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Problem of size n 

Sub Problem of size n/2 Sub Problem of size n/2 

1. General method 

Divide and Conquer is one of the best-known general algorithm design technique. It works 

according to the following general plan: 

 Given a function to compute on ‘n’ inputs the divide-and-conquer strategy suggests 

splitting the inputs into ‘k’ distinct subsets, 1<k<=n, yielding ‘k’ sub problems. 

 These sub problems must be solved, and then a method must be found to combine sub 

solutions into a solution of the whole. 

 If the sub problems are still relatively large, then the divide-and-conquer strategy can 

possibly be reapplied. 

 Often the sub problems resulting from a divide-and-conquer design are of the same 

type as the original problem. For those cases the reapplication of the divide-and- 

conquer principle is naturally expressed by a recursive algorithm. 

 

A typical case with k=2is diagrammatically shown below. 

 

 

 

 

 

 

Control Abstraction for divide and conquer: 

In the above specification, 

 Initially DAndC(P) is invoked, where ‘P’ is the problem to be solved. 

 Small (P) is a Boolean-valued function that determines whether the input size is small 

enough that the answer can be computed without splitting. If this so, the function ‘S’ 

is invoked. Otherwise, the problem P is divided into smaller sub problems. These sub 

problems P1, P2 …Pk are solved by recursive application of DAndC. 

 Combine is a function that determines the solution to P using the solutions to the ‘k’ 

sub problems. 

Solution to the original problem 

Solution to sub problem 2 Solution to sub problem 1 
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2. Recurrence equation for Divide and Conquer 
 

If the size of problem ‘p’ is n and the sizes of the ‘k’ sub problems are n1, n2….nk, 

respectively, then the computing time of divide and conquer is described by the recurrence 

relation 

 

Where, 

 T(n) is the time for divide and conquer method on any input of size n and 

 g(n) is the time to compute answer directly for small inputs. 

 The function f(n) is the time for dividing the problem ‘p’ and combining the solutions 

to sub problems. 

For divide and conquer based algorithms that produce sub problems of the same type as the 

original problem, it is very natural to first describe them by using recursion. 

More generally, an instance of size n can be divided into b instances of size n/b, with a of 

them needing to be solved. (Here, a and b are constants; a>=1 and b > 1.). Assuming that 

size n is a power of b(i.e. n=bk), to simplify our analysis, we get the following recurrence for 

the running time T(n): 

..... (1) 

where f(n) is a function that accounts for the time spent on dividing the problem into smaller 

ones and on combining their solutions. 

The recurrence relation can 

theorem. 

be solved by i) substitution method or by using ii) master 

1. Substitution Method - This method repeatedly makes substitution for each 

occurrence of the function T in the right-hand side until all such occurrences  disappears.

2. Master Theorem - The efficiency analysis of many divide-and-conquer algorithms is 

greatly simplified by the master theorem. It states that, in recurrence equation T(n) = 

aT(n/b) + f (n), If f (n)∈ Θ (nd) where d ≥ 0 then 

 

Analogous results hold for the Ο and Ω notations, too. 

For example, the recurrence for the number of additions A(n) made by the divide-

and- conquer sum-computation algorithm (see above) on inputs of size n = 2k is 

Thus, for this example, a = 2, b = 2, and d = 0; hence, since a >bd, 
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Problems on Substitution method & Master theorem to solve the recurrence relation 
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3. Binary Search 

Problem definition: Let ai, 1 ≤ i ≤ n be a list of elements that are sorted in non-decreasing 

order. The problem is to find whether a given element x is present in the list or not. If x is 

present we have to determine a value j (element’s position) such that aj=x. If x is not in the 

list, then j is set to zero. 

Solution: Let P = (n, ai…al , x) denote an arbitrary instance of search problem where n is the 

number of elements in the list, ai…al is the list of elements and x is the key element to be 

searched for in the given list. Binary search on the list is done as follows: 

Step1: Pick an index q in the middle range [i, l] i.e. q= [(n + 1)/2] and compare x with aq. 

Step 2: if x = aq i.e key element is equal to mid element, the problem is immediately   

solved. 

Step 3: if x <aqin this case x has to be searched for only in the sub-list ai, ai+1, ……, aq- 

Therefore, problem reduces to (q-i, ai…aq-1, x). 

Step 4: if x >aq,x has to be searched for only in the sub-list aq+1, ...,., al . Therefore problem 

reduces to (l-i, aq+1…al, x). 

For the above solution procedure, the Algorithm can be implemented as recursive or non- 

recursive algorithm. 
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Recursive binary search algorithm 
 

 

Iterative binary search: 
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Analysis 

In binary search the basic operation is key comparison. Binary Search can be analyzed with 

the best, worst, and average case number of comparisons. The numbers of comparisons for 

the recursive and iterative versions of Binary Search are the same, if comparison counting is 

relaxed slightly. For Recursive Binary Search, count each pass through the if-then-else block 

as one comparison. For Iterative Binary Search, count each pass through the while block as 

one comparison. Let us find out how many such key comparison does the algorithm make on 

an array of n elements. 

Best case –Θ(1) In the best case, the key is the middle in the array. A constant number of 

comparisons (actually just 1) are required. 

Worst case - Θ(log2 n) In the worst case, the key does not exist in the array at all. Through 

each recursion or iteration of Binary Search, the size of the admissible range is halved. This 

halving can be done ceiling(log2n ) times. Thus,  [ log2 n ] comparisons are required. 

Sometimes, in case of the successful search, it may take maximum number of comparisons. 

] log2 n ]. So worst case complexity of successful binary search is Θ (log2 n). 

Average case - Θ (log2n) To find the average case, take the sum of the product of number of 

comparisons required to find each element and the probability of searching for that element. 

To simplify the analysis, assume that no item which is not in array will be searched for, and 

that the probabilities of searching for each element are uniform. 
 

Space Complexity - The space requirements for the recursive and iterative versions of binary 

search are different. Iterative Binary Search requires only a constant amount of space, while 

Recursive Binary Search requires space proportional to the number of comparisons to maintain 

the recursion stack. 

Advantages: Efficient on very big list, Can be implemented iteratively/recursively. 

Limitations: 

 Interacts poorly with the memory hierarchy 

 Requires sorted list as an input 

 Due to random access of list element, needs arrays instead of linked list. 
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4. Finding the maximum and minimum 

Problem statement: Given a list of n elements, the problem is to find the maximum and 

minimum items. 

StraightMaxMin: A simple and straight forward algorithm to achieve this is given below. 
 

 

Explanation: 

 StraightMaxMin requires 2(n-1) comparisons in the best, average & worst cases. 

 By realizing the comparison of a[i]>max is false, improvement in a algorithm can be 

done. Hence we can replace the contents of the for loop by, 

If(a[i]>Max) then Max = a[i]; Else if (a[i]<min) min=a[i] 

 On the average a[i] is > max half the time. So, the avg. no. of comparison is 3n/2-1. 
 
 

Algorithm based on Divide and Conquer strategy 

Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the problem. Here ‘n’ is the no. of 

elements in the list (a[i],….,a[j]) and we are interested in finding the maximum and minimum 

of the list. If the list has more than 2 elements, P has to be divided into smaller instances. 

For example, we might divide ‘P’ into the 2 instances, 

P1= ( [n/2],a[1], a[n/2]) 

P2= (n-[n/2], a[[n/2]+1],……., a[n]) 

After having divided ‘P’ into 2 smaller sub problems, we can solve them by 

recursively invoking the same divide-and-conquer algorithm. 

Algorithm: 
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of recursive calls of MaxMin is as follows 

 

 

 

Example: 

 
Analysis - Time Complexity 
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Compared with the straight forward method (2n-2) this method saves 25% in comparisons. 

 

Space Complexity 

Compared to the straight forward method, the MaxMin method requires extra stack space for 

i, j, max, min, max1 and min1. Given n elements there will be [log2n] + 1 levels of recursion 

and we need to save seven values for each recursive call. (6 + 1 for return address). 

 

5. Merge Sort 

Merge sort is a perfect example of a successful application of the divide-and conquer 

technique. It sorts a given array A [O ... n - 1] by dividing it into two halves A [0 .. \n/2]-1] 

and A [ ⎝n/2] .. n-1], sorting each of them recursively, and then merging the two smaller 

sorted arrays into a single sorted one. 

 

The merging of two sorted arrays can be done as follows. 

 Two pointers (array indices) are initialized to point to the first elements of the arrays 

being merged. 

 The elements pointed to are compared, and the smaller of them is added to a new 

array being constructed 
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 After that, the index of the smaller element is incremented to point to its immediate 

successor in the array it was copied from. This operation is repeated until one of the 

two given arrays is exhausted, and then the remaining elements of the other array are 

copied to the end of the new array. 

 

 

Example: 

The operation of the algorithm on the 

list 8, 3, 2, 9, 7, 1, 5, 4 is illustrated in 

the figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis 
 

Here the basic operation is key comparison. As merge sort execution does not depend on 

the order of the data, best case and average case runtime are the same as worst case 

runtime. 
 

Worst case: During key comparison, neither of the two arrays becomes empty before the 

other one contains just one element leads to the worst case of merge sort. Assuming for 
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simplicity that total number of elements n is a power of 2, the recurrence relation for the 

number of key comparisons C(n) is 
 

where, Cmerge(n) is the number of key comparisons made during the merging stage. 

Let us analyze Cmerge(n), the number of key comparisons performed during the merging stage. 

At each step, exactly one comparison is made, after which the total number of elements in the 

two arrays still needing to be processed is reduced by 1. In the worst case, neither of the two 

arrays becomes empty before the other one contains just one element (e.g., smaller elements 

may come from the alternating arrays).Therefore, for the worst case, Cmerge(n) = n –1. 

Now, 

 

Solving the recurrence equation using master theorem: 

Here a = 2, b = 2, f (n) = n, d = 1. Therefore 2 = 21, case 2 holds in the master theorem 

Cworst(n) = Θ (nd log n) = Θ (n1 log n) = Θ (n log n)Therefore Cworst(n) = Θ (n log n) 
 
 

Advantages: 

 Number of comparisons performed is nearly optimal. 

 For large n, the number of comparisons made by this algorithm in the average case 

turns out to be about 0.25n less and hence is also in Θ(n log n). 

 Mergesort will never degrade to O (n2) 

 Another advantage of mergesort over quicksort and heapsort is its stability. (A 

sorting algorithm is said to be stable if two objects with equal keys appear in the same 

order in sorted output as they appear in the input array to be sorted.) 

Limitations: 

 The principal shortcoming of mergesort is the linear amount [O(n) ] of extra storage 

the algorithm requires. Though merging can be done in-place, the resulting algorithm 

is quite complicated and of theoretical interest only. 

 

Variations of merge sort 

1. The algorithm can be 

 
implemented bottom up by merging pairs of the array’s 

elements, then merging the sorted pairs, and so on. (If n is not a power of 2, only 

slight bookkeeping complications arise.) This avoids the time and space overhead of 

using a stack to handle recursive calls. 

2. We can divide a list to be sorted in more than two parts, sort each recursively, and 

then merge them together. This scheme, which is particularly useful for sorting files 

residing on secondary memory devices, is called multiway mergesort. 
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6. Quick sort 

Quicksort is the other important sorting algorithm that is based on the divide-and-conquer 

approach. Unlike mergesort, which divides its input elements according to their position in 

the array, quicksort divides (or partitions) them according to their value. 

A partition is an arrangement of the array’s elements so that all the elements to the left of 

some element A[s] are less than or equal to A[s], and all the elements to the right of A[s] are 

greater than or equal to it: 

Obviously, after a partition is achieved, A[s] will be in its final position in the sorted array, 

and we can continue sorting the two subarrays to the left and the right of A[s] independently 

(e.g., by the same method). 

In quick sort, the entire work happens in the division stage, with no work required to combine 

the solutions to the sub problems. 
 

Partitioning 

We start by selecting a pivot—an element with respect to whose value we are going to divide 

the subarray. There are several different strategies for selecting a pivot. We use 

the sophisticated method suggested by C.A.R. Hoare, the prominent British computer 

scientist who invented quicksort. 

Select the subarray’s first element: p = A[l].Now scan the subarray from both ends, 

comparing the subarray’s elements to the pivot. 

 The left-to-right scan, denoted below by index pointer i, starts with the second 

element. Since we want elements smaller than the pivot to be in the left part of the 

subarray, this scan skips over elements that are smaller than the pivot and stops upon 

encountering the first element greater than or equal to the pivot. 

 The right-to-left scan, denoted below by index pointer j, starts with the last element of 

the subarray. Since we want elements larger than the pivot to be in the right part of the 
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ALGORITHM HoarePartition(A[l..r]) 

//Partitions a subarray by Hoare’s algorithm, using the first element as a pivot 

//Input: Subarray of array A[0..n − 1], defined by its left and right indices l and r (l<r) 

//Output: Partition of A[l..r], with the split position returned as this function’s value 

subarray, this scan skips over elements that are larger than the pivot and stops on 

encountering the first element smaller than or equal to the pivot. 

After both scans stop, three situations may arise, depending on whether or not the scanning 

indices have crossed. 

1. If scanning indices i and j have not crossed, i.e., i< j, we simply exchange A[i] and 

A[j ] and resume the scans by incrementing I and decrementing j, respectively: 

2. If the scanning indices have crossed over, i.e., i> j, we will have partitioned the 

subarray after exchanging the pivot with A[j]: 

 
 

3. If the scanning indices stop while pointing to the same element, i.e., i = j, the value 

they are pointing to must be equal to p. Thus, we have the subarray partitioned, with 

the split position s = i = j : 

We can combine this with the case-2 by exchanging the pivot with A[j] whenever i≥j 
 
 

Note that index i can go out of the subarray’s bounds in this pseudocode. 
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Example: Example of quicksort operation. (a) Array’s transformations with pivots shown in 

bold. (b) Tree of recursive calls to Quicksort with input values land r of subarray bounds and 

split position s of a partition obtained. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis 

Best Case -Here the basic operation is key comparison. Number of key comparisons made 

before a partition is achieved is n + 1 if the scanning indices cross over and n if they coincide. 

If all the splits happen in the middle of corresponding subarrays, we will have the best case. 

The number of key comparisons in the best case satisfies the recurrence, 

According to the Master Theorem, Cbest(n) ∈Θ(n log2 n); solving it exactly for n = 2k yields 

Cbest(n) = n log2 n. 

Worst Case – In the worst case, all the splits will be skewed to the extreme: one of the two 

subarrays will be empty, and the size of the other will be just 1 less than the size of the 

subarray being partitioned. This unfortunate situation will happen, in particular, for increasing 

arrays. Indeed, if A[0..n − 1] is a strictly increasing array and we use A[0] as the pivot, the 
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left-to-right scan will stop on A[1] while the right-to-left scan will go all the way to reach 

A[0], indicating the split  at  position 0:So, after  making n  +  1  comparisons  to  get  to  this 

partition and exchanging the pivot A[0] with itself, the algorithm will be left with the strictly 

increasing array A[1..n − 1] to sort. This sorting of strictly increasing arrays of diminishing 

sizes will continue until the last one A[n−2.. n−1] has been processed. The total number of 

key comparisons made will be equal to 
 

Average Case - Let Cavg(n) be the average number of key comparisons made by quicksort on 

a randomly ordered array of size n. A partition can happen in any position s (0 ≤ s ≤ n−1) after 

n+1comparisons  are  made  to  achieve  the  partition. After  the  partition,  the  left  and right 

subarrays will have s and n − 1− s elements, respectively. Assuming that the partition split can 

happen in each position s with the same probability 1/n, we get the following recurrence 

relation: 

 

 

 

Its solution, which is much trickier than the worst- and best-case analyses, turns out to be 
 

Thus, on the average, quicksort makes only 39% more comparisons than in the best case. 

Moreover,  its  innermost  loop  is  so  efficient  that  it  usually runs  faster  than mergesort on 

randomly ordered arrays of nontrivial sizes. This certainly justifies the name given to the 

algorithm by its inventor.

Variations: Because of quicksort’s importance, there have been persistent efforts over the 

years to refine the basic algorithm. Among several improvements discovered by researchers 

are: 

 Better pivot selection methods such as randomized quicksort that uses a random 

element or the median-of-three method that uses the median of the leftmost, 

rightmost, and the middle element of the array 

 Switching to insertion sort on very small subarrays (between 5 and 15 elements for 

most computer systems) or not sorting small subarrays at all and finishing the 

algorithm with insertion sort applied to the entire nearly sorted array 

 Modifications of the partitioning algorithm such as the three-way partition into 

segments smaller than, equal to, and larger than the pivot 

Limitations: 1. It is not stable. 2. It requires a stack to store parameters of subarrays that are 

yet to be sorted. 3. While Performance on randomly ordered arrays is known to be sensitive 

not only to the implementation details of the algorithm but also to both computer architecture 

and data type. 
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7. Stassen’s Matrix multiplication 

Direct Method: Suppose we want to multiply two n x n matrices, A and B. Their product, 

C=AB, will be an n by n matrix and will therefore have n2 elements. The number of 

multiplications involved in producing the product in this way is Θ(n3) 
 

 

Divide and Conquer method: Using the divide and conquer matrix achieved through 

multiplication is multiplying the submatrices recursively.
 

 
 

In the above method, we do 8 multiplications for matrices of size n/2 x n/2 and 4 additions. 

Addition of two matrices takes O(n2) time. So the time complexity can be written as T(n) = 

8T(n/2) + O(n2) which happen to be O(n3); same as the direct method 
 

Divide and Conquer through Strassen’s Method: By using divide-and-conquer approach 

proposed by Strassen in 1969, we can reduce the number of multiplications. 

Multiplication of 2×2 matrices: The principal insight of the algorithm lies in the discovery 

that we can find the product C of two 2 × 2 matrices A and B with just 7 multiplications as 

opposed to the eight required by the brute-force algorithm. This is accomplished by using the 

following formulas: 

 

where 

 

Thus, to multiply two 2×2 matrices, Strassen’s algorithm makes seven multiplications and 18 

additions/subtractions, whereas the brute-force algorithm requires eight multiplications and 

four additions. 
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Multiplication of n×n matrices: Let A and B be two n × n matrices where n is a power of 

2. (If n is not a power of 2, matrices can be padded with rows and columns of zeros.) We can 

divide A,B, and their product C into four n/2 × n/2 submatrices each as follows: 
 

It is not difficult to verify that one can treat these submatrices as numbers to get the correct 

product. For example, C00 can be computed as M1 + M4– M5 + M7 where M1, M4, M5, and M7 

are found by Strassen’s formulas, with the numbers replaced by the corresponding submatrices. 

If the seven products of n/2 × n/2 matrices are computed recursively by the same method, we 

have Strassen’s algorithm for matrix multiplication. 

Analysis( from text book T1: Levtin et al )

Here the basic operation is multiplication. If M(n) is the number of multiplications made by 

Strassen’s algorithm in multiplying two n × n matrices (where n is a power of 2), we get the 

following recurrence relation for it: 
 

 

This implies M(n) = Θ(n2.807)which is smaller than n3 required by the brute-force algorithm. 
 

Analysis( From T2: Horowitz et al ) 

Suppose if we consider both multiplication and addition. The resulting recurrence ration 

T(n) is 

 
 

Note: No. of addition/ subtraction 

Operations18(n/2)2= an2 
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8. Advantages and Disadvantages of Divide And Conquer 

Advantages 

 Parallelism: Divide and conquer algorithms tend to have a lot of inherent parallelism. 

Once the division phase is complete, the sub-problems are usually independent and 

can therefore be solved in parallel. This approach typically generates more enough 

concurrency to keep the machine busy and can be adapted for execution in multi-

processor machines. 

 Cache Performance: divide and conquer algorithms also tend to have good cache 

performance. Once a sub-problem fits in the cache, the standard recursive solution 

reuses the cached data until the sub-problem has been completely solved. 

 It allows solving difficult and often impossible looking problems like the Tower of 

Hanoi. It reduces the degree of difficulty since it divides the problem into sub 

problems that are easily solvable, and usually runs faster than other algorithms would. 

 Another advantage to this paradigm is that it often plays a part in finding other 

efficient algorithms, and in fact it was the central role in finding the quick sort and 

merge sort algorithms. 

Disadvantages 

 One of the most common issues with this sort of algorithm is the fact that the 

recursion is slow, which in some cases outweighs any advantages of this divide and 

conquer process. 

 Another concern with it is the fact that sometimes it can become more complicated 

than a basic iterative approach, especially in cases with a large n. In other words, if 

someone wanted to add a large amount of numbers together, if they just create a 

simple loop to add them together, it would turn out to be a much simpler approach 

than it would be to divide the numbers up into two groups, add these group recursively, 

and then add the sums of the two groups together. 

 Another downfall is that sometimes once the problem is broken down into sub 

problems, the same sub problem can occur many times. It is solved again. In cases 

like these, it can often be easier to identify and save the solution to the repeated sub 

problem, which is commonly referred to as memorization. 

9. Decrease and Conquer Approach 
 

Decrease-and-conquer is a general algorithm design technique, based on exploiting a 

relationship between a solution to a given instance of a problem and a solution to a smaller 

instance of the same problem. Once such a relationship is established, it can be exploited 

either top down (usually recursively) or bottom up. There are three major variations of 

decrease-and-conquer: 

 decrease-by-a-constant, most often by one (e.g., insertion sort) 

 decrease-by-a-constant-factor, most often by the factor of two (e.g., binary search) 

 variable-size-decrease (e.g., Euclid’s algorithm) 
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In the decrease-by-a-constant variation, the size of an instance is reduced by the same 

constant on each iteration of the algorithm. Typically, this constant is equal to one although 

other constant size reductions do happen occasionally. 

 
Figure: Decrease-(by one)-and-conquer 

technique 

Example: an = an-1×a 

 

 

 

 

 

 

 

 

 

 

The decrease-by-a-constant-factor technique suggests reducing a problem instance by the 

same constant factor on each iteration of the algorithm. In most applications, this constant factor 

is equal to two.

 

 

Figure: Decrease-(by half)-and-conquer 

technique. 

 

 
Example: 

 

 

 

Finally, in the variable-size-decrease variety of decrease-and-conquer, the size-reduction 

pattern varies from one iteration of an algorithm to another. 

Example: Euclid’s algorithm for computing the greatest common divisor. It is based on the 

formula. gcd(m, n) = gcd(n, m mod n). 

Though the value of the second argument is always smaller on the right-hand side than on 

the left-hand side, it decreases neither by a constant nor by a constant factor. 
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10. Topological Sort 

Background: A directed graph, or digraph for short, is a graph with directions specified for 

all its edges. The adjacency matrix and adjacency lists are the two principal means of 

representing a diagraph. There are only two notable differences between undirected  and 

directed graphs in representing them: (1) the adjacency matrix of a directed graph does not have 

to be symmetric; (2) an edge in a directed graph has just one (not two) corresponding nodes in 

the digraph’s adjacency list.

 

Depth-first search and breadth-first search are principal traversal algorithms for traversing 

digraphs as well, but the structure of corresponding forests can be more complex than for 

undirected graphs. Thus, even for the simple example of Figure, the depth-first search forest 

(Figure b) exhibits all four types of edges possible in a DFS forest of a directed graph: 

 tree edges (ab, bc, de), 

 back edges (ba) from vertices to their ancestors, 

 forward edges (ac) from vertices to their descendants in the tree other than their 

children, and 

 cross edges (dc), which are none of the aforementioned types. 

 
Note that a back edge in a DFS forest of a directed graph can connect a vertex to its parent. 

Whether or not it is the case, the presence of a back edge indicates that the digraph has a 

directed cycle. A directed cycle in a digraph is a sequence of three or more of its vertices that 

starts and ends with the same vertex and in which every vertex is connected to its immediate 

predecessor by an edge directed from the predecessor to the successor. For example, a, b, a 

is a directed cycle in the digraph in Figure given above. Conversely, if a DFS forest of 

a digraph has no backedges, the digraph is a dag, an acronym for directed acyclic graph. 

 

Motivation  for  topological  sorting:  Consider  a  set  of  five required 

courses {C1, C2, C3, C4,C5} a part-time student has to take in some 

degree program. The courses can be taken in any order as long as the 

following course prerequisites are met: C1 andC2 have no prerequisites, 

C3 requires C1 and C2, C4 requires C3, and C5 requiresC3 and C4. The 

student can take only one course per term. In which order should the student take the 
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courses? The situation can be modeled by a digraph in which vertices represent courses and 

directed edges indicate prerequisite requirements. 

In terms of this digraph, the question is whether we can list its vertices in such an order that 

for every edge in the graph, the vertex where the edge starts is listed before the vertex where 

the edge ends. In other words, can you find such an ordering of this digraph’s vertices? This 

problem is called topological sorting. 

Topological Sort: For topological sorting to be possible, a digraph in question must be a 

DAG. i.e., if a digraph has no directed cycles, the topological sorting problem for it has a 

solution. 

There are two efficient algorithms that both verify whether a digraph is a dag and, if it is, 

produce an ordering of vertices that solves the topological sorting problem. The first one is 

based on depth-first search; the second is based on a direct application of the decrease-by-one 

technique. 

Topological Sorting based on DFS 

Method 

1. Perform a DFS traversal and note the order in which vertices become dead-ends 

2. Reversing this order yields a solution to the topological sorting problem, provided, of 

course, no back edge has been encountered during the traversal. If a back edge has 

been encountered, the digraph is not a DAG, and topological sorting of its vertices is 

impossible. 

Illustration 

a) Digraph for which the topological sorting problem needs to be solved. 

b) DFS traversal stack with the subscript numbers indicating the popping off order. 

c) Solution to the problem. Here we have drawn the edges of the digraph, and they all 

point from left to right as the problem’s statement requires. It is a convenient way to 

check visually the correctness of a solution to an instance of the topological sorting 

problem. 

Topological Sorting using decrease-and-conquer technique 

Method: The algorithm is based on a direct implementation of the decrease-(by one)-and- 

conquer technique: 
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1. Repeatedly, identify in a remaining digraph a source, which is a vertex with no 

incoming edges, and delete it along with all the edges outgoing from it. (If there are 

several sources, break the tie arbitrarily. If there are none, stop because the problem 

cannot be solved.) 

2. The order in which the vertices are deleted yields a solution to the topological sorting 

problem. 

Illustration - Illustration of the source-removal algorithm for the topological sorting problem 

is given here. On each iteration, a vertex with no incoming edges is deleted from the digraph. 
 

Note: The solution obtained by the source-removal algorithm is different from the one 

obtained by the DFS-based algorithm. Both of them are correct, of course; the topological 

sorting problem may have several alternative solutions. 

Applications of Topological Sorting 

 Instruction scheduling in program compilation 

 Cell evaluation ordering in spreadsheet formulas, 

 Resolving symbol dependencies in linkers. 

 

*** 


