
Module-4 : Dynamic Programming

Contents

1. Introduction to Dynamic Programming

1.1. General method with Examples

1.2. Multistage Graphs

2. Transitive Closure:

2.1. Warshall’s Algorithm,

3. All Pairs Shortest Paths:

3.1. Floyd's Algorithm,

4. Optimal Binary Search Trees

5. Knapsack problem

6. Bellman-Ford Algorithm

7. Travelling Sales Person problem

8. Reliability design

Lakshmi Priya P, CSE, ACSCE Page| 4.2

Module 4: Dynamic Programming

Example 1

Example 2

Example 3

 Example 4

1. Introduction to Dynamic Programming

Dynamic programming is a technique for solving problems with overlapping subproblems.

Typically, these subproblems arise from a recurrence relating a given problem’s solution to

solutions of its smaller subproblems. Rather than solving overlapping subproblems again and

again, dynamic programming suggests solving each of the smaller subproblems only once

and recording the results in a table from which a solution to the original problem can then be

obtained. [From T1]

The Dynamic programming can be used when the solution to a problem can be viewed as the

result of sequence of decisions. [From T2]. Here are some examples.

Lakshmi Priya P, CSE, ACSCE Page| 4.3

Module 4: Dynamic Programming

Lakshmi Priya P, CSE, ACSCE Page| 4.4

Module 4: Dynamic Programming

1.2 Multistage Graphs

Lakshmi Priya P, CSE, ACSCE Page| 4.5

Module 4: Dynamic Programming

Figure: Five stage graph

Lakshmi Priya P, CSE, ACSCE Page| 4.6

Module 4: Dynamic Programming

Lakshmi Priya P, CSE, ACSCE Page| 4.7

Module 4: Dynamic Programming

Backward Approach

Lakshmi Priya P, CSE, ACSCE Page| 4.8

Module 4: Dynamic Programming

��

2. Transitive Closure using Warshall’s Algorithm,

Definition: The transitive closure of a directed graph with n vertices can be defined as the n

× n boolean matrix T = {tij}, in which the element in the ith row and the jth column is 1 if there

exists a nontrivial path (i.e., directed path of a positive length) from the ith vertex to the jth

vertex; otherwise, tij is 0.

Example: An example of a digraph, its adjacency matrix, and its transitive closure is given

below.

(a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

We can generate the transitive closure of a digraph with the help of depth first search or

breadth-first search. Performing either traversal starting at the ith vertex gives the information

about the vertices reachable from it and hence the columns that contain 1’s in the ith row of

the transitive closure. Thus, doing such a traversal for every vertex as a starting point yields

the transitive closure in its entirety.

Since this method traverses the same digraph several times, we can use a better algorithm

called Warshall’s algorithm. Warshall’s algorithm constructs the transitive closure through

a series of n × n boolean matrices:

Each of these matrices provides certain information about directed paths in the digraph.

Specifically, the element�(�) in the ith row and jth column of matrix R(k) (i, j = 1, 2, . . . , n, k =

0, 1, . . . , n) is equal to 1 if and only if there exists a directed path of a positive length from

the ith vertex to the jth vertex with each intermediate vertex, if any, numbered not higher than

k.

Thus, the series starts with R(0), which does not allow any intermediate vertices in its paths;

hence, R(0) is nothing other than the adjacency matrix of the digraph. R(1) contains the

information about paths that can use the first vertex as intermediate. The last matrix in the

series, R(n),reflects paths that can use all n vertices of the digraph as intermediate and hence is

nothing other than the digraph’s transitive closure.

This means that there exists a path from the ith vertex vi to the jth vertex vj with each

intermediate vertex numbered not higher than k:

vi, a list of intermediate vertices each numbered not higher than k, vj . --- (*)

Two situations regarding this path are possible.

Lakshmi Priya P, CSE, ACSCE Page| 4.9

Module 4: Dynamic Programming

ij

1. In the first, the list of its intermediate vertices does not contain the kth vertex. Then this

path from vi to vj has intermediate vertices numbered not higher than k−1. i.e. r(k−1) = 1

2. The second possibility is that path (*) does contain the kth vertex vk among the

intermediate vertices. Then path (*) can be rewritten as;

vi, vertices numbered ≤ k − 1, vk, vertices numbered ≤ k − 1, vj .

i.e r
(k−1)

= 1 and r
(k−1)

= 1
ik kj

Thus, we have the following formula for generating the elements of matrix R(k) from the

elements of matrix R(k−1)

The Warshall’s algorithm works based on the above formula.

As an example, the application of Warshall’s algorithm to the digraph is shown below. New

1’s are in bold.

Lakshmi Priya P, CSE, ACSCE Page| 4.10

Module 4: Dynamic Programming

Analysis

Its time efficiency is Θ(n3). We can make the algorithm to run faster by treating matrix rows

as bit strings and employ the bitwise or operation available in most modern computer

languages.

Space efficiency: Although separate matrices for recording intermediate results of the

algorithm are used, that can be avoided.

3. All Pairs Shortest Paths using Floyd's Algorithm,

Problem definition: Given a weighted connected graph (undirected or directed), the all-pairs

shortest paths problem asks to find the distances—i.e., the lengths of the shortest paths - from

each vertex to all other vertices.

Applications: Solution to this problem finds applications in communications, transportation

networks, and operations research. Among recent applications of the all-pairs shortest-path

problem is pre-computing distances for motion planning in computer games.

We store the lengths of shortest paths in an n x n matrix D called the distance matrix: the

element dij in the ith row and the jth column of this matrix indicates the length of the shortest

path from the ith vertex to the jth vertex.

(a) Digraph. (b) Its weight matrix. (c) Its distance matrix

We can generate the distance matrix with an algorithm that is very similar to Warshall’s

algorithm. It is called Floyd’s algorithm.

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a

series of n × n matrices:

Lakshmi Priya P, CSE, ACSCE Page| 4.11

Module 4: Dynamic Programming

��

��

��

The element �(�) in the ith row and the jth column of matrix D(k) (i, j = 1, 2, . . . , n, k = 0, 1, .

. . , n) is equal to the length of the shortest path among all paths from the ith vertex to the jth

vertex with each intermediate vertex, if any, numbered not higher than k.

As in Warshall’s algorithm, we can compute all the elements of each matrix D(k) from its

immediate predecessor D(k−1)

If �(�) = 1, then it means that there is a path;

vi, a list of intermediate vertices each numbered not higher than k, vj .

We can partition all such paths into two disjoint subsets: those that do not use thekth vertex vk

as intermediate and those that do.

i. Since the paths of the first subset have their intermediate vertices numbered not higher

than k − 1, the shortest of them is, by definition of our matrices, of length �(�−1)

ii. In the second subset the paths are of the form

vi, vertices numbered ≤ k − 1, vk, vertices numbered ≤ k − 1, vj .

The situation is depicted symbolically in Figure, which shows

the underlying idea of Floyd’s algorithm.

Taking into account the lengths of the shortest paths in both subsets leads to the following

recurrence:

Analysis: Its time efficiency is Θ(n3), similar to the warshall’s algorithm.

Lakshmi Priya P, CSE, ACSCE Page| 4.12

Module 4: Dynamic Programming

Application of Floyd’s algorithm to the digraph is shown below. Updated elements are shown

in bold.

4. Optimal Binary Search Trees

A binary search tree is one of the most important data structures in computer science. One of

its principal applications is to implement a dictionary, a set of elements with the operations of

searching, insertion, and deletion.

The binary search tree for which the average number of comparisons in a search is the

smallest as possible is called as optimal binary search tree. If probabilities of searching for

elements of a set are known an optimal binary search tree can be constructed.

As an example, consider four keys A, B, C,

and D to be searched for with probabilities

0.1, 0.2, 0.4, and 0.3, respectively. The figure

depicts two out of14 possible binary search

trees containing these keys.

Lakshmi Priya P, CSE, ACSCE Page| 4.13

Module 4: Dynamic Programming

The average number of comparisons in a successful search in the first of these trees is

0.1 * 1+ 0.2 * 2 + 0.4 *3+ 0.3 * 4 = 2.9, and for the second one it is 0.1 * 2 + 0.2 * 1+ 0.4 * 2

+ 0.3 * 3= 2.1. Neither of these two trees is, in fact, optimal.

For our tiny example, we could find the optimal tree by generating all 14binary search trees

with these keys. As a general algorithm, this exhaustive-search approach is unrealistic: the

total number of binary search trees with n keys is equal to the nth Catalan number,

 which grows to infinity as fast as 4n/ n1.5

Problem definition: Given a sorted array a1, . . . , an of search keys and an array p1, . . . ,

pn of probabilities of searching, where pi is the probability of searches to ai. Construct a

binary search tree of all keys such that, smallest average number of comparisons made in a

successful search.

Solution using Dynamic programming

So let a1, . . . ,an be distinct keys ordered from the smallest to the largest and let p1, . . . , pn be

the probabilities of searching for them.

Let C(i, j) be the smallest average number of comparisons made in a successful search in a

binary search treeTi
jmade up of keys ai, . . , aj, where i, j are some integer indices, 1≤ i ≤ j ≤ n.

We are interested just in C(1, n). Following the classic dynamic programming approach, we

will find values of C(i, j) for all smaller instances of the problem.

To derive a recurrence underlying a dynamic programming algorithm, wewill consider all

possible ways to choose a root ak among the keys ai, . . . ,aj . Forsuch a binary search tree

(Figure 8.8), the root contains key ak, the left subtreeTi
k−1contains keys ai, . . . , ak−1 optimally

arranged, and the right subtree Tj
k+1contains keys ak+1, . . . , aj also optimally arranged. Here

we are taking advantage of the principle of optimality.

Lakshmi Priya P, CSE, ACSCE Page| 4.14

Module 4: Dynamic Programming

If we count tree levels starting with 1 to make the comparison numbers equal the keys’ levels,

the following recurrence relation is obtained:

Lakshmi Priya P, CSE, ACSCE Page| 4.15

Module 4: Dynamic Programming

The two-dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by

formula (8.8): they are in row i and the columns to the left of column j and in column j and

the rows below row i. The arrows point to the pairs of entries whose sums are computed in

order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the

table along its diagonals, starting with all zeros on the main diagonal and given probabilities

pi, 1≤ i ≤ n, right above it and moving toward the upper right corner.

The algorithm we just sketched computes C(1, n)—the average number of comparisons for

successful searches in the optimal binary tree. If we also want to get the optimal tree itself,

we need to maintain another two-dimensional table to record the value of k for which the

minimum in (8.8) is achieved. The table has the same shape as the table in Figure 8.9 and is

filled in the same manner, starting with entries R(i, i) = i for 1≤ i ≤ n. When the table is filled,

its entries indicate indices of the roots of the optimal subtrees, which makes it possible to

reconstruct an optimal tree for the entire set given.

Example: Let us illustrate the algorithm by applying it to the four-key set we used at the

beginning of this section:

The initial tables look like this:

Let us compute C(1, 2):

Thus, out of two possible binary trees containing the first two keys, A and B, the root of the

optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a

successful search in this tree is 0.4. On finishing the computations we get the following final

tables:

Lakshmi Priya P, CSE, ACSCE Page| 4.16

Module 4: Dynamic Programming

Thus, the average number of key comparisons in the optimal tree is equal to1.7. Since R(1, 4)

= 3, the root of the optimal tree contains the third key, i.e., C. Its left subtree is made up of

keys A and B, and its right subtree contains just key D. To find the specific structure of these

subtrees, we find first their roots by consulting the root table again as follows. Since R(1, 2) =

2, the root of the optimal tree containing A and B is B, with A

being its left child (and the root of the one-node tree: R(1, 1) =

1). Since R(4, 4) = 4, the root of this one-node optimal tree

consist only key D. Figure given below presents the optimal

tree in its entirety.

Here is Pseudocode of the dynamic programming algorithm.

5. Knapsack problem

We start this section with designing a dynamic programming algorithm for the knapsack

problem: given n items of known weights w1, . . . ,wn and valuesv1, . . . , vn and a knapsack of

capacity W, find the most valuable subset of the items that fit into the knapsack. To design a

dynamic programming algorithm, we need to derive a recurrence relation that expresses a

solution to an instance of the knapsack problem in terms of solutions to its smaller sub

instances. Let us consider an instance defined by the first i items, 1≤ i ≤ n, with weights w1, . .

. ,wi, values v1, . . . , vi , and knapsack capacity j, 1 ≤ j ≤ W. Let F(i, j) be the value of an

optimal solution to this instance. We can divide all the subsets of the first i items that fit the

knapsack of capacity j into two categories: those that do not include the ith item and those that

do. Note the following:

Lakshmi Priya P, CSE, ACSCE Page| 4.17

Module 4: Dynamic Programming

i. Among the subsets that do not include the ith item, the value of an optimal subset is,

by definition, i.e F(i , j) = F(i − 1, j).

ii. Among the subsets that do include the ith item (hence, j − wi≥ 0), an optimal subset is

made up of this item and an optimal subset of the first i−1 items that fits into the

knapsack of capacity j − wi. The value of such an optimal subset is vi+ F(i − 1, j − wi).

Thus, the value of an optimal solution among all feasible subsets of the first I items is the

maximum of these two values.

It is convenient to define the initial conditions as follows:

F(0, j) = 0 for j ≥ 0 and F(i, 0) = 0 for i ≥ 0.

Our goal is to find F(n, W), the maximal value of a subset of the n given items that fit into

the knapsack of capacity W, and an optimal subset itself.

The algorithm for the knapsack problem can be stated as follows

Input: n – total items, W – capacity of the knapsack

wi– weight of the ith item, vi– value of the ith item,

Output: F(i, j) be the value of an optimal solution to this instance considering first i items

with capacity j. F(n,W) is the optimal solution

Method:

Lakshmi Priya P, CSE, ACSCE Page| 4.18

Module 4: Dynamic Programming

Example-1:Let us consider the instance given by the following data:

The dynamic programming table, filled by applying formulas is given below

Thus, the maximal value is F(4, 5) = $37.

We can find the composition of an optimal subset by back tracing the computations of this

entry in the table. Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution

along with an optimal subset for filling 5 − 2 = 3 remaining units of the knapsack capacity.

The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal

subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element

F(1, 3 − 1) to specify its remaining composition. Similarly, since F(1, 2) > F(0, 2), item 1 is

the final part of the optimal solution {item 1, item 2, item 4}.

Analysis

The time efficiency and space efficiency of this algorithm are both in Θ(nW). The time

needed to find the composition of an optimal solution is in O(n).

Memory Functions

The direct top-down approach to finding a solution to such a recurrence leads to an algorithm

that solves common subproblems more than once and hence is very inefficient.

The classic dynamic programming approach, on the other hand, works bottom up: it fills a

table with solutions to all smaller subproblems, but each of them is solved only once. An

unsatisfying aspect of this approach is that solutions to some of these smaller subproblems

are often not necessary for getting a solution to the problem given. Since this drawback is not

present in the top-down approach, it is natural to try to combine the strengths of the top-down

and bottom-up approaches. The goal is to get a method that solves only subproblems that are

necessary and does so only once. Such a method exists; it is based on using memory

functions.

This method solves a given problem in the top-down manner but, in addition, maintains a

table of the kind that would have been used by a bottom-up dynamic programming algorithm.

Lakshmi Priya P, CSE, ACSCE Page| 4.19

Module 4: Dynamic Programming

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they

have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the

method checks the corresponding entry in the table first: if this entry is not “null,” it is simply

retrieved from the table; otherwise, it is computed by the recursive call whose result is then

recorded in the table.

The following algorithm implements this idea for the knapsack problem. After initializing the

table, the recursive function needs to be called with i = n (the number of items) and j = W

(the knapsack capacity).

AlgorithmMFKnapsack(i, j)

//Implements the memory function method for the knapsack problem

//Input: A nonnegative integer i indicating the number of the first items being

considered and a nonnegative integer j indicating the knapsack capacity

//Output: The value of an optimal feasible subset of the first i items

//Note: Uses as global variables input arrays Weights[1..n], Values[1..n],and

table F[0..n, 0..W] whose entries are initialized with −1’s except for

row 0 and column 0 initialized with 0’s

Example-2 Let us apply the memory function method to the instance considered in Example

1. The table in Figure given below gives the results. Only 11 out of 20nontrivial values (i.e.,

not those in row 0 or in column 0) have been computed. Just one nontrivial entry, V (1, 2), is

retrieved rather than being recomputed. For larger instances, the proportion of such entries

can be significantly larger.

Figure: Example of solving an instance of the knapsack problem by the memory function algorithm

In general, we cannot expect more than a constant-factor gain in using the memory function

method for the knapsack problem, because its time efficiency class is the same as that of the

bottom-up algorithm

Lakshmi Priya P, CSE, ACSCE Page| 4.20

Module 4: Dynamic Programming

6. Bellman-Ford Algorithm (Single source shortest path with –ve weights)

Problem definition: Given a graph and a source vertex s in graph, find shortest paths from

s to all vertices in the given graph. The graph may contain negative weight edges.

Note that we have discussed Dijkstra’s algorithm for single source shortest path problem.

Dijksra’s algorithm is a Greedy algorithm and time complexity is O(VlogV). But Dijkstra

doesn’t work for graphs with negative weight edges.

Bellman-Ford works for such graphs. Bellman-Ford is also simpler than Dijkstra and suites

well for distributed systems. But time complexity of Bellman-Ford is O(VE), which is more

than Dijkstra.

How it works? - Like other Dynamic Programming Problems, the algorithm calculates

shortest paths in bottom-up manner. It first calculates the shortest distances for the shortest

paths which have at-most one edge in the path. Then, it calculates shortest paths with at-most

2 edges, and so on.

Iteration i finds all shortest paths that use i edges. There can be maximum |V| – 1 edges in

any simple path, that is why the outer loop runs |v| – 1 times. The idea is, assuming that there

is no negative weight cycle, if we have calculated shortest paths with at most i edges, then an

iteration over all edges guarantees to give shortest path with at-most (i+1) edges

http://www.geeksforgeeks.org/archives/27697

Lakshmi Priya P, CSE, ACSCE Page| 4.21

Module 4: Dynamic Programming

Bellman-Ford algorithm to compute shortest path

Lakshmi Priya P, CSE, ACSCE Page| 4.22

Module 4: Dynamic Programming

Another example

Figure: Steps of the Bellman Ford algorithm. The numbers with red squares indicate what
changed on each step.

7. Travelling Sales Person problem (T2:5.9),

Lakshmi Priya P, CSE, ACSCE Page| 4.23

Module 4: Dynamic Programming

Lakshmi Priya P, CSE, ACSCE Page| 4.24

Module 4: Dynamic Programming

Lakshmi Priya P, CSE, ACSCE Page| 4.25

Module 4: Dynamic Programming

8. Reliability design

Lakshmi Priya P, CSE, ACSCE Page| 4.26

Module 4: Dynamic Programming

Lakshmi Priya P, CSE, ACSCE Page| 4.27

Module 4: Dynamic Programming
