Module-4 : Dynamic Programming

Contents
1. Introduction to Dynamic Programming 4. Optimal Binary Search Trees
1.1. General method with Examples 5. Knapsack problem
1.2. Multistage Graphs 6. Bellman-Ford Algorithm
2. Transitive Closure: 7. Travelling Sales Person problem
2.1. Warshall’s Algorithm, 8. Reliability design

All Pairs Shortest Paths:
3.1. Floyd's Algorithm,

Module 4: Dynamic Programming

1. Introduction to Dynamic Programming

Dynamic programming is a technique for solving problems with overlapping subproblems.
Typically, these subproblems arise from a recurrence relating a given problem’s solution to
solutions of its smaller subproblems. Rather than solving overlapping subproblems again and
again, dynamic programming suggests solving each of the smaller subproblems only once
and recording the results in a table from which a solution to the original problem can then be
obtained. [From T1]

The Dynamic programming can be used when the solution to a problem can be viewed as the
result of sequence of decisions. [From T2]. Here are some examples.

Example 1 [Knapsack] The solution to the knapsack problem

can be viewed as the result of a sequence of decisions. We have to
decide the values of ;.1 <1 < n. First we make a decision on ;. then on
29, then on z3, and so on. An optimal sequence of decisions maximizes the
objective function Y p,x,. (It also satisfies the constraints > w,z; < m and
0<z;<]) O

Example 2 The files iy, 9. and x3 are three sorted files of length 30, 20,
and 10 records each. Merging 2, and z, requires 50 record moves. Merging
the result with x3 requires another 60 moves. The total nmmber of record
moves required to merge the three files this way is 110. If, instead, we first
merge o and x3 (taking 30 moves) and then x; (taking 60 moves), the total
record moves made is only 90. Hence. the second merge pattern is faster
than the first.

An optimal merge pattern tells us which pair of files should be
merged at each step. As a decision sequence, the problem calls for us to de-
cide which pair of files should be merged first, which pair second, which pair
third, and so on. An optimal sequence of decisions is a least-cost sequence.

Example 3 [Shortest path] One way to find a shortest path from vertex
i to vertex 7 1n a directed graph G is to decide which vertex should be the
second vertex, which the third, which the fourth, and so on, until vertex j
is reached. An optimal sequence of decisions is one that results in a path of
least length. a

Example 4 [Shortest path] Suppose we wish to find a shortest path from
vertex 1 to vertex j. Let A; be the vertices adjacent from vertex 2. Which of
the vertices in A; should be the second vertex on the path? There is no way
to make a decision at this time and guarantee that future decisions leading
to an optimal sequence can be made. If on the other hand we wish to find
a shortest path from vertex i to all other vertices in GG, then at each step, a
correct decision can be made)

Lakshmi Priya P, CSE, ACSCE Page| 4.2

Module 4: Dynamic Programming

One way to solve problems for which it is not possible to make a sequence
of stepwise decisions leading to an optimal decision sequence is to try all pos-
sible decision sequences. We could enumerate all decision sequences and then
pick out the best. But the tune and space requirements may be prohibitive.
Dynamic programming often drastically reduces the amount of enumeration
by avoiding the enumeration of some decision sequences that cannot possibly
be optimal. In dynamic programming an optimal sequence of decisions is
obtained by making explicit appeal to the principle of optimnality.

Definition 5.1 [Principle of optimality] The principle of optimality states
that an optimal sequence of decisions has the property that whatever the
initial state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard to the state resulting from the first
decision.]

Thus, the essential difference between the greedy method and dynamic
programming is that in the greedy method only one decision sequence is
ever generated. In dynamic programming, many decision sequences may be
generated. However, sequences containing suboptimal subsequences cannot
be optimal (if the principle of optimality holds) and so will not (as far as
possible) be generated.

Example 5.5 [Shortest path] Consider the shortest-path problem of Exam-
ple 5.3. Assume that i,4;,1%5....,1x, J is a shortest path from i to 7. Starting
with the initial vertex 2, a decision has been made to go to vertex ¢;. Fol-
lowing this decision, the problem state is defined by vertex 7; and we need
to find a path from 7; to 7. It is clear that the sequence #,19,... .1, 7 must
constitute a shortest 7, to j path. If not, let 7;,r,7,....74,7 be a shortest
i1 to j path. Then 4,4y,7ry,+--,7¢,j i8 an 7 to j path that is shorter than the
path 7.2y.19....,1,7. Therefore the principle of optimality applies for this
problem. a

Example 5.6 [0/1 knapsack] The 0/1 knapsack problem is similar to the
knapsack problem of Section 4.2 except that the z;’s are restricted to have
a value of either 0 or 1. Using KNAP(I. j,y) to represent the problem

maximize 3 << pi;
subject t0 37 i wik; < Y (5.1)
r=00r 1, I<i<}j

the knapsack problem is KNAP(L.n,m). Let y.y9..... Yn be an optimal
sequence of 0/1 values for z,xy,...,z,. respectively. If y; = 0. then
Y2, Y3e o s Yy, must constitute an optimal sequence for the problem KNADP(2,
n, m). If it does not, then y;.ys.....yn is not an optimal sequence for
KNAP(L.n,m). If y3 = 1. then y.,...,y, must be an optimal sequence
for the problem KNAP(2,n,m — wy). If it isn’t, then there is another 0/1
sequence zz, z3....,2p such that 3, wizi <m—w; and Y yc;«p, pizi >

Y o<i<n Pivi.- Hence, the sequence y|, 29, 23.... ,Zn 18 a sequence for (5.1)

with greater value. Again the principle of optimality applies.)

Lakshmi Priya P, CSE, ACSCE Page| 4.3

Module 4: Dynamic Programming

Example 5.7 [Shortest path] Let A; be the set of vertices adjacent to vertex
1. For each vertex k € A, let 'y be a shortest path from k& to j. Then, a
shortest 7 to j path is the shortest of the paths {2.I'x|k € A;}. O

Example 5.8 [0/1 knapsack] Let g;(y) be the value of an optimal solution
to KNAP(7 + 1,n,y). Clearly, go(m) is the value of an optimal solution to
KNAP(1,n.m). The possible decisions for z; are 0 and 1 (D = {0.1}).
rom the principle of optimality it follows that

go(m) = max {gi(m), gi(m —wy) + p1} (5.2)
J

While the principle of optimality has been stated only with respect to
the initial state and decision, it can be applied equally well to intermediate
states and decisions. The next two examples show how this can be done.

Example 5.9 [Shortest path] Let k be an intermediate vertex on a shortest
i to 7 path i,71,%2,.... k. p1.pa.. .., ,j. The pathezz; k and k,p1,....]
must, respectively, be shmtest i to k and k to 7 paths. a

Example 5.10 [0/1 knapsack] Let y1,y2,...,y, be an optimal solution to
KNAP(1,n,m). Then, for each j, 1 < j < n, yi, c Y and Yjt1y..03Yn
must be optimal solutions to the problems KNAP(1, j, 2i<i<y wiYi) and

KNAP(j + L, n,m— 37 << ; wiy:) respectively. This observation allows us to
generalize (5.2) to

gi(y) = max {gi+1(¥), gi+1(y — wit1) + pis1} (5.3)

The recursive application of the optimality principle results in a recur-
rence equation of type (5.3). Dynamic programming algorithms solve this
recurrence to obtain a solution to the given problem instance. The recur-
rence (5.3) can be solved using the knowledge g, (y) = 0 for all ¥ > 0 and
gn(y) = —oco for y < 0. From g,(y), one can obtain g, (y) using (5.3) with
i = n— 1. Then. using g, 1(y). one can obtain g,_2(y). Repeating in this
way, one can determine g;(y) and finally go(m) using (5.3) with : = 0.

1.2 Multistage Graphs

A multistage graph G = (V. E) is a directed graph in which the vertices are
partitioned into k& > 2 disjoint sets V;, 1 <1 < k. In addition, if (u,v) is an
edge in E, then u € V; and v € V| for some 1,1 < i < k., The sets V; and
Vi are such that [Vi| = |Vi| = 1. Let s and ¢, respectively, be the vertices in
Vi and Vi. The vertex s is the source, and ¢t the sink. Let ¢(i. j) be the cost
of edge (i, 7). The cost of a path from s to ¢ is the sum of the costs of the
edges on the path. The multistage graph problem is to find a minimum-cost

Lakshmi Priya P, CSE, ACSCE Page| 4.4

Module 4: Dynamic Programming

path from s to t. Each set V; defines a stage in the graph. Because of the
constraints on E. every path from s to ¢ starts in stage 1, goes to stage 2,
then to stage 3, then to stage 4. and so on, and eventually terminates in
stage k. Figure 5.2 shows a five-stage graph. A minimum-cost s to ¢t path is
indicated by the broken edges.

v, v, Vs v, Vs

Figure: Five stage graph

A dynamic programming formulation for a k-stage graph problem is ob-
tained by first noticing that every s to ¢ path is the result of a sequence
of k — 2 decisions. The ith decision involves determining which vertex in
Vigr. 1 <1 < k—2, 1s to be on the path. It is easy to see that the principle
of optimality holds. Let p(i, 7) be a minimum-cost path from vertex j in V;
to vertex f. Let cost(i.j) be the cost of this path. Then, using the forward
approach, we obtain

cost(t, j) = min {c(j,l) +cost(i + 1.1)} (5.5)

eVt
(BheE

Since, cost(k — 1.j5) = (g, t) if (j,t) € E and cost(k — 1.7) = oo if
(7,t)ZE. (5.5) may be solved for cost(1,s) by first computing cost(k — 2,)
for all 5 € Vi_s, then cost(k— 3.7) for all 7 € Vi 3, and so on, and finally
cost(1, s). Trying this out on the graph of Figure 5.2, we obtain

cost(3,6) = min {6+ cost(4,9).5 + cost(4,10)}
= 0

cost(3,7) = min {4 + cost(4.9).3 + cost(4,10)}
= b

Lakshmi Priya P, CSE, ACSCE Page| 4.5

Module 4: Dynamic Programming

cost(3.8) = T
cost(2,2) = in {4+ cost(3,6),2 + cost(3.7),1 + cost(3,8)}

= 7
cost(2.3) = 9
cost(2.4) = 18
cost(2.5) = 15
cost(l.1) = min {9+ cost(2,2),7 + cost(2.3),3 + cost(2,4),
2+ cost(2,5)}
= 16

Note that in the calculation of cost(2,2). we have reused the values of
cost(3,6). cost(3.7), and cost(3.8) and so avoided their recomputation, A
minimum cost s to ¢ path has a cost of 16, This path can be determined
easily if we record the decision made at each state (vertex). Let d(i.j) be
the value of | (where [is a node) that minimizes ¢(7.1) + cost(i + 1.1) (see
Equation 5.5). For Figure 5.2 we obtain

d(3.6) = 10; d(3.7) = 10: d(3.8) = 10;
d(2.2) 7. d(2.3) = 6: d(2.4) 8: d(2,5) = 8;
d(1,1) = 2

Let the minimum-cost path be s = 1, v9,v3,...,v5_1. 1. It is easy to see

that vo = d(1.1) = 2,v3 = d(2.d(1,1)) = 7. and vy = d(3.d(2, d(1,1))) =
d(3.7) = 10.

Algorithm 5.1 Multistage graph pseudocode corresponding to the forward
approach

Algorithm FGraph(G.k,n,p)

// The input is a k-stage graph G = (V, E) with n vertices
// indexed in order of stages. E is a set of edges and c[t, j]
// is the cost of (¢, 7). p[l : k] is a minimum-cost path.

cost[n] := 0.0;

for j:=n—1to 1 step -1do

{ // Compute cost[j].
Let r be a vertex such that (j,r) is an edge
of G and ¢[j,r] + cost[r] s minimum;
cost[j] := ¢[j, 7] + cost[r];
dlj] :=r3

// Find a minimum-cost path.

p[l] := 1; plk] := n;

for j:=2 to k —1 do plj] :=d[p[j —1]};
}

Lakshmi Priya P, CSE, ACSCE Page| 4.6

Module 4: Dynamic Programming

The complexity analysis of the function FGraph is fairly straightforward.
If G 1s represented by its adjacency lists. then r in line 9 of Algorithm 5.1
can be found in time proportional to the degree of vertex j. Hence, if G’ has
|E| edges, then the time for the for loop of line 7 is O(|V| + |E|). The time
for the for loop of line 16 is ©(k). Hence, the total time is O(|V| + | E|). In
addition to the space needed for the input., space is needed for cost| |. df].
and p[|.

Backward Approach

The multistage graph problem can also be solved using the backward
approach. Let bp(i, 7) be a minimum-cost path from vertex s to a vertex j
in V;. Let beost(i, j) be the cost of bp(i,j). From the backward approach we
obtain

bcost(z, 7) = min {bcost(t — 1,1) +c(l,5)} (5.6)

lev,_
(Li)eE

Since beost(2,7) = ¢(1,7) if {1,7) € E and beost(2,7) = > if (1,75)€E,
beost(i, 7) can be computed using (5.6) by first computing beost for 1 = 3,
then for 7 = 4, and so on. For the graph of Figure 5.2, we obtain

beost(3,6) = min {beost(2,2) + ¢(2,6),bcost(2.3) + ¢(3,6)}
= min {9+4,7+2}

~ 9

beost(3,7) = 11 bcost(4.10) = 14
beost(3,8) = 10 becost(4,11) = 16
beost(4,9) = 16 bcost(5,12) = 16

Algorithm 5.2 Multistage graph pseudocode corresponding to backward
approach

Algorithm BGraph(G. k. n.p)
// Same function as FGraph

beost[1] := 0.0;

for j:=2 to ndo

{ // Compute beost[j].
Let » be such that (r,j) is an edge of
G and beost[r] 4+ ¢[r, j] is minimum;
beost[j] := beost[r] + ¢[r, j];

d(j] i=r;

/ { Find a minimum-cost path.
p(1] := 1; plk] := n3
for j:=Fk —1 to 2 do plj] := dlp[j + 1]|;

Lakshmi Priya P, CSE, ACSCE Page| 4.7

Module 4: Dynamic Programming

2. Transitive Closure using Warshall’s Algorithm,

Definition: The transitive closure of a directed graph with n vertices can be defined as the n
x n boolean matrix T = {tij}, in which the element in the i row and the j* column is 1 if there
exists a nontrivial path (i.e., directed path of a positive length) from the i" vertex to the j®
vertex; otherwise, tV is 0.

Example: An example of a digraph, its adjacency matrix, and its transitive closure is given
below.

b d

~\ N a8 ~ d 3 c
apr——»b)

L aldo 1 0 O all 1 1 1

' b0 0 0 1 b1 111

\\ \ = - } —

g W c|0 O 0 O ¢c|0 O O O
\e)—\9) d|l1 0 1 0 dl1 1 1 1

(a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

We can generate the transitive closure of a digraph with the help of depth first search or
breadth-first search. Performing either traversal starting at the i*" vertex gives the information
about the vertices reachable from it and hence the columns that contain 1’s in the i row of
the transitive closure. Thus, doing such a traversal for every vertex as a starting point yields
the transitive closure in its entirety.

Since this method traverses the same digraph several times, we can use a better algorithm
called Warshall’s algorithm. Warshall’s algorithm constructs the transitive closure through
a series of n x n boolean matrices:

R{(J}, . R':k_l}, R{k]. . R{n).

Each of these matrices provides certain information about directed paths in the digraph.
Specifically, the elementa® in the i row and j™ column of matrix R® (i,j=1,2,...,n k=
0,1,...,n)isequal to 1 if and only if there exists a directed path of a positive length from

the i vertex to the j™ vertex with each intermediate vertex, if any, numbered not higher than
K.

Thus, the series starts with R©, which does not allow any intermediate vertices in its paths;
hence, R is nothing other than the adjacency matrix of the digraph. R®Y contains the
information about paths that can use the first vertex as intermediate. The last matrix in the
series, R™ reflects paths that can use all n vertices of the digraph as intermediate and hence is
nothing other than the digraph’s transitive closure.

This means that there exists a path from the ith vertex vi to the jth vertex v; with each
intermediate vertex numbered not higher than k:

vi, a list of intermediate vertices each numbered not higher than k, v;. --- (*)

Two situations regarding this path are possible.

Lakshmi Priya P, CSE, ACSCE Page| 4.8

Module 4: Dynamic Programming

1 In the first, the list of its intermediate vertices does not contain the k™ vertex. Then this

path from vito vj has intermediate vertices numbered not higher than k=1. i.e. r(]‘j“” =1

2. The second possibility is that path (*) does contain the k'™ vertex vk among the
intermediate vertices. Then path (*) can be rewritten as;

Vi, vertices numbered < k — 1, vk, vertices numbered <k — 1, vj.

i.er

ik

(k-

1)

1andr

k=1) _ 4
j

Thus, we have the following formula for generating the elements of matrix R® from the

elements of matrix R«

The Warshall’s algorithm works based on the above formula.

As an example, the application of Warshall’s algorithm to the digraph is shown below. New

1’s are in bold.

a8 b ¢ d
@Q—® s[[o 100
po= 2[[0] 0 0 1
T e¢llo] 0 O O
@ A dl{110 1 0
a b ¢ d_
al 0 [1] 0 o
pno [10_]0] 0 1]
¢l 0 |0]0 O
dl 1 |11 0O
a b ¢ d
al 0 1 (0] 1
.. bl 0 00| 1
= [0 o0 |o| o]
dl 1 1]1] 1
~a b ¢ d_
al 0 1 0|1
pa. b| 0 0 0 [1
"¢l 0 0 0|0
dl[1_1 1]1]
~a b ¢ d _
al1t 1 1 1
Bl 1T 1T 1T 1
R4 =
cl 0O 0 0 O
dl T A T 1

1's reflect the existence of paths

with no intermediate vertices

(RO js just the adjacency matrix),

boxed row and column are used for getting R,

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 1, i.e,, just vertex a

(note a new path from d to b,

boxed row and column are used for getting R2,

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 2, i.e., aand b

(note two new paths),

boxed row and column are used for getting R

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 3, i.e,, a, b, and ¢

(no new paths),

boxed row and column are used for getting R4

1's reflect the existence of paths
with intermediate vertices numbered
not higher than 4, 1.e., a, b, ¢, and d
(note five new paths).

Lakshmi Priya P, CSE, ACSCE

Page| 4.9

Module 4: Dynamic Programming

ALGORITHM WarshalliA|l.n. 1.n|)
/[Implements Warshall's algorithm for computing the transitive closure
/lInput: The adjacency matrix A of a digraph with n vertices
/[Output: The transitive closure of the digraph
RY) « A
for k < 1 ton do
fori <« 1tondo
for j < 1ton do
R®i, j] < R*=D[i, jlor (R*=V|i, k] and R*V[k, j])
return R'"

Analysis

Its time efficiency is ®(n®). We can make the algorithm to run faster by treating matrix rows
as bit strings and employ the bitwise or operation available in most modern computer
languages.

Space efficiency: Although separate matrices for recording intermediate results of the
algorithm are used, that can be avoided.

3. All Pairs Shortest Paths using Floyd's Algorithm,

Problem definition: Given a weighted connected graph (undirected or directed), the all-pairs
shortest paths problem asks to find the distances—i.e., the lengths of the shortest paths - from
each vertex to all other vertices.

Applications: Solution to this problem finds applications in communications, transportation
networks, and operations research. Among recent applications of the all-pairs shortest-path
problem is pre-computing distances for motion planning in computer games.

We store the lengths of shortest paths in an n x n matrix D called the distance matrix: the
element dij in the i™ row and the j* column of this matrix indicates the length of the shortest
path from the i vertex to the j™ vertex.

Ka 2 /g a b ¢ d a b ¢ d

e -~ alo 3 alo0o 10 3 4

31 87 wob|2 0 = = ,_bl2 05 6

X \// Ny el 7 0 1 - [T A S

Le)—"49) d|6 « = 0 d|6 16 9 0
(a) Digraph. (b) Its weight matrix. (c) Its distance matrix

We can generate the distance matrix with an algorithm that is very similar to Warshall’s
algorithm. It is called Floyd’s algorithm.

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a
series of n x n matrices:

Lakshmi Priya P, CSE, ACSCE Page| 4.10

Module 4: Dynamic Programming

The element o) in the i row and the j™ column of matrix D® (i,j=1,2,...,n,k=0, 1,.

.., n) is equal to the length of the shortest path among all paths from the i vertex to the j"
vertex with each intermediate vertex, if any, numbered not higher than k.

As in Warshall’s algorithm, we can compute all the elements of each matrix D® from its
immediate predecessor D&V

If o) =1, then it means that there is a path;

vi, a list of intermediate vertices each numbered not higher than k, vj .

We can partition all such paths into two disjoint subsets: those that do not use thek™ vertex vi
as intermediate and those that do.

I. Since the paths of the first subset have their intermediate vertices numbered not higher
than k — 1, the shortest of them is, by definition of our matrices, of length o(Z-")

ii. In the second subset the paths are of the form
Vi, vertices numbered <k — 1, vk, vertices numbered <k — 1, vj.

The situation is depicted symbolically in Figure, which shows _x SOOI
the underlying idea of Floyd’s algorithm. 1

= i
T Vi |

Taking into account the lengths of the shortest paths in both subsets leads to the following
recurrence:
/(k) /(k —1)

) . (k—1 (k—1) . (1)
p— . Soa a— Y04
i = mm{d‘.j v iy + ‘[kj l tor & 1, ‘/i_i = Wj;.

ALGORITHM Floyd(W|l..n. 1.n])
/Tmplements Floyd’s algorithm for the all-pairs shortest-paths problem
/lnput: The weight matrix W of a graph with no negative-length cycle
/fOutput: The distance matrix of the shortest paths’ lengths
D «— W /fis not necessary if W can be overwritten
for k <« 1ton do
fori < 1 tondo
for ; « 1tondo
Dli, j| <« min{D|i. j|. D|i, k]| + D]k, j|}
return)

Analysis: Its time efficiency is ®(n®), similar to the warshall’s algorithm.

Lakshmi Priya P, CSE, ACSCE Page| 4.11

Module 4: Dynamic Programming

Application of Floyd’s algorithm to the digraph is shown below. Updated elements are shown
in bold.

a b ¢ d
al |0 3 o Lengths of the shortest paths
Do) = b2 O o= o= with no intermediate vertices
cll==| 7 0 1 (D) is simply the weight matrix),
d|[6] = ==
a b ¢ d
al 0] 2 | Lengths of the shortest paths
b|[Z [0] 5 =] with intermediate vertices numbered
DW= el o T 6 not higher than 1, i.e, just a
‘ (note two new shortest paths from
d_6 7 9 O_ btocandfromdtoc).
~a b ¢ d_
al 0 o [3] « Lengths of the shortest paths
, bl 2 0 |58] = with intermediate vertices numbered
Bk= el[9 7 [o] 1] not higher than 2, i.e., aand b
dl 8 = 19l o (note a new shortest path from c to a).
a b ¢ d
s o 10 3 [4]] Lengths of the shortest paths
bl 2 0o 5 l6 with intermediate vertices numbered
D® = e 7 0l not higher than 3, i.e., a, b, and ¢
d|[6 16 9 |0 (note four new shortest paths from a ta b,
2 | from ato d, from b to d, and from d to b).
a b ¢ d
al 0 10 3 4] Lengthsof the shortest paths
, bl 2 0 5 6 with intermediate vertices numbered
D@4 = el 7 7 0 1 not higher than 4, i.e., a, b, ¢, and d
dl 6 16 9 o (note a new shortest path from ¢ to a).

4. Optimal Binary Search Trees

A binary search tree is one of the most important data structures in computer science. One of
its principal applications is to implement a dictionary, a set of elements with the operations of
searching, insertion, and deletion.

The binary search tree for which the average number of comparisons in a search is the
smallest as possible is called as optimal binary search tree. If probabilities of searching for
elements of a set are known an optimal binary search tree can be constructed.

As an example, consider four keys A, B, C,
and D to be searched for with probabilities
0.1, 0.2, 0.4, and 0.3, respectively. The figure :
depicts two out ofl4 possible binary search © @
trees containing these keys. (B)

o o
‘_-rl vv‘,b J

Lakshmi Priya P, CSE, ACSCE Page| 4.12

Module 4: Dynamic Programming

The average number of comparisons in a successful search in the first of these trees is

0.1*1+0.2*2+0.4*3+0.3*4=2.9, and for the second one itis 0.1 *2+0.2* 1+ 0.4 * 2
+ 0.3 * 3= 2.1. Neither of these two trees is, in fact, optimal.

For our tiny example, we could find the optimal tree by generating all 14binary search trees
with these keys. As a general algorithm, this exhaustive-search approach is unrealistic: the
total number of binary search trees with n keys is equal to the nth Catalan number,

1 (2 :
c(n) = (”) forn>0, c(0)=1,
n+1\n which grows to infinity as fast as 4"/ n®

Problem definition: Given a sorted array au, . . ., a, of search keys and an array py, . . .,
pn of probabilities of searching, where piis the probability of searches to ai. Construct a
binary search tree of all keys such that, smallest average number of comparisons made in a
successful search.

Solution using Dynamic programming

So let ay, . . . ,an be distinct keys ordered from the smallest to the largest and let py, . . ., pnbe
the probabilities of searching for them.

Let C(i,) be the smallest average number of comparisons made in a successful search in a
binary search treeTdmade up of keys a;, . ., aj, where i, j are some integer indices, 1<i<j <n.

We are interested just in C(1, n). Following the classic dynamic programming approach, we
will find values of C(i, j) for all smaller instances of the problem.

To derive a recurrence underlying a dynamic programming algorithm, wewill consider all

possible ways to choose a root ax among the keys a;, . . . ,a;. Forsuch a binary search tree
(Figure 8.8), the root contains key ax, the left subtreeTi 'contains keys ai, . . . , a1 optimally
arranged, and the right subtree Tl1contains keys ax+1, . . . , aalso optimally arranged. Here

we are taking advantage of the principle of optimality.

(a0)
/ N \
'

7 QRN /J}
/ \\. / \\
/ \ / \
\ [\
/ \ f/ %
\ / \\
/ Opt:mal\ / Optimal \
/ BST for '\ / BST for \
VA [8ks10e-08; \
/ \ / \
."/f \ // l"\,

FIGURE 8.8 Binary search tree (BST) with root a; and two optimal binary search subtrees
1 Land T2
i k+1

Lakshmi Priya P, CSE, ACSCE Page| 4.13

Module 4: Dynamic Programming

If we count tree levels starting with 1 to make the comparison numbers equal the keys? levels,
the following recurrence relation is obtained:

k1

o s _ T s k]

C(i. j) —‘_151112},“?& | + E P (level of a, in 7" 4 1)
s=

J
P Z py - level of a, in Té’+| + 1))

.s'=k+|
k—1 § g
R R ey I o |
= ig‘]klpjlz pe-levelofa, in T/)" po-levelofa in T/, +) py)
e s=k+1 s=i
j
= min [C(i. k — C(k =F >
.'21-‘2,'{ (k=D +Clk+1 ,;)H—Z/{,
5=
Thus. we have the recurrence
i
Ci, p=m{Ci.k-1D+Ck+ 1)} + Z pe forl<i<j<n (8.8)
i<k=j =

We assume in formula (8.8) that C(i.i = 1)=0 for 1 <i <n + 1, which can be

interpreted as the number of comparisons in the empty tree. Note that this formula
implies that

Cii,iy=p; forl<i=<n,

as it should be for a one-node binary search tree containing «;.

0 1 | n
1 0 A4 goal
0 P

T s A a |Cliy]
i :

v

v

v

n+l

FIGURE 8.9 Tabie of the dynamic programming algenthm for constructing an optimal
binary search tree

Lakshmi Priya P, CSE, ACSCE Page| 4.14

Module 4: Dynamic Programming

The two-dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by
formula (8.8): they are in row i and the columns to the left of column j and in column j and
the rows below row i. The arrows point to the pairs of entries whose sums are computed in
order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the
table along its diagonals, starting with all zeros on the main diagonal and given probabilities
pi, 1<1 <n, right above it and moving toward the upper right corner.

The algorithm we just sketched computes C(1, n)—the average number of comparisons for
successful searches in the optimal binary tree. If we also want to get the optimal tree itself,
we need to maintain another two-dimensional table to record the value of k for which the
minimum in (8.8) is achieved. The table has the same shape as the table in Figure 8.9 and is
filled in the same manner, starting with entries R(i, 1) = 1 for 1<1 <n. When the table is filled,
its entries indicate indices of the roots of the optimal subtrees, which makes it possible to
reconstruct an optimal tree for the entire set given.

Example: Let us illustrate the algorithm by applying it to the four-key set we used at the
beginning of this section:

key A B € D
probability 0.1 0.2 0.4 0.3

The initial tables look like this:

main table root table
0] 2 3 4 0O 1 2 3 4
110 0.1 1]
2 0 0.2 2 2
3 0 0.4 3 3
4 0 03 4 4
5 0 5

Let us compute C(1, 2):

k=1 C(L,0)+C2,2)+Y> p;=0402403=05
C(l,2) =min .
k=2 C(LD+CG D+’ p=014+04+03=04

=04.
Thus, out of two possible binary trees containing the first two keys, A and B, the root of the
optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a
successful search in this tree is 0.4. On finishing the computations we get the following final
tables:

main table root table
0 1 2 3 4 06 1 2 3 4
1 0 01 04 1.1 1.7 1 1 2 3 3
2 0 02 08 14 2 2 3 '3
3 0 04 10 3 3 i3
4 0 03 4 4
5 0 5

Lakshmi Priya P, CSE, ACSCE Page| 4.15

Module 4: Dynamic Programming

Thus, the average number of key comparisons in the optimal tree is equal tol.7. Since R(1, 4)
= 3, the root of the optimal tree contains the third key, i.e., C. Its left subtree is made up of
keys A and B, and its right subtree contains just key D. To find the specific structure of these
subtrees, we find first their roots by consulting the root table again as follows. Since R(1, 2) =
2, the root of the optimal tree containing A and B is B, with A
being its left child (and the root of the one-node tree: R(1, 1) =
1). Since R(4, 4) = 4, the root of this one-node optimal tree
consist only key D. Figure given below presents the optimal
tree in its entirety.

Here is Pseudocode of the dynamic programming algorithm.

ALGORITHM OprimalBST(P[1..n])
//Finds an optimal binary search tree by dynamic programming
/MInput: An array P|l.n|of search probabilities for a sorted list of n Keys
()ulpul Average number of comparisons in successful searches in the
optimal BST and table R of subtrees’ roots in the optimal BST
fori < 1 tondo
Cli.i = 1] <0
cli. i] « Pli]
Rli.i] i
Cln+1,n] <0
ford « 1ton — 1 do //diagonal count
fori — lton —ddo
J—i+d
minval « oc
fork </ to jdo
ifCli.k = 1]+ Clk + 1. j| < minval
minval < Cli, k — 1]+ Clk+ 1, j} kmin <k
Rli. j| < kmin
sum « Pli]s fors « i+ 1to j do sum « sum + P|s|
Cli. j| « minval 4 sum
return C[1. n]. R

5. Knapsack problem

We start this section with designing a dynamic programming algorithm for the knapsack
problem: given n items of known weights wy, . . . ,wnand valuesvy, . . ., vaand a knapsack of
capacity W, find the most valuable subset of the items that fit into the knapsack. To design a
dynamic programming algorithm, we need to derive a recurrence relation that expresses a
solution to an instance of the knapsack problem in terms of solutions to its smaller sub
instances. Let us consider an instance defined by the first i items, 1< 1 < n, with weights w1, . .
. Wi, values vy, . . ., Vi, and knapsack capacity j, 1 <j < W. Let F(j, j) be the value of an
optimal solution to this instance. We can divide all the subsets of the first i items that fit the
knapsack of capacity j into two categories: those that do not include the i" item and those that
do. Note the following:

Lakshmi Priya P, CSE, ACSCE Page| 4.16

Module 4: Dynamic Programming

i. Among the subsets that do not include the i"item, the value of an optimal subset is,
by definition, i.e F(i,j)=F@{—1,]).

ii. Among the subsets that do include the i" item (hence, j — wi> 0), an optimal subset is
made up of this item and an optimal subset of the first i—1 items that fits into the
knapsack of capacity j — wi. The value of such an optimal subset is vi+ F(i — 1, j —wj).

Thus, the value of an optimal solution among all feasible subsets of the first | items is the
maximum of these two values.

. oo | Max{FG = 1L 0 Fa—1L0=w)) fj—w;=0,
F“'”—IF«—LJ‘) if j —w; <0,
It is convenient to define the initial conditions as follows:

F(0,j)=0 forj>0 and F(i, 0) = 0 fori> 0.

Our goal is to find F(n, W), the maximal value of a subset of the n given items that fit into
the knapsack of capacity W, and an optimal subset itself.

0 W, W
(() 0
1 U - w,l F(i=1,)
N, V. (Ft)
r (aoa
Table for solving the knapsack problem by dynamic programming

The algorithm for the knapsack problem can be stated as follows
Input: n —total items, W — capacity of the knapsack
wi— weight of the i""item, vi— value of the i item,

Output: F(i, j) be the value of an optimal solution to this instance considering first i items
with capacity j. F(n,W) is the optimal solution

Method:
forw=0to W
F[O.w]=0
fori=1ton
F[1.0]=0
fori=1ton
forw=0to W
if w, <= w // 1tem 1 can be part of the solution
if v, + F[1-1.w-w;] = F[1-1.w]
Flrw] = Vi + F[1-L.w- w;]
else
FlLw] =F[1-1.w]
else F[Lw]=F[1-l.w] //w,>w

Lakshmi Priya P, CSE, ACSCE Page| 4.17

Module 4: Dynamic Programming

Example-1:Let us consider the instance given by the following data:

item weight value
1 2 $12
2 1 $10 capacity W =5.
3 3 $20
4 2 $15

The dynamic programming table, filled by applying formulas is given below

capacity
i () 1 2 3 4 5

0 0 0 0 0 0 0
wy=2. =12 | 0 (0 12 12 12 12
uy =1, vy =10 2 () 10 12 22 22 22
wy=23, 1y=20 3 () 10) 12 22 3() 32

wy=2, vy4=15 4 0 10 15 25 30 37

Thus, the maximal value is F(4, 5) = $37.

We can find the composition of an optimal subset by back tracing the computations of this
entry in the table. Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution
along with an optimal subset for filling 5 — 2 = 3 remaining units of the knapsack capacity.
The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal
subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element
F(1, 3 — 1) to specify its remaining composition. Similarly, since F(1, 2) > F(0, 2), item 1 is
the final part of the optimal solution {item 1, item 2, item 4}.

Analysis
The time efficiency and space efficiency of this algorithm are both in ®(nW). The time
needed to find the composition of an optimal solution is in O(n).

Memory Functions

The direct top-down approach to finding a solution to such a recurrence leads to an algorithm
that solves common subproblems more than once and hence is very inefficient.

The classic dynamic programming approach, on the other hand, works bottom up: it fills a
table with solutions to all smaller subproblems, but each of them is solved only once. An
unsatisfying aspect of this approach is that solutions to some of these smaller subproblems
are often not necessary for getting a solution to the problem given. Since this drawback is not
present in the top-down approach, it is natural to try to combine the strengths of the top-down
and bottom-up approaches. The goal is to get a method that solves only subproblems that are
necessary and does so only once. Such a method exists; it is based on using memory
functions.

This method solves a given problem in the top-down manner but, in addition, maintains a
table of the kind that would have been used by a bottom-up dynamic programming algorithm.

Lakshmi Priya P, CSE, ACSCE Page| 4.18

Module 4: Dynamic Programming

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they
have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the
method checks the corresponding entry in the table first: if this entry is not “null,” it is simply
retrieved from the table; otherwise, it is computed by the recursive call whose result is then
recorded in the table.

The following algorithm implements this idea for the knapsack problem. After initializing the
table, the recursive function needs to be called with i = n (the number of items) and j = W
(the knapsack capacity).

AlgorithmMFKnapsack(i, j)
/NNmplements the memory function method for the knapsack problem
/Input: A nonnegative integer i indicating the number of the first items being
considered and a nonnegative integer j indicating the knapsack capacity
//Output: The value of an optimal feasible subset of the first i items
/INote: Uses as global variables input arrays Weights[1..n], Values[1..n],and
table F[0..n, 0..W] whose entries are initialized with —1’s except for
row 0 and column 0 initialized with 0’s
if Fli, j]<0
if j < Weighus|i]
value < MFKnapsack{i — 1, j)
else
value <= max(MFKnapsack(i — 1, j),
Values|i| + MFKnapsack(i — 1. j — Weights|i]))
Fli, j| < value
return F|i, /|

Example-2 Let us apply the memory function method to the instance considered in Example
1. The table in Figure given below gives the results. Only 11 out of 20nontrivial values (i.e.,
not those in row 0 or in column 0) have been computed. Just one nontrivial entry, V (1, 2), is
retrieved rather than being recomputed. For larger instances, the proportion of such entries
can be significantly larger.
capacity j
i 0 I 2 3 o 5
0 () ()) 0 () ()

()) 12 12 12 12
() l..‘. "]

wy = : = 12

wry=1vy=10

())2 32

— — — 3

Wy =3, 1y=20

da 00 19 -

() = == = = 37

wy=2 vy=15
Figure: Example of solving an instance of the knapsack problem by the memory function algorithm

In general, we cannot expect more than a constant-factor gain in using the memory function
method for the knapsack problem, because its time efficiency class is the same as that of the
bottom-up algorithm

Lakshmi Priya P, CSE, ACSCE Page| 4.19

Module 4: Dynamic Programming

6. Bellman-Ford Algorithm (Single source shortest path with —ve weights)

Problem definition: Given a graph and a source vertex s in graph, find shortest paths from
s to all vertices in the given graph. The graph may contain negative weight edges.

Note that we have discussed Dijkstra’s algorithm for single source shortest path problem.
Dijksra’s algorithm is a Greedy algorithm and time complexity is O(VlogV). But Dijkstra
doesn’t work for graphs with negative weight edges.

Bellman-Ford works for such graphs. Bellman-Ford is also simpler than Dijkstra and suites
well for distributed systems. But time complexity of Bellman-Ford is O(VE), which is more
than Dijkstra.

How it works? - Like other Dynamic Programming Problems, the algorithm calculates
shortest paths in bottom-up manner. It first calculates the shortest distances for the shortest
paths which have at-most one edge in the path. Then, it calculates shortest paths with at-most
2 edges, and so on.

Iteration i finds all shortest paths that use i edges. There can be maximum |V| — 1 edges in
any simple path, that is why the outer loop runs |v| — 1 times. The idea is, assuming that there
is no negative weight cycle, if we have calculated shortest paths with at most i edges, then an
iteration over all edges guarantees to give shortest path with at-most (i+1) edges

Let dist’[u] be the length of a shortest path from the source vertex v
to vertex u under the constraint that the shortest path contains at most ¢
edges. Then. dist'[u] = cost[v,u], 1 < u < n. As noted earlier, when there
are no cycles of negative length, we can limit our search for shortest paths
to paths with at most n — 1 edges. Hence, dist" '[u] is the length of an
unrestricted shortest path from v to w.

Our goal then is to compute dist” '[u] for all u. This can be done us-
ing the dynamic programming methodology. First, we make the following
observations:

1. If the shortest path from v to » with at most k, £ > 1, edges has no
more than k — 1 edges, then dist*[u] = dist*1[u].

2. If the shortest path from v to u with at most k, & > 1, edges has
exactly k edges. then it is made up of a shortest path from v to some
vertex j followed by the edge (j,u). The path from v to j has & — 1
edges, and its length is dist*~'[j]. All vertices i such that the edge
(7.u) is in the graph are candidates for j. Since we are interested in a
shortest path, the i that minimizes dist* '[i] + costi. u] is the correct
value for ;.

These observations result in the following recurrence for dist:

dist*[u] = min {dist* '[u]. min {dist*"[i] + cost[i,u]}}
i

This recurrence can be used to compute dist® from dist* ! for k = 2,3, ...,
n—1.

Lakshmi Priya P, CSE, ACSCE Page| 4.20

http://www.geeksforgeeks.org/archives/27697

Module 4: Dynamic Programming

Bellman-Ford algorithm to compute shortest path

Algorithm BellmanFord(wv. cost, dist, n)
// Single-source/all-destinations shortest
// paths with negative edge costs

for i := 1 to n do // Initialize dist.
dist[i] := cost[v, 1];
for k:=2ton—1do
for each u such that u # v and u has
at least one incoming edge do
for each {i.u) in the graph do
if dist[u] > dist[i] + cost|i,u] then
dist|u] := dist[i] + cost[t, ul;

Example 5.16 Figure 5.10 gives a seven-vertex graph, together with the
arrays dist®. k = 1,....6. These arrays were computed using the equation
just given. For instance, di.sf.k[l] = () for all & since 1 is the source node.
Also, dist'[2] = 6,dist'[3] = 5, and dist*[4] = 5, since there are edges from
1 to these nodes. The distance dist'[] is oc for the nodes 5.6, and 7 since
there are no edges to these from 1.
dist?(2) min {dist'[2], min; dist'[i] + cost[i. 2]}

min {6.046.5 — 2,5 + 00,00 + 00,00 + 00,0 + 0} =3

Here the terms 0 + 6,5 — 2,5 + o0, 00 + 00, 20 + 00, and 0o + oo correspond
to a choice of i = 1.3,4.5,6, and 7, respectively. The rest of the entries are

computed in an analogous manner. O
| dist*[1..7]
| k1 2 3 456 7
(D——=(5) 1[0 6 5 5 o o
‘l,f/‘T -)\\j\ 2(0 3 3 5 5 4 =
ot =
P _‘(,3\,2/ ‘ o [3[001 35247
\)/\ A~ |4l01 35045
~ / ~
S\\‘YI_Z B ///3 5001 35043
T4—— (6] 6/0 1 35043
(a) A directed graph (b) dist*

Figure 5.10 Shortest paths with negative edge lengths

Lakshmi Priya P, CSE, ACSCE Page| 4.21

Module 4: Dynamic Programming

Another example

path lengths < 3 path lengths < 4

Figure: Steps of the Bellman Ford algorithm. The numbers with red squares indicate what
changed on each step.

7. Travelling Sales Person problem (T72:5.9),

We have seen how to apply dynamic programming to a subset selection prob-
lem (0/1 knapsack). Now we turn our attention to a permutation problem.
Note that permutation problems usually are much harder to solve than sub-
set problems as there are n! different permutations of n objects whereas
there are only 2" different subsets of n objects (n! > 2"). Let G = (V, E)
be a directed graph with edge costs ¢;;. The variable ¢;; is defined such that
ci; > 0 for all 7 and j and ¢;; = oo if (i,j) € E. Let |V| = n and assume
n > 1. A tour of G is a directed simple cycle that includes every vertex in
V. The cost of a tour is the sum of the cost of the edges on the tour. The
traveling salesperson problem is to find a tour of minimum cost.

The traveling salesperson problem finds application in a variety of situ-
ations. Suppose we have to route a postal van to pick up mail from mail

boxes located at n different sites. An n + 1 vertex graph can be used to
represent the situation. One vertex represents the post office from which the
postal van starts and to which it must return. Edge (i, j) is assigned a cost
equal to the distance from site i to site 7. The route taken by the postal van
is a tour, and we are interested in finding a tour of minimum length.

Lakshmi Priya P, CSE, ACSCE Page| 4.22

Module 4: Dynamic Programming

As a second example, suppose we wish to use a robot arm to tighten
the nuts on some piece of machinery on an assembly line. The arm will
start from its initial position (which is over the first nut to be tightened),
successively move to each of the remaining nuts, and return to the initial
position. The path of the arm is clearly a tour on a graph in which vertices
represent the nuts. A minimum-cost tour will minimize the time needed for
the arm to complete its task (note that only the total arm movement time
is variable; the nut tightening time is independent of the tour).

In the following discussion we shall, without loss of generality, regard
a tour to be a simple path that starts and ends at vertex 1. Every tour
consists of an edge (1,k) for some k€ V — {1} and a path from vertex k to
vertex 1. The path from vertex k to vertex 1 goes through each vertex in
V —{1,k} exactly once. It is easy to see that if the tour is optimal, then the
path from k to 1 must be a shortest k& to 1 path going through all vertices
in V — {1,k}. Hence, the principle of optimality holds. Let g(i,S) be the
length of a shortest path starting at vertex i, going through all vertices in
S. and terminating at vertex 1. The function g(1.V — {1}) is the length of
an optimal salesperson tour. From the principal of optimality it follows that

9(L,V —{1}) = min {ci +g(k,V — {1, k})} (5.20)
Generalizing (5.20), we obtain (for i € 5)
g9(i.8) = r)lg_ig,l{cu +9(5.8 - {ih} (5.21)

Equation 5.20 can be solved for g(1,V — {1}) if we know g(k,V —{1,k})
for all choices of k. The g values can be obtained by using (5.21). Clearly,

gli,) = c¢i1, 1 < i < n. Hence, we can use (5.21) to obtain g(7,S) for all §
of size 1. Then we can obtain g(i, S) for § with |S| = 2, and so on. When
|S| < n — 1, the values of i and S for which g(i, S) is needed are such that
i#£1,1¢S,andi g8,

Example 5.26 Consider the directed graph of Figure 5.21(a). The edge
lengths are given by matrix ¢ of Figure 5.21(b).

(1 e———={2) :
A P Sa
1 N A1]0 10 15 20
| /"s«f 5 0 9 10
v/ O\t 6 13 0 12
(X) '8 8 9 0
(a) a
(b)

Figure 5.21 Directed graph and edge length matrix ¢

Lakshmi Priya P, CSE, ACSCE Page| 4.23

Module 4: Dynamic Programming

Thus ¢g(2,¢) = e = 5,9(3,¢) = ¢31 = 6, and g(4,¢) = ¢4; = 8. Using
(5.21), we obtain

9(2,{3}) = ca3+9(3,¢) = 15 g(2,{4}) = 18
9(3.{2{) = 18 g(3,§4}) = 20
9(4,{2}) = 13 g(4,{3}) = 15

Next, we compute g(i,S) with |S|=2,i# 1,1 ¢S andi ¢ S.

(2, {3,4}) = min {cog +g(3,{4}).c2a +9(4,{3})} = 25
9(3,{2,4}) = min {eso +9(2,{4}). caa + g(4, {2}); = 25
9(4,{2,3}) = min {ca2 +9(2,{3}),caza +9(3,{2})} = 23

Finally, from (5.20) we obtain

9(1.42,3,4}) = min{ci2 +g(2,{3,4}).c13 + 9(3,{2,4}), 14 + 9(4,{2,3}) }
= min {35, 40,43}
= 35
An optimal tour of the graph of Figure 5.21(a) has length 35. A tour
of this length can be constructed if we retain with each g(7, S) the value of
j that minimizes the right-hand side of (5.21). Let J(i,S) be this value.
Then, J(1, {2,3,4}) = 2. Thus the tour starts from 1 and goes to 2. The

remaining tour can be obtained from g(2, {3, 4}). So J(2, {3, 4}) = 4. Thus
the next edge is (2, 4). The remaining tour is for 9(4, {3}). So J(4, {3}) =
3. The optimal tour is 1, 2, 4, 3, 1. O

Let N be the number of g(i, S§)'s that have to be computed before (5.20)
can be used to compute g(1,V — {1}). For each value of | S| there are n — 1
choices for i. The number of distinct sets S of size k not including 1 and

. n-—2
18 (k) Hence

B2 n—2 ’
N = Z(n—- 1) (k) = (n—1)2"*

k=0
An algorithm that proceeds to find an optimal tour by using (5.20) and (5.21)
will require ©(n”2") time as the computation of g(i. S) with |S| = k requires
k — 1 comparisons when solving (5.21). This is better than enumerating all
n! different tours to find the best one. The most serious drawback of this
dynamic programming solution is the space needed, O(n2"). This is too
large even for modest values of n.

Lakshmi Priya P, CSE, ACSCE Page| 4.24

Module 4: Dynamic Programming

8. Reliability design

In this section we look at an example of how to use dynamic programming
to solve a problem with a multiplicative optimization function. The prob-
lem is to design a system that is composed of several devices connected in
series (Figure 5.19). Let »; be the reliability of device D; (that is, r; is the
probability that device 7 will function properly). Then, the reliability of the
entire system is Ilr;. Even if the individual devices are very reliable (the
r;'s are very close to one), the reliability of the system may not be very
good. For example, if n = 10 and r; = .99, 1 < i < 10, then IIr; = .904.
Hence, it is desirable to duplicate devices. Multiple copies of the same de-
vice type are connected in parallel (Figure 5.20) through the use of switching
circuits. The switching circuits determine which devices in any given group
are functioning properly. They then make use of one such device at each
stage.

B S o N e SR g

Figure 5.19 n devices D;, 1 <1 < n, connected in series

stage 1 stage 2 stage 3 stage n
1 | | |
D, = D,
= D 2 D 2 D; z: D =
—’ﬂ : D‘) D3 | —= = n [=
D | = Dn
Dy
S R B

Figure 5.20 Multiple devices connected in parallel in each stage

If stage © contains 1, copies of device D;, then the probability that all
m; have a malfunetion is (1 — ;)™ . Hence the reliability of stage i becomes
1 — (1 —r;)™. Thus, if r; = .99 and m; = 2, the stage reliability becomes
9999, In any practical situation, the stage reliability is a little less than
1—(1—r;)™ because the switching circuits themselves are not fully reliable.
Also, failures of copies of the same device may not be fully independent (e.g.,
if failure is due to design defect). Let us assume that the reliability of stage
i is given by a function ¢;(m;), 1 < n. (It is quite conceivable that ¢;(m;)
may decrease after a certain value of m;.) The reliability of the system of
stages is 11 <i<ndi(m;).

Lakshmi Priya P, CSE, ACSCE Page| 4.25

Module 4: Dynamic Programming

Our problem is to use device duplication to maximize reliability. This
maximization is to be carried out under a cost constraint. Let ¢; be the
cost. of each unit of device i and let ¢ be the maximum allowable cost of
the system being designed. We wish to solve the following maximization
problem:

maximize I1;<j<, ¢i(m;)

subject to Z cimg < ¢
1<t<n

m; > 1 and integer, 1 <1< n

A dynamic programming solution can be obtained in a manner similar to
that used for the knapsack problem. Since, we can assume each ¢; > 0, each
m; must be in the range 1 < m; < u;, where

W = [c—l—q Z"J /c,J

The upper bound u; follows from the observatlon that m; > 1. An optimal
solution 1y, ma, ..., my, is the result of a sequence of decisions, one decision
for each m,. Let f.(.r) represent the maximum value of I1; - <j<i ¢(m ;) subject
to the constraints 3°,;;¢;m; <z and 1 < my < uy, 1 < j < 1. Then, the
value of an optimal solution is f,(¢). The last decision made requires one to
choose m,, from {1,2,3,...,u,}. Once a value for m, has been chosen, the
remaining decisions must be such as to use the remaining funds ¢ — ¢, m, in
an optimal way. The principal of optimality holds and

Clearly, fo(xz) =1 for all z, 0 < z < ¢. Hence, (5.19) can be solved using
an approach similar to that used for the knapsack problem. Let S* consist
of tuples of the form (f,z), where f = f;(z). There is at most one tuple for
each different x that results from a sequence of decisions on 7y, ma, ..., m,.
The dominance rule (f,z,) dominates (fo,x2) iff f; > fo and z; < x5 holds
for this problem too. Hence, dominated tuples can be discarded from S*.

As in the case of the knapsack problem, a complete dynamic programming
algorithm for the reliability problem will use heuristics to reduce the size of
the S"'s. There is no need to retain any tuple (f,z) in S' with z value
greater that ¢ — 3 ;.- ¢; as such a tuple will not leave adequate funds
to complete the system. In addition, we can devise a simple heuristic to
determine the best reliability obtainable by completing a tuple (f,z) in S°.
If this is less than a heuristically determined lower bound on the optimal
system reliability, then (f,z) can be eliminated from S°.

Lakshmi Priya P, CSE, ACSCE Page| 4.26

Module 4: Dynamic Programming

Example 5.25 We are to design a three stage system with device types
Dy, Dy, and D3. The costs are $30, $15, and $20 respectively. The cost of
the system is to be no more than $105. The reliability of each device type is
.9, .8 and .5 respectively. We assume that if stage ¢ has m; devices of type ¢
in parallel, then ¢;(m,) = 1—(1—r;)™. In terms of the notation used earlier,
¢t =30,¢c2=15,¢3=20,¢c=105,r = .9, r3 = .8; 13 = .9,u) =2,ug =3,
and uz = 3.

We use S* to represent the set of all undominated tuples (f,z) that
may result from the various decision sequences for i, ms,...,m;. Hence,
f(z) = fi(x). Beginning with §° = {(1,0)}, we can obtain each S* from §*~!
by trying out all possible values for m; and combining the resulting tuples
together. Using S to represent all tuples obtainable from S5~ by choosing
m; = j, we obtain S| = {(.9, 30)} and S} = {(.9, 30),(.99,60)}. The set
5% = {(.72,45),(.792,75)}; S3= {(.864, 60)}. Note that the tuple (.9504, 90)
which comes from (.99, 60) has been eliminated from S3 as this leaves only
$10. This is not enough to allow mz = 1. The set S7 = {(.8928,75)}. Com-
bining, we get §2 = {(.72,45), (.864, 60), (.8928, 75)} as the tuple (.792, 75) is
dominated by (.864, 60). The set S? = {(.36,65), (.432,80), (.4464,95)}, 53
= {(.54, 85), (.648,100)}, and S; = {(.63,105)}. Combining, we get S? =
{(.36,65), (.432, 80), (.54, 85), (.648,100)}.

The best design has a reliability of .648 and a cost of 100. Tracing back
through the S'’s, we determine that my = 1,my = 2, and mz = 2. O

**k*k

Lakshmi Priya P, CSE, ACSCE Page| 4.27

