling

C&DH

C&DH Issues

- No commands or transient signals may appear on command outputs during application or removal of prime power or during under/over voltage conditions.
- If a commands integrity is in doubt, reject it.
- Multiple commands are required for critical/ dangerous operations.
- No single component failure can result in unintended operation.
- No commands shall interrupt the uplink source to the command decoder.