Sub: Advanced Calculus and Numerical Methods

Module 5

Sub-Code: 18MAT21

NUMERICAL METHOD

CONTENTS:

• Finite difference:

Forward and Backward difference

- Newtons forward and backward interpolation formula
- Newtons divided difference formula
- Lagranges interpolation formula
- Numerical integration
- Newton Raphson,s Method
- Regular Falsi Method

NUMERICAL METHODS

Finite Differences

Let y = f(x) be represented by a table

x:	x ₀	X ₁	X ₂	X ₃	••••	X _n
y:	y 0	y_1	y_2	y ₃	•••	y _n

where $x_0, x_1, x_2, ..., x_n$ are equidistant. $(x_1 - x_0 = x_2 - x_1 = x_3 - x_2 = ..., x_n - x_{n-1} = h)$

Forward difference operator (Δ) The first forward difference is defined as fpllows:

$$\Delta f(x) = f(x+h) - f(x)$$

 $\Delta y_{n-1} = y_n - y_{n-1}$

$$\Delta y_r = y_{r+1} - y_r, \ r = 0, 1, 2, ..., n-1$$

$$\Delta y_0 = y_1 - y_0$$

$$\Delta y_1 = y_2 - y_1$$
.
first forward differences
.

The difference of the first difference are called the second differences, they are symbolically denoted as

Now
$$\Delta^2 y_0 = \Delta(\Delta y_0) = \Delta(y_1 - y_0)$$

 $\Delta^2 y_0,\, \Delta^2 y_1,\, \Delta^2 y_2,....,$ are called the second differences

$$= \Delta y_1 - \Delta y_0 = (y_2 - y_1) - (y_1 - y_0)$$
$$= y_2 - 2y_1 + y_0$$

$$\||^{ly} \qquad \Delta^2 y_1 = y_3 - 2y_2 + y_1$$

$$\Delta^2 y_r = y_{r+2} - 2y_{r+1} + y_r$$

Note:
$$\Delta^3 y_0 = y_3 - 3y_2 + 3y_1 - y_0$$

$$\therefore \qquad \Delta^k \ y_r = y_{r+k} - ^k \ C_1 y_{r+k-1} + ^k \ C_2 \ y_{r+k-2} - + + (-1) \ ^k C_r$$

The above forward Differences can be put in the following form called Difference Table

X	Y	Δy	$\Delta^2 y$	Δ^3 y	$\Delta^4 y$	$\Delta^5 y$
X ₀	y_0					
		Δy_0				
X ₁	y ₁		$\Delta^2 y_0$			
		Δy_1		$\Delta^3 y_0$		
X ₂	y ₂		$\Delta^2 y_1$		$\Delta^4 y_0$	
		Δy_2		$\Delta^3 y_0$		
X3	y ₃		$\Delta^2 y_2$			
		Δy_3				
X ₄	y ₄					

 Δy_0 , $\Delta^2 y_0$, $\Delta^3 y_0$,....are called the leading differences.

Ex: The following table gives a set of values of x and the corresponding values of y = f(x)

x:	10	15	20	25	30	35
y:	19.97	21.51	22.47	23.52	24.65	25.89

Form the difference table and find $\Delta f(10)$, $\Delta^2 f(10)$, $\Delta^3 f(20)$, $\Delta^4 f(15)$.

X	Y	Δ	Δ^2	Δ^3	Δ^4	Δ^5
10	19.97					
		1.54				
15	21.51		-0.58			
		0.96		0.67		
20	22.47		0.09		-0.68	

		1.05		-0.01		0.72
25	23.52		0.08		0.04	
		1.13		0.03		
30	24.65		0.11			
		1.24				
35	25.89					

$$\Delta f(10) = 1.54$$
, $\Delta^2 f(10) = -0.58$, $\Delta^3 f(20) = 0.03$, $\Delta^4 f(15) = 0.04$

Note: The nth differences of a polynomial of n the degree are constant.

Backward difference operator (∇)

Let y = f(x), then the backward difference is defined and denoted symbolically as

$$\nabla f(x) = f(x) - f(x - h)$$

i.e.
$$\nabla y_1 = y_1 - y_0 = \Delta y_0$$

 $\nabla y_2 = y_2 - y_1 = \Delta y_1$
 $\nabla y_3 = y_3 - y_2 = \Delta y_2$

 $\nabla y_n = y_n - y_{n-1} = \Delta y_{n-1}$

$$\nabla y_r = y_r - y_{r-1} = \Delta y_{r-1}$$

Note:

1.
$$\nabla f(x + h) = f(x + h) - f(x) = \Delta f(x)$$

2.
$$\nabla^2 f(x + 2h) = \nabla(\nabla f(x + 2h))$$

 $= \nabla \{f(x + 2h) - f(x + h)\}$
 $= \nabla f(x + 2h) - \nabla f(x + h)$
 $= f(x + 2h) - f(x + h) - f(x + h) + f(x)$
 $= f(x + 2h) - 2f(x + h) + f(x)$

$$= \Delta^2 f(x)$$

$$|||^{ly} \nabla^n f(x + nh) = \Delta^n f(x)$$

Backward difference table

Duch	ara arrici	chec tach		
X	Y	∇y	$\nabla^2 y$	$\nabla^3 y$
X_0	y_0			
		∇y_1		
X_1	y ₁		$\nabla^2 \mathbf{y}_2$	
		∇y_2		$\nabla^3 y_3$
X_2	y ₂		$\nabla^2 \mathbf{y}_3$	
		∇y_3		
X ₃	y ₃			

1. Form the difference table for

X	40	50	60	70	80	90
Y	184	204	226	250	276	304

and find ∇y (30), $\nabla^2 y$ (70), $\nabla^5 y$ (90)

Soln:

X	Y	∇y	$\nabla^2 \mathbf{y}$	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$
40	184					
		20				
50	204		2			
		22		0		
60	226		2		0	
		24		0		0
70	250		2		0	

		26		0	
80	276		2		
		28			
90	304				

$$\nabla y (80) = 26, \nabla^2 y (70) = 2, \nabla^5 y (90) = 0$$

2. Given

X	0	1	2	3	4
f(x)	4	12	32	76	156

Construct the difference table and write the values of $\nabla f(4)$, $\nabla^2 f(4)$, $\nabla^3 f(3)$

X	Y	∇y	$\nabla^2 \mathbf{y}$	$\nabla^3 \mathbf{y}$
0	4			
		8		
1	12		12	
		20		12
2	32		24	
		44		12
3	76		36	
		80		
4	156			

3) Find the missing term from the table:

X	0	1	2	3	4
Y	1	3	9	-	81

Explain why the value obtained is different by putting x = 3 in 3^x .

Denoting the missing value as a, b, c ..etc. Construct a difference table and solve.

X	у	Δy	Δ^2 y	Δ^3 y	$\Delta^4 y$
0	1	2			
1	3	6	4		
2	9	a - 9	a - 15	a - 19	-4a + 124
3	a	81 - a	81 - a	-3a +105	
4	81				

Put $\Delta^4 y = 0$ (assuming f(x) its be a polynomial of degree 3)

i.e.,
$$-4a + 124 = 0$$

 $a = 31$

Since we have assumed f(x) to be a polynomial of degree 3 which is not 3^x we obtained a different value.

4) Given
$$u_1 = 8$$
, $u_3 = 64$, $u_5 = 216$ find u_2 and u_4

X	u	Δu	Δ^2 u	Δ^3 u
\mathbf{x}_1	8			
\mathbf{x}_2	a	a - 8	-2a + 72	b + 3a - 200
X ₃	64	64 - a	b + a - 128	-3b - a + 408
X ₄	b	b - 64	-2b + 280	
X ₅	216	216 -ь		

We carryout upto the stage where we get two entries (Θ 2 unknowns) and equate each of those entries to zero. (Assuming) to be a polynomial of degree 2.

$$b + 3a - 200 = 0$$

-3b - a + 408 = 0 We get a = 24 b = 128

Interpolation:

Interpolation is the process of finding the intermediate values for a given set of values(x_0,y_0),(x_1,y_1),.....(x_n,y_n) in the interval of the function y=f(x). The process of finding the value outside the interval(x_0,x_n) is called Extrapolation.

Newton-Gregory Forward Interpolation Formula

Given (x_0,y_0) , (x_1,y_1) ,...... (x_n, y_n) , for $y=\phi(x)$ such that $x_1=x_0+h$, $x_2=x_1+h$ $x_n=x_0+uh$, we wish to estimate the value of y corresponding to a desired value of x that lies near x_0 by using the following formula:

$$\phi(x) = y_0 + u \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \dots$$
$$+ \frac{u(u-1)(u-2)...(u-n+1)}{n!} \Delta^n y_0$$

whichis called the Newton Gregory forward difference formula

Note:

1. Newton forward interpolation is generally used to interpolate the values of y near the beginning of a set of tabular values for a better accuracy,.

Problems:

1) The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earths surface.

x = height	100	150	200	250	300	350	400
y =	10.63	13.03	15.04	16.81	18.42	19.90	21.27
distance							

Find the values of y when i) x = 120, ii) y = 218Solution:

X	у	Δ	Δ^2	Δ^3	Δ^4	Δ^5	Δ^6
100	10.63						
		2.40					
150	13.03		-0.39				
		2.01		0.15			
200	15.04		-0.24		-0.07		
		1.77		0.08		0.02	
250	16.81		-0.16		-0.05		0.02
		1.61		0.03		0.04	
300	18.42		-0.13		-0.01		
		1.48		0.02			
350	19.90		-0.11				
		1.37					
400	21.27						

Choose $x_0 = 100$

i)
$$x = 120$$
, $u = \frac{120-100}{50} = 0.4$

$$f(120) = 10.63 + \frac{0.4}{1!} (2.40) + \frac{(0.4)(0.4-1)}{2!} (-0.39)$$

$$+ \frac{(0.4)(0.4-1)(0.4-2)}{3!} (0.15)$$

$$+ \frac{(0.4)(0.4-1)(0.4-2)(0.4-3)}{4!} (-0.07)$$

$$+ \frac{(0.4)(0.4-1)(0.4-2)(0.4-3)(0.4-4)}{5!} (0.02)$$

$$+ \frac{(0.4)(0.4-1)(0.4-2)(0.4-3)(0.4-4)}{6!} (0.02) = 11.649$$

ii) Let
$$x = 218$$
, $x_0 = 200$, $u = \frac{218 - 200}{50} = \frac{18}{50} = 0.36$

$$f(218) = 15.04 + 0.36(1.77) + \frac{0.36(-0.64)}{2}(-0.16) + \frac{0.36(-0.64)(-1.64)}{6}(0.03) + \dots$$

$$= 15.7$$

2) Find the value of f(1.85).

X	y	Δy	$\Delta^2 y$	Δ^3 y	$\Delta^4 y$	$\Delta^5 y$	$\Delta^6 y$
1.7	5.474						
		0.575					
1.8	6.049		0.062				
		0.637		0.004			
1.9	6.686		0.066		0.004		
		0.703		0.008		-0.004	
2.0	7.389		0.074		0		0.004
		0.777		0.008		0	
2.1	8.166		0.082		0		
		0.859		0.008			
2.2	9.025		0.090				
		0.949	_	_			
23	9.974		_	_			

Choose
$$x_0 = 1.8$$
, $x = 1.85$ $u = \frac{x - x_0}{h} = \frac{1.85 - 1.8}{0.1} = 0.5$

$$f(1.85) = 6.049 + (0.5) (0.637) + \frac{(0.5)(-0.5)}{2} (0.066)$$
$$+ \frac{(0.5)(-0.5)(-1.5)}{6} (0.008)$$
$$= 6.049 + 0.3185 - 0.0008 + 0.0005$$
$$= 6.359$$

3) Given $\sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.8660$. Find $\sin 48^{\circ}$.

X	Y	Δ	Δ^2	Δ^3
45	0.7071			
		0.589		
50	0.7660		-	
			0.0057	
		0.0532		0.0007
55	0.8192		-	
			0.0064	
		0.0468		
60	0.8660			

$$x = 48$$
, $x_0 = 45$; $h = 5$ $u = \frac{x - x_0}{h} = 0.6$

$$\sin 48^{\circ} = 0.7071 + (0.6) (0.0589)$$

$$+\frac{(0.6)(-0.4)}{2}(-0.0057) + \frac{(0.6)(-0.4)(-1.4)}{6}(0.0007) = 0.7431$$

4) From the following data find the number of students who have obtained ≤ 45 marks. Also find the number of students who have scored between 41 and 45 marks.

Marks		0 - 40	41 - 50	51 - 60	61 -70	71 - 80
No.	of	31	42	51	35	31
students						

X	Y	Δ	Δ^2	Δ^3	Δ^4
40	31				

		42			
50	73		9		
		51		-25	
60	124		-16		37
		35		12	
70	159		-4		
		31			
80	190				

$$f(45) = 31 + (0.5) (42) + \frac{(0.5) (-0.5) 9}{2} + \frac{(0.5) (-0.5) (-1.5) (-25)}{3!} + \frac{(0.5) (-0.5) (-1.5) (-2.5)}{4!} (37) = 47.8672 \approx 48$$

f(45) - f(40) = 70 = Number of students who have scored between 41 and 45.

5) Find the interpolating polynomial for the following data:

$$f(0) = 1$$
, $f(1) = 0$, $f(2) = 1$, $f(3) = 10$. Hence evaluate $f(0.5)$

X	у	Δ	Δ^2	Δ^3
0	1			
		-1		
1	0		2	
		1		6
2	1		8	
		9		
3	10			

$$u = \frac{x - 0}{1} = x$$

$$f(x) = 1 + x(-1) + \frac{x(x-1)}{2!}(2) + \frac{x(x-1)(x-2)}{3!}6 = x^3 - 2x^2 + 1$$

6) Find the interpolating polynomial for the following data:

x:	0	1	2	3	4
f(x):	3	6	11	18	27

X	У	Δ	Δ^2	Δ^3	Δ^4
0	3				
		3			
1	6		2		
		5		0	
2	11		2		0
		7		0	
3	18		2		
		9			
4	27				

$$u = \frac{x - 0}{1} = x$$

$$f(x) = 3 + x(3) + \frac{x(x-1)}{2}(2) + \frac{x(x-1)}{x!}(0) = 3 + 2x + x^2$$

Newton Gregory Backward Interpolation formula

We use the following formula to calculate an approximate value of y=f(x) near the ending value of x_n of x as follows:

$$y = y_n + u \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + \frac{u(u+1)(u+2)}{3!} \nabla^3 y_n + \dots$$

where
$$u = \frac{x - x_n}{h}$$

1) The values of tan x are given for values of x in the following table. Estimate tan (0.26)

X	0.10	0.15	0.20	0.25	0.30
У	0.1003	0.1511	0.2027	0.2553	0.3093

X	y	∇	∇^2	∇^3	$ abla^4$
0.10	0.1003				
		0.0508			
0.15	0.1511		0.0008		
		0.0516		0.0002	
0.20	0.2027		0.0010		0.0002
		0.0526		0.0004	
0.25	0.2553		0.0014		
		0.0540			
0.30	0.3093				

$$u = \frac{0.26 - 0.3}{0.05} = -0.8$$

$$f(0.26) = 0.3093 + (-0.8)(0.054) + \frac{(-0.8)}{2}(0.2)(0.0014) + \frac{(-0.8)(0.2)(1.2)}{6}(0.0004) = 0.2659$$

2) The deflection d measured at various distances x from one end of a cantilever is given by the following table. Find d when x = 0.95

$$u = \frac{0.95 - 1}{0.2} = -0.25$$
 $d = 0.3308$ when $x = 0.95$

X	d	∇	∇^2	∇^3	$ abla^4$	$ abla^5$
0	0					
		0.0347				
0.2	0.0347		0.0479			
		0.0826		-		
				0.0318		
0.4	0.1173		0.0161		0.0003	

		0.0987		-		-
				0.0321		0.0003
0.6	0.2160		-0.016		0	
		0.0827		-0.032		
0.8	0.2987		-			
			0.0481			
		0.0346				
1.0	0.3333					

3) The area y of circles for different diameters x are given below:

x:	80	85	90	95	100
y:	5026	5674	6362	7088	7854

Calculate area when x = 98

X	y	∇y	$\nabla^2 \mathbf{y}$	$\nabla^3 y$	$\nabla^4 y$
80	5026				
		648			
85	5674		40		
		688		-2	
90	6362		38		4
		726		2	
95	7088		40		
		766			
100	7854				

Answer:

$$u = \frac{x - x_n}{n} = -0.4$$

$$y = 7542$$

4) Find the interpolating polynomial which approximates the following data.

X	0	1	2	3	4
i I					

У	-5	-10	-9	4	35

X	у	∇	∇^2	∇^3	∇^4
0	-5				
		-5			
1	-10		6		
		1		6	
2	-9		12		0
		13		6	
3	4		18		
		31			
4	35				

$$u = \frac{x - 4}{1}$$

$$f(x) = 35 + (x - 4)(31) + (x - 4)(x - 3)\frac{18}{2!} + \frac{(x - 4)(x - 3)(x - 2)(6)}{3!}$$

$$f(x) = x^3 + 2x^2 + 6x - 5$$

Interpolation with unequal intervals

Newton backward and forward interpolation is applicable only when $x_0, x_1,...,x_{n-1}$ are equally spaced. Now we use two interpolation formulae for unequally spaced values of x.

i) Lagranges formula for unequal intervals:

If y = f(x) takes the values $y_0, y_1, y_2, ..., y_n$ corresponding to $x = x_0, x_1, x_2, ..., x_n$ then

$$f(x) = \frac{(x - x_1)(x - x_2)...(x - x_n)}{(x_0 - x_1)(x_0 - x_2)...(x_0 - x_n)} f(x_0) + \frac{(x - x_0)(x - x_2)(x - x_3)...(x - x_n)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)...(x_1 - x_n)} f(x_1)$$

$$+\frac{(x-x_0)(x-x_1)(x-x_3)...(x-x_n)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)...(x_2-x_n)}f(x_2)+....$$

$$+\frac{(x-x_0)(x-x_1)(x-x_2)...(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)(x_n-x_2)...(x_n-x_{n-1})}\,f(x_n)\,is \qquad known \qquad as \qquad the \quad lagrange's \\ interpolation formula$$

ii) Divided differences (Δ)

$$\Delta f(x_0) = \Delta y_0 = \frac{y_1 - y_0}{x_1 - x_0} = [x_0, x_1]$$

$$\Delta y_1 = \frac{y_2 - y_1}{x_2 - x_1} = [x_2, x_1]$$

$$\Delta y_{n-1} = \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = [x_{n-1}, x_n]$$

These are called as First divided difference.

The second divided difference are defined as follows:

$$\begin{split} \Delta^2 f(x_0) &= \Delta^2 y_0 = \frac{\Delta y_1 - \Delta y_0}{x_2 - x_0} \\ &= \frac{[x_2, x_1] - [x_1, x_0]}{x_2 - x_0} = [x_0, x_1, x_2] \\ \|^{ly} \ \Delta^2 y_1 &= \frac{\Delta y_2 - \Delta y_1}{x_3 - x_1} = \frac{[x_3, x_2] - [x_2, x_1]}{x_3 - x_1} = [x_1, x_2, x_3] \end{split}$$

similarly $\Delta^3 y_0$,.... can be defined by following the above metod.

These divided differences may be employed to derive the following formula known as Newton's divided difference interpolation formula:

$$y = f(x) = y_0 + (x - x_0) \Delta y_0 + (x - x_0) (x - x_1) \Delta^2 y_0 + (x - x_0) (x - x_1)(x - x_2) \Delta^3 y_0$$
$$+ ... + (x - x_0) (x - x_1) ... (x - x_n) \Delta^n y_0$$

Department of Mathematics/ACSCE

Inverse interpolation: Finding the value of y given the value of x is called interpolation where as finding the value of x for a given y is called inverse interpolation.

Since Lagrange's formula is only a relation between x and y we can obtain the inverse interpolation formula just by interchanging x and y.

$$\therefore x = \frac{(y - y_1) (y - y_2)....(y - y_n)}{(y_0 - y_1) (y_0 - y_2)...(y_0 = y_n)}.x_0$$

$$+ \frac{(y - y_0) (y - y_0) (y - y_2) (y - y_3)...(y - y_n)}{(y_1 - y_0) (y_1 - y_2) (y_1 - y_3) ...(y_1 - y_n)} x_1 + ...$$

$$+ ... + \frac{(y - y_0) (y - y_1)...(y - y_{n-1})}{(y_n - y_0) (y_n - y_1)...(y_n - y_{n-1})}.x_n$$

is the Lagranges formula for inverse interpolation

1) The following table gives the values of x and y

x:	1.2	2.1	2.8	4.1	4.9	6.2
y:	4.2	6.8	9.8	13.4	15.5	19.6

Find x when y = 12 using Lagranges inverse interpolation formula.

Using Langrages formula

$$x = \frac{(y - y_1) (y - y_2) (y - y_3) (y - y_4) (y - y_5)}{(y_0 - y_1) (y_0 - y_2) (y_0 - y_3) (y_0 - y_4) (y_0 - y_5)} x_0$$

$$+ \dots + \frac{(y - y_0) (y - y_1) (y - y_2) (y - y_3) (y - y_4)}{(y_5 - y_0) (y_5 - y_1) (y_5 - y_2) \dots (y_5 - y_4)} x_4$$

$$= 0.022 - 0.234 + 1.252 + 3.419 - 0.964 + 0.055$$

$$= 3.55$$

2) Given the values

x:	5	7	11	13	17
f(x):	150	392	1452	2366	5202

Evaluate f(9) using (i) Lagrange's formula (ii) Newton's divided difference formula.

i) Lagranges formula

$$f(9) = \frac{(9-7) (9-11) (9-13) (9-17)}{(5-7) (5-11) (5-13) (5-17)} (150) + \frac{(9-5) (9-11) (9-13) (9-17)}{(7-5) (7-11) (7-13) (7-17)} .392$$

$$+ \frac{(9-5) (9-7) (9-13) (9-17)}{(11-5) (11-7) (11-13) (11-17)} (1452) + \frac{(9-5) (9-7) (9-11) (9-17)}{(13-5) (13-7) (13-11) (13-17)} (2366)$$

$$+ \frac{(9-5) (9-7) (9-11) (9-13)}{(17-5) (17-7) (17-11) (17-13)} (5202) = 810$$

$$f(9) = 810$$

ii)

5	150				
		121			
7	392		24		
		265		1	
11	1452		32		0
		457		1	
13	2366		42		
		709			
17	5202				

$$f(9) = 150 + 121(9 - 5) + 24(9 - 5)(9 - 7) + 1(9 - 5)(9 - 7)(9 - 11) = 810$$

3) Using i) Langranges interpolation and ii) divided difference formula. Find the value of y when x = 10.

x:	5	6	9	11
y:	12	13	14	16

i) Lagranges formula

$$y = f(10) = \frac{(10-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)} \times 12 + \frac{(10-5)(10-9)(10-11)}{(6-5)(6-9)(6-11)} \times 13$$
$$+ \frac{(10-5)(10-6)(10-11)}{(9-5)(9-6)(9-11)} \times 14 + \frac{(10-5)(10-6)(10-9)}{(11-5)(11-6)(11-9)} \times 16$$
$$= \frac{44}{3}$$

ii)Divided difference

X	у	Δ	Δ^2	Δ^3
5	12			
		1		
6	13		$-\frac{2/3}{4} = \frac{-1}{6}$	
		$\frac{1}{3}$		$\frac{\frac{2}{15} + \frac{1}{6}}{11 - 5} = \frac{\frac{27}{90}}{6} = \frac{\frac{3}{10}}{6} = \frac{1}{20}$
9	14		$\frac{2/3}{5} = \frac{2}{15}$	
		$\frac{2}{2} = 1$		
11	16			

$$f(10) = 12 + (10 - 5) + (10 - 5)(10 - 6)\left(-\frac{1}{6}\right) + (10 - 5)(10 - 6)(10 - 9)\left(\frac{1}{20}\right)$$
$$= \frac{44}{3}$$

4) If y(1) = -3, y(3) = 9, y(4) = 30, y(6) = 132 find the lagranges interpolating polynomial that takes the same values as y at the given points.

Given:

X	1	3	4	6
Y	-3	9	30	132

$$f(x) = \frac{(x-3)(x-4)(x-6)}{(1-3)(1-4)(1-6)} \cdot (-3) + \frac{(x-1)(x-4)(x-6)}{(3-1)(3-4)(3-6)} \cdot 9$$

$$+ \frac{(x-1)(x-3)(x-6)}{(4-1)(4-3)(4-6)} \cdot 30 + \frac{(x-1)(x-3)(x-4)}{(6-1)(6-3)(6-4)} \cdot 132$$

$$= x^3 - 3x^2 + 5x - 6$$

5) Find the interpolating polynomial using Newton divided difference formula for the following data:

X	0	1	2	5
Y	2	3	12	147

X	у	Δ	Δ^2	Δ^3
0	2			
		1		
1	3		4	
		9		1

2	12		9	
		45		
5	147			

$$F(x) = 2 + (x - 0)(1) + (x - 0)(x - 1)(4) + (x - 0)(x - 1)(x - 2) 1$$
$$= x^3 + x^2 - x + 2$$

Numerical Integration:-

Evaluating the value of $I = \int_{a}^{b} y \, dx$ numerically, given the set of values (x_i, y_i) ,

i = 0,1,2,...,n at regular intervals is known as Numerical Integration. The following formulae can be used to Evaluate the integral numerically.

(i) Simpson's one third rule:- $h_{1}(x_{1}, x_{2}, x_{3}) + h_{2}(x_{1}, x_{2}, x_{3}, x_{3$

$$I = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$$
when n is even

when n is even.

(ii) Simpson's three-eighth rule:-

$$I = \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-1}) + 2(y_3 + y_6 + \dots + y_{n-3})]$$

when n is a multiple of 3.

(iii) Weddle's rule:-

$$I = \frac{3h}{10} [y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6 + \dots]$$

when n is a multiple of 6.

Problems:

1) Using Simpson's $\frac{1}{3}^{rd}$ rule evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by dividing the interval (0,1) into 4 equal sub intervals and hence find the value of π correct to four decimal places.

Solution: Let us divide [0,1] into 4 equal strips (n = 4)

$$\therefore$$
 length of each strip: $h = \frac{1-0}{4} = \frac{1}{4}$

The points of division are $x = 0, \frac{1}{4}, \frac{2}{4} = \frac{1}{2}, \frac{3}{4}, \frac{4}{4} = 1$

By data
$$y = \frac{1}{1+x^2}$$

Now we have the following table

x	0	1/4	1/2	3/4	1
$y = \frac{1}{1 + x^2}$	1	16/17	4/5	16/25	1/2
	y_0	y_1	y_2	<i>y</i> ₃	y_4

Simpson's $\frac{1}{3}^{rd}$ rule for n = 4 is given by

$$\int_{a}^{b} y dx = \frac{h}{3} \left[(y_0 + y_4) + 4(y_1 + y_3) + 2(y_2) \right]$$

$$\therefore \int_{0}^{1} \frac{1}{1+x^{2}} dx = \frac{1/4}{3} \left[\left(1 + \frac{1}{2} \right) + 4 \left(\frac{16}{17} + \frac{16}{25} \right) + 2 \cdot \frac{4}{5} \right] = 0.7854$$

Thus
$$\int_{0}^{1} \frac{1}{1+x^2} dx = 0.7854$$

To deduce the value of π : We perform theoretical integration and equate the resulting value to the numerical value obtained.

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = \left[\tan^{-1} x \right]_{0}^{1} = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4}$$

We must have,
$$\frac{\pi}{4} = 0.7854 \Rightarrow \pi = 4(0.7854) = 3.1416$$

Thus
$$\pi = 3.1416$$

2) Given that

X	4	4.2	4.4	4.6	4.8	5	5.2
$\log x$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate
$$\int_{1}^{5.2} \log x \, dx$$
 using Simpson's $\frac{3}{8}^{th}$ rule

Solution: Simpson's $\frac{3}{8}^{th}$ rule for n = 6 is given by

$$\int_{a}^{b} y dx = \frac{3h}{8} \Big[(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2(y_3) \Big]$$

$$\int_{4}^{5.2} \log_e x dx = \frac{3(0.2)}{8} \Big[(1.3863 + 1.6487) + 3(1.4351 + 1.4816 + 1.5686 + 1.6094) + 2(1.5261) \Big]$$

$$\int_{4}^{5.2} \log_e x dx = 1.8279$$

3) Using Weddle's rule evaluate $\int_{0}^{1} \frac{xdx}{1+x^2}$ by taking seven ordinates and hence find $\log_{e} 2$

Solution: Let us divide [0,1] into 6 equal strips (since seven ordinates)

$$\therefore$$
 length of each strip: $h = \frac{1-0}{6} = \frac{1}{6}$

The points of division are
$$x = 0, \frac{1}{6}, \frac{2}{6} = \frac{1}{3}, \frac{3}{6} = \frac{1}{2}, \frac{4}{6} = \frac{2}{3}, \frac{5}{6}, \frac{6}{6} = 1$$

By data
$$y = \frac{1}{1+x^2}$$

Now we have the following table

X	0	1/6	1/3	1/2	2/3	5/6	1
$y = \frac{x}{1 + x^2}$	0	6/37	3/10	2/5	6/13	30/61	1/2
	y_0	y_1	y_2	y_3	y_4	y_5	y_6

Weddle's rule for n = 6 is given by

$$\int_{a}^{b} y dx = \frac{3h}{10} \left[y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6 \right]$$

$$\int_{0}^{1} \frac{x}{1+x^2} dx = \frac{3(1/6)}{10} \left[0 + 5(6/37) + 3/10 + 6(2/5) + 6/13 + 5(30/61) + 1/2 \right]$$

$$\int_{0}^{1} \frac{x}{1+x^2} dx = 0.3466$$

To deduce the value of $\log_{e}2$: We perform theoretical integration and equate the resulting value to the numerical value obtained.

$$\int_{0}^{1} \frac{x}{1+x^{2}} dx = \frac{1}{2} \log_{e} (1+x^{2}) \bigg]_{0}^{1} = \frac{1}{2} \log_{e} 2 - \frac{1}{2} \log_{e} 1$$

Hence
$$\int_{0}^{1} \frac{x}{1+x^2} dx = \frac{1}{2} \log_e 2$$

We must have,
$$\frac{1}{2}\log_e 2 = 0.3466 \Rightarrow \log_e 2 = 2(0.3466) = 0.6932$$

Thus
$$\log_e 2 = 0.6932$$

Solution of Algebraic and Transcendental Equations

The equation f(x) = 0, is called as Transcedental equation, if it contains algebraic function or trigonometric function or both.

Ex: (1) $x^4 - 7x^3 + 3x + 5 = 0$ is transcedental

(2)
$$e^x - x \tan x = 0$$
 is transcendental

The approximate root for an Transcedental equation is fond by the following two iterative methods:

I. Regula-Falsi Method.

II. Newton Raphson's Method

Method of false position or Regula-Falsi Method:

This is a method of finding a real root of an equation f(x) = 0 and is slightly an improvisation of the bisection method.

Let x_0 and x_1 be two points such that $f(x_0)$ and $f(x_1)$ are opposite in sign.

Let $f(x_0) > 0$ and $f(x_1) < 0$

The graph of y = f(x) crosses the x-axis between x_0 and x_1

Root of f(x) = 0 lies between x_0 and x_1

Now equation of the Chord AB is

$$y - f(x_0) = \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) \quad ...(1)$$

When y = 0 we get $x = x_2$

i.e.
$$x_2 = x_0 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_0)$$
 ...(2)

Which is the first approximation

If $f(x_0)$ and $f(x_2)$ are opposite in sign then second approximation

$$x_3 = x_0 - \frac{x_2 - x_0}{f(x_2) - f(x_0)} f(x_0)$$

This procedure is continued till the root is found with desired accuracy.

Poblems:

1. Find a real root of x^3 - 2x -5 = 0 by method of false position correct to three decimal places between 2 and 3.

Answer:

Let
$$f(x) = x^3 - 2x - 5 = 0$$

 $f(2) = -1$
 $f(3) = 16$

: a root lies between 2 and 3

Take
$$x_0 = 2$$
, $x_1 = 3$
 \therefore $x_0 = 2$, $x_1 = 3$

Now
$$x_2 = x_0 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_0)$$

= $2 - \frac{3 - 2}{16 + 1} (-1)$
= 2.0588
 $f(x_2) = f(2.0588) = -0.3908$

:. Root lies between 2.0588 and 3

Taking
$$x_0 = 2.0588$$
 and $x_1 = 3$
 $f(x_0) = -0.3908$, $f(x_1) = 16$

We get
$$x_3 = x_0 - \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$
. $f(x_0)$
= $2.0588 - \frac{0.9412}{16.3908}$ (-0.3908)
= 2.0813
 $f(x_3) = f(2.0813) = -0.14680$

:. Root lies between 2.0813 and 3
Taking
$$x_0 = 2.0813$$
 and $x_1 = 3$
 $f(x_0) = 0.14680$, $f(x_1) = 16$

$$x_4 = 2.0813 - \frac{0.9187}{16.1468} (-0.14680) = 2.0897$$

Repeating the process the successive approximations are

$$x_5 = 2.0915$$
, $x_6 = 2.0934$, $x_7 = 2.0941$, $x_8 = 2.0943$

Hence the root is 2.094 correct to 3 decimal places.

2. Find the root of the equation $xe^x = \cos x$ using Regula falsi method correct to three decimal places.

Solution:

Let
$$f(x) = \cos x - xe^x$$

Observe

$$f(0) = 1$$

 $f(1) = cos 1 - e = -2.17798$

: root lies between 0 and 1

Taking
$$x_0 = 0$$
, $x_1 = 1$

$$f(x_0) = 1$$
, $f(x_1) = -2.17798$

$$x_2 = x_0 - \frac{x_1 - x_0}{f(x_1) - f(x_0)}.f(x_0)$$

$$=0-\frac{1}{-3.17798}(1)=0.31467$$

$$f(x_2) = f(0.31467) = 0.51987 + ve$$

:. Root lies between 0.31467 and 1

$$x_0 = 0.31467, x_1 = 1$$

$$f(x_0) = 0.51987, f(x_1) = -2.17798$$

$$x_3 = 0.31467 - \frac{1 - 0.31467}{-2.17798 - 0.51987} (0.51987) = 0.44673$$

$$f(x_3) = f(0.44673) = 0.20356 + ve$$

∴ Root lies between 0.44673 and 1

$$x_4 = 0.44673 + \frac{0.55327}{2.38154} \times 0.20356 = 0.49402$$

Repeating this process

$$x_5 = 0.50995$$
, $x_6 = 0.51520$, $x_7 = 0.51692$, $x_8 = 0.51748$ $x_9 = 0.51767$, etc

Hence the root is 0.518 correct to 4 decimal places

Newton Raphson Method

This method is used to find the isolated roots of an equation f(x) = 0, when the derivative of f(x) is a simple expression.

Let m be a root of f(x) = 0 near a.

$$\therefore$$
 f(m) = 0

We have by Taylor's series

$$f(x) = f(a) + (x - a) f'(a) + \frac{(x - a)^2}{2!} f''(a) +$$

$$f(m) = f(a) + (m-a) f'(a) +$$

Ignoring higher order terms

$$f(m) = f(a) + (m - a) f'(a) = 0$$

or
$$m - a = -\frac{f(a)}{f'(a)}$$

or
$$m = a - \frac{f(a)}{f'(a)}$$

Let
$$a = x_0, m = x_1$$

then
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 is the first approximation

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
 is the second approximation

.

.

 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ is the iterative formula for Newton Raphson Method

1. Using Newton's Raphson Method find the real root of $x \log_{10} x = 1.2$ correct to four decimal places.

Answer:

Let
$$f(x) = x \log_{10} x - 1.2$$

 $f(1) = -1.2$, $f(2) = -0.59794$, $f(3) = 0.23136$
We have $f(x) = \frac{x \log_e x}{\log_e 10} - 1.2 \Rightarrow f'(x) = \frac{1 + \log_e x}{\log_e 10}$
 $= \log_{10} e + \log_{10} x$
 $\therefore x_{k+1} = x_k - \frac{x_k \log_{10} x_k - 1.2}{\log_{10} e + \log_{10} x_k}$
Let $x_0 = 2.5$ (you may choose 2 or 3 also)
 $x_1 = 2.5 - \frac{2.5 \log_{10} 2.5 - 1.2}{\log_{10} e + \log_{10} 2.5} = 2.7465$
 $x_2 = 2.7465 - \frac{2.7465 \log_{2.7465} - 1.2}{\log_{10} e + \log_{10} 2.7465} = 2.7406$

Repeating the procedure

$$x_3 = 2.7406$$

f(1) = e - 2 = 0.7182

- \therefore x \approx 2.7406 is the root of the given equation
- 2.Using Newton's Method, find the real root of $xe^x = 2$. Correct to 3 decimal places.

Answer:

Let $f(x) = xe^x - 2$ f(0) = -2

Let
$$x_0 = 1$$

 $f(x) = (x + 1) e^x$
We have
$$x_{k+1} = x_k - \frac{x_k e^{x_k} - 2}{(x_k + 1) e^{x_k}}$$

$$x_1 = 1 - \frac{e - 2}{2e} = 0.8678$$

$$x_2 = 0.8678 - \frac{(0.8678) e^{0.8678} - 2}{(1.8678) e^{0.8678}} = 0.8527$$

$$x_3 = 0.8527 - \frac{(0.8527) e^{0.8527} - 2}{(1.8527) e^{0.8527}} = 0.8526$$

- \therefore x \approx 0.8526, is the required root. Correct to 3 decimal places
- 3. Find by Newton's Method the real root of 3x = cosx + 1 near 0.6, x is in radians. Correct for four decimal places.

Answer:

Let
$$f(x) = 3x - \cos x - 1$$

 $f(x) = 3 + \sin x$
 $x_{k+1} = x_k - \frac{3x_k - \cos x_{k-1}}{3 + \sin x_k}$
When $x_0 = 0.6$ $x_1 = 0.6 - \frac{3(0.6) - \cos(0.6) - 1}{3 + \sin(0.6)} = 0.6071$
 $x_2 = 0.6071 - \frac{3(0.6071) - \cos(0.6071) - 1}{3 + \sin(0.6071)} = 0.6071$

Since $x_1 = x_2$

The desired root is 0.6071

4. Obtain the iterative formula for finding the square root of N and find $\sqrt{41}$ Answer:

Let
$$x = \sqrt{N}$$

or $x^2 - N = 0$
 $\therefore f(x) = x^2 - N$
 $f'(x) = 2x$

Now

$$x_{k+1} = x_k - \frac{x_k^2 - N}{2x_k}$$
$$= x_k - \frac{x_k}{2} + \frac{N}{2x_k}$$

i.e.
$$x_{k+1} = \frac{1}{2} \left\{ x_k + \frac{N}{x_k} \right\}$$

To find $\sqrt{41}$

Observe that $\sqrt{36} < \sqrt{41}$

$$\therefore \text{ Choose } x_0 = 6$$

$$x_1 = \frac{1}{2} \left\{ 6 + \frac{41}{6} \right\} = 6.4166$$

$$x_2 = \frac{1}{2} \left\{ 6.4166 + \frac{41}{6.4166} \right\} = 6.4031$$

$$x_3 = \frac{1}{2} \left\{ 6.4031 + \frac{41}{6.4031} \right\} = 6.4031$$

Since $x_2 = x_3 = 6.4031$

The value of $\sqrt{41} \approx 6.4031$

5. Obtain an iterative formula for finding the p-th root of N and hence find (10)^{1/3} correct to 3 decimal places.

Answer:

Let
$$x^{p} = N$$

or $x^{p} - N = 0$
Let $f(x) = x^{p} - N$
 $f'(x) = px^{p-1}$

Now
$$x_{k+1} = x_k - \frac{x_k^p - N}{px_k^{p-1}}$$

Observe that 8 < 10

$$\Rightarrow$$
 8^{1/3} < 10^{1/3}
i.e. 2 < (10)^{1/3}

.. Use
$$x_0 = 2$$
, $p = 3$, $N=10$
 $x_1 = 2 - \frac{2^3 - 10}{3(2^2)} = 2.1666$

$$x_2 = 2.1666 - \frac{(2.1666)^3 - 10}{3(2.1666)^2} = 2.1545$$

$$x_3 = 2.1545 - \frac{(2.1545)^3 - 10}{3(2.1545)^2} = 2.1544$$

$$\therefore$$
 $(10)^{1/3} \approx 2.1544$

6. Obtain an iterative formula for finding the reciprocal of p-th root of N. Find (30)^{-1/5} correct to 3 decimal places.

Answer:

Let
$$x^{-p} = N$$

or $x^{-p} - N = 0$
 $f(x) = x^{-p} - N$

:.
$$f(x) = x^{-p} - N$$

 $f'(x) = -px^{-p-1}$

Now

$$x_{k+1} = x_k + \frac{x_k^{-p} - N}{p \ x_k^{-p-1}}$$

since
$$(32)^{-1/5} = \frac{1}{2} = 0.5$$

We use $x_0 = 0.5$, $p = 5$, $N = 30$
 $x_1 = 0.5 + \frac{(0.5)^{-5} - 30}{5(0.5)^{-6}} = 0.50625$, Repeating the process
 $x_2 = 0.506495$, $x_3 = 0.506495$
 $\therefore (30)^{-1/5} \approx 0.5065$