
Module-2 :Divide and Conquer

Contents

1. General method

2. Recurrence equation

3. Algorithm: Binary search

4. Algorithm: Finding the maximum and minimum

5. Algorithm: Merge sort

6. Algorithm: Quick sort

7. Algorithm: Strassen’s matrix multiplication

8. Advantages and Disadvantages

9. Decrease and Conquer Approach

10. Algorithm: Topological Sort

Lakshmi Priya P, CSE, ACSCE Page|.2

Module 2: Divide and Conquer

Problem of size n

Sub Problem of size n/2 Sub Problem of size n/2

1. General method

Divide and Conquer is one of the best-known general algorithm design technique. It works

according to the following general plan:

 Given a function to compute on ‘n’ inputs the divide-and-conquer strategy suggests

splitting the inputs into ‘k’ distinct subsets, 1<k<=n, yielding ‘k’ sub problems.

 These sub problems must be solved, and then a method must be found to combine sub

solutions into a solution of the whole.

 If the sub problems are still relatively large, then the divide-and-conquer strategy can

possibly be reapplied.

 Often the sub problems resulting from a divide-and-conquer design are of the same

type as the original problem. For those cases the reapplication of the divide-and-

conquer principle is naturally expressed by a recursive algorithm.

A typical case with k=2is diagrammatically shown below.

Control Abstraction for divide and conquer:

In the above specification,

 Initially DAndC(P) is invoked, where ‘P’ is the problem to be solved.

 Small (P) is a Boolean-valued function that determines whether the input size is small

enough that the answer can be computed without splitting. If this so, the function ‘S’

is invoked. Otherwise, the problem P is divided into smaller sub problems. These sub

problems P1, P2 …Pk are solved by recursive application of DAndC.

 Combine is a function that determines the solution to P using the solutions to the ‘k’

sub problems.

Solution to the original problem

Solution to sub problem 2 Solution to sub problem 1

Lakshmi Priya P, CSE, ACSCE Page|.3

Module 2: Divide and Conquer

2. Recurrence equation for Divide and Conquer

If the size of problem ‘p’ is n and the sizes of the ‘k’ sub problems are n1, n2….nk,

respectively, then the computing time of divide and conquer is described by the recurrence

relation

Where,

 T(n) is the time for divide and conquer method on any input of size n and

 g(n) is the time to compute answer directly for small inputs.

 The function f(n) is the time for dividing the problem ‘p’ and combining the solutions

to sub problems.

For divide and conquer based algorithms that produce sub problems of the same type as the

original problem, it is very natural to first describe them by using recursion.

More generally, an instance of size n can be divided into b instances of size n/b, with a of

them needing to be solved. (Here, a and b are constants; a>=1 and b > 1.). Assuming that

size n is a power of b(i.e. n=bk), to simplify our analysis, we get the following recurrence for

the running time T(n):

..... (1)

where f(n) is a function that accounts for the time spent on dividing the problem into smaller

ones and on combining their solutions.

The recurrence relation can

theorem.

be solved by i) substitution method or by using ii) master

1. Substitution Method - This method repeatedly makes substitution for each

occurrence of the function T in the right-hand side until all such occurrences disappears.

2. Master Theorem - The efficiency analysis of many divide-and-conquer algorithms is

greatly simplified by the master theorem. It states that, in recurrence equation T(n) =

aT(n/b) + f (n), If f (n)∈ Θ (nd) where d ≥ 0 then

Analogous results hold for the Ο and Ω notations, too.

For example, the recurrence for the number of additions A(n) made by the divide-

and- conquer sum-computation algorithm (see above) on inputs of size n = 2k is

Thus, for this example, a = 2, b = 2, and d = 0; hence, since a >bd,

Lakshmi Priya P, CSE, ACSCE Page|.4

Module 2: Divide and Conquer

Problems on Substitution method & Master theorem to solve the recurrence relation

Lakshmi Priya P, CSE, ACSCE Page|.5

Module 2: Divide and Conquer

Lakshmi Priya P, CSE, ACSCE Page|.6

Module 2: Divide and Conquer

Lakshmi Priya P, CSE, ACSCE Page|.7

Module 2: Divide and Conquer

Lakshmi Priya P, CSE, ACSCE Page|.8

Module 2: Divide and Conquer

3. Binary Search

Problem definition: Let ai, 1 ≤ i ≤ n be a list of elements that are sorted in non-decreasing

order. The problem is to find whether a given element x is present in the list or not. If x is

present we have to determine a value j (element’s position) such that aj=x. If x is not in the

list, then j is set to zero.

Solution: Let P = (n, ai…al , x) denote an arbitrary instance of search problem where n is the

number of elements in the list, ai…al is the list of elements and x is the key element to be

searched for in the given list. Binary search on the list is done as follows:

Step1: Pick an index q in the middle range [i, l] i.e. q= [(n + 1)/2] and compare x with aq.

Step 2: if x = aq i.e key element is equal to mid element, the problem is immediately

solved.

Step 3: if x <aqin this case x has to be searched for only in the sub-list ai, ai+1, ……, aq-

Therefore, problem reduces to (q-i, ai…aq-1, x).

Step 4: if x >aq,x has to be searched for only in the sub-list aq+1, ...,., al . Therefore problem

reduces to (l-i, aq+1…al, x).

For the above solution procedure, the Algorithm can be implemented as recursive or non-

recursive algorithm.

Lakshmi Priya P, CSE, ACSCE Page|.9

Module 2: Divide and Conquer

Recursive binary search algorithm

Iterative binary search:

Lakshmi Priya P, CSE, ACSCE Page|.10

Module 2: Divide and Conquer

Analysis

In binary search the basic operation is key comparison. Binary Search can be analyzed with

the best, worst, and average case number of comparisons. The numbers of comparisons for

the recursive and iterative versions of Binary Search are the same, if comparison counting is

relaxed slightly. For Recursive Binary Search, count each pass through the if-then-else block

as one comparison. For Iterative Binary Search, count each pass through the while block as

one comparison. Let us find out how many such key comparison does the algorithm make on

an array of n elements.

Best case –Θ(1) In the best case, the key is the middle in the array. A constant number of

comparisons (actually just 1) are required.

Worst case - Θ(log2 n) In the worst case, the key does not exist in the array at all. Through

each recursion or iteration of Binary Search, the size of the admissible range is halved. This

halving can be done ceiling(log2n) times. Thus, [log2 n] comparisons are required.

Sometimes, in case of the successful search, it may take maximum number of comparisons.

] log2 n]. So worst case complexity of successful binary search is Θ (log2 n).

Average case - Θ (log2n) To find the average case, take the sum of the product of number of

comparisons required to find each element and the probability of searching for that element.

To simplify the analysis, assume that no item which is not in array will be searched for, and

that the probabilities of searching for each element are uniform.

Space Complexity - The space requirements for the recursive and iterative versions of binary

search are different. Iterative Binary Search requires only a constant amount of space, while

Recursive Binary Search requires space proportional to the number of comparisons to maintain

the recursion stack.

Advantages: Efficient on very big list, Can be implemented iteratively/recursively.

Limitations:

 Interacts poorly with the memory hierarchy

 Requires sorted list as an input

 Due to random access of list element, needs arrays instead of linked list.

Lakshmi Priya P, CSE, ACSCE Page|.11

Module 2: Divide and Conquer

4. Finding the maximum and minimum

Problem statement: Given a list of n elements, the problem is to find the maximum and

minimum items.

StraightMaxMin: A simple and straight forward algorithm to achieve this is given below.

Explanation:

 StraightMaxMin requires 2(n-1) comparisons in the best, average & worst cases.

 By realizing the comparison of a[i]>max is false, improvement in a algorithm can be

done. Hence we can replace the contents of the for loop by,

If(a[i]>Max) then Max = a[i]; Else if (a[i]<min) min=a[i]

 On the average a[i] is > max half the time. So, the avg. no. of comparison is 3n/2-1.

Algorithm based on Divide and Conquer strategy

Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the problem. Here ‘n’ is the no. of

elements in the list (a[i],….,a[j]) and we are interested in finding the maximum and minimum

of the list. If the list has more than 2 elements, P has to be divided into smaller instances.

For example, we might divide ‘P’ into the 2 instances,

P1= ([n/2],a[1], a[n/2])

P2= (n-[n/2], a[[n/2]+1],……., a[n])

After having divided ‘P’ into 2 smaller sub problems, we can solve them by

recursively invoking the same divide-and-conquer algorithm.

Algorithm:

Lakshmi Priya P, CSE, ACSCE Page|.12

Module 2: Divide and Conquer

of recursive calls of MaxMin is as follows

Example:

Analysis - Time Complexity

Lakshmi Priya P, CSE, ACSCE Page|.13

Module 2: Divide and Conquer

Compared with the straight forward method (2n-2) this method saves 25% in comparisons.

Space Complexity

Compared to the straight forward method, the MaxMin method requires extra stack space for

i, j, max, min, max1 and min1. Given n elements there will be [log2n] + 1 levels of recursion

and we need to save seven values for each recursive call. (6 + 1 for return address).

5. Merge Sort

Merge sort is a perfect example of a successful application of the divide-and conquer

technique. It sorts a given array A [O ... n - 1] by dividing it into two halves A [0 .. \n/2]-1]

and A [⎝n/2] .. n-1], sorting each of them recursively, and then merging the two smaller

sorted arrays into a single sorted one.

The merging of two sorted arrays can be done as follows.

 Two pointers (array indices) are initialized to point to the first elements of the arrays

being merged.

 The elements pointed to are compared, and the smaller of them is added to a new

array being constructed

Lakshmi Priya P, CSE, ACSCE Page|.14

Module 2: Divide and Conquer

 After that, the index of the smaller element is incremented to point to its immediate

successor in the array it was copied from. This operation is repeated until one of the

two given arrays is exhausted, and then the remaining elements of the other array are

copied to the end of the new array.

Example:

The operation of the algorithm on the

list 8, 3, 2, 9, 7, 1, 5, 4 is illustrated in

the figure

Analysis

Here the basic operation is key comparison. As merge sort execution does not depend on

the order of the data, best case and average case runtime are the same as worst case

runtime.

Worst case: During key comparison, neither of the two arrays becomes empty before the

other one contains just one element leads to the worst case of merge sort. Assuming for

Lakshmi Priya P, CSE, ACSCE Page|.15

Module 2: Divide and Conquer

simplicity that total number of elements n is a power of 2, the recurrence relation for the

number of key comparisons C(n) is

where, Cmerge(n) is the number of key comparisons made during the merging stage.

Let us analyze Cmerge(n), the number of key comparisons performed during the merging stage.

At each step, exactly one comparison is made, after which the total number of elements in the

two arrays still needing to be processed is reduced by 1. In the worst case, neither of the two

arrays becomes empty before the other one contains just one element (e.g., smaller elements

may come from the alternating arrays).Therefore, for the worst case, Cmerge(n) = n –1.

Now,

Solving the recurrence equation using master theorem:

Here a = 2, b = 2, f (n) = n, d = 1. Therefore 2 = 21, case 2 holds in the master theorem

Cworst(n) = Θ (nd log n) = Θ (n1 log n) = Θ (n log n)Therefore Cworst(n) = Θ (n log n)

Advantages:

 Number of comparisons performed is nearly optimal.

 For large n, the number of comparisons made by this algorithm in the average case

turns out to be about 0.25n less and hence is also in Θ(n log n).

 Mergesort will never degrade to O (n2)

 Another advantage of mergesort over quicksort and heapsort is its stability. (A

sorting algorithm is said to be stable if two objects with equal keys appear in the same

order in sorted output as they appear in the input array to be sorted.)

Limitations:

 The principal shortcoming of mergesort is the linear amount [O(n)] of extra storage

the algorithm requires. Though merging can be done in-place, the resulting algorithm

is quite complicated and of theoretical interest only.

Variations of merge sort

1. The algorithm can be

implemented bottom up by merging pairs of the array’s

elements, then merging the sorted pairs, and so on. (If n is not a power of 2, only

slight bookkeeping complications arise.) This avoids the time and space overhead of

using a stack to handle recursive calls.

2. We can divide a list to be sorted in more than two parts, sort each recursively, and

then merge them together. This scheme, which is particularly useful for sorting files

residing on secondary memory devices, is called multiway mergesort.

Lakshmi Priya P, CSE, ACSCE Page|.16

Module 2: Divide and Conquer

6. Quick sort

Quicksort is the other important sorting algorithm that is based on the divide-and-conquer

approach. Unlike mergesort, which divides its input elements according to their position in

the array, quicksort divides (or partitions) them according to their value.

A partition is an arrangement of the array’s elements so that all the elements to the left of

some element A[s] are less than or equal to A[s], and all the elements to the right of A[s] are

greater than or equal to it:

Obviously, after a partition is achieved, A[s] will be in its final position in the sorted array,

and we can continue sorting the two subarrays to the left and the right of A[s] independently

(e.g., by the same method).

In quick sort, the entire work happens in the division stage, with no work required to combine

the solutions to the sub problems.

Partitioning

We start by selecting a pivot—an element with respect to whose value we are going to divide

the subarray. There are several different strategies for selecting a pivot. We use

the sophisticated method suggested by C.A.R. Hoare, the prominent British computer

scientist who invented quicksort.

Select the subarray’s first element: p = A[l].Now scan the subarray from both ends,

comparing the subarray’s elements to the pivot.

 The left-to-right scan, denoted below by index pointer i, starts with the second

element. Since we want elements smaller than the pivot to be in the left part of the

subarray, this scan skips over elements that are smaller than the pivot and stops upon

encountering the first element greater than or equal to the pivot.

 The right-to-left scan, denoted below by index pointer j, starts with the last element of

the subarray. Since we want elements larger than the pivot to be in the right part of the

Lakshmi Priya P, CSE, ACSCE Page|.17

Module 2: Divide and Conquer

ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare’s algorithm, using the first element as a pivot

//Input: Subarray of array A[0..n − 1], defined by its left and right indices l and r (l<r)

//Output: Partition of A[l..r], with the split position returned as this function’s value

subarray, this scan skips over elements that are larger than the pivot and stops on

encountering the first element smaller than or equal to the pivot.

After both scans stop, three situations may arise, depending on whether or not the scanning

indices have crossed.

1. If scanning indices i and j have not crossed, i.e., i< j, we simply exchange A[i] and

A[j] and resume the scans by incrementing I and decrementing j, respectively:

2. If the scanning indices have crossed over, i.e., i> j, we will have partitioned the

subarray after exchanging the pivot with A[j]:

3. If the scanning indices stop while pointing to the same element, i.e., i = j, the value

they are pointing to must be equal to p. Thus, we have the subarray partitioned, with

the split position s = i = j :

We can combine this with the case-2 by exchanging the pivot with A[j] whenever i≥j

Note that index i can go out of the subarray’s bounds in this pseudocode.

Lakshmi Priya P, CSE, ACSCE Page|.18

Module 2: Divide and Conquer

Example: Example of quicksort operation. (a) Array’s transformations with pivots shown in

bold. (b) Tree of recursive calls to Quicksort with input values land r of subarray bounds and

split position s of a partition obtained.

Analysis

Best Case -Here the basic operation is key comparison. Number of key comparisons made

before a partition is achieved is n + 1 if the scanning indices cross over and n if they coincide.

If all the splits happen in the middle of corresponding subarrays, we will have the best case.

The number of key comparisons in the best case satisfies the recurrence,

According to the Master Theorem, Cbest(n) ∈Θ(n log2 n); solving it exactly for n = 2k yields

Cbest(n) = n log2 n.

Worst Case – In the worst case, all the splits will be skewed to the extreme: one of the two

subarrays will be empty, and the size of the other will be just 1 less than the size of the

subarray being partitioned. This unfortunate situation will happen, in particular, for increasing

arrays. Indeed, if A[0..n − 1] is a strictly increasing array and we use A[0] as the pivot, the

Lakshmi Priya P, CSE, ACSCE Page|.19

Module 2: Divide and Conquer

left-to-right scan will stop on A[1] while the right-to-left scan will go all the way to reach

A[0], indicating the split at position 0:So, after making n + 1 comparisons to get to this

partition and exchanging the pivot A[0] with itself, the algorithm will be left with the strictly

increasing array A[1..n − 1] to sort. This sorting of strictly increasing arrays of diminishing

sizes will continue until the last one A[n−2.. n−1] has been processed. The total number of

key comparisons made will be equal to

Average Case - Let Cavg(n) be the average number of key comparisons made by quicksort on

a randomly ordered array of size n. A partition can happen in any position s (0 ≤ s ≤ n−1) after

n+1comparisons are made to achieve the partition. After the partition, the left and right

subarrays will have s and n − 1− s elements, respectively. Assuming that the partition split can

happen in each position s with the same probability 1/n, we get the following recurrence

relation:

Its solution, which is much trickier than the worst- and best-case analyses, turns out to be

Thus, on the average, quicksort makes only 39% more comparisons than in the best case.

Moreover, its innermost loop is so efficient that it usually runs faster than mergesort on

randomly ordered arrays of nontrivial sizes. This certainly justifies the name given to the

algorithm by its inventor.

Variations: Because of quicksort’s importance, there have been persistent efforts over the

years to refine the basic algorithm. Among several improvements discovered by researchers

are:

 Better pivot selection methods such as randomized quicksort that uses a random

element or the median-of-three method that uses the median of the leftmost,

rightmost, and the middle element of the array

 Switching to insertion sort on very small subarrays (between 5 and 15 elements for

most computer systems) or not sorting small subarrays at all and finishing the

algorithm with insertion sort applied to the entire nearly sorted array

 Modifications of the partitioning algorithm such as the three-way partition into

segments smaller than, equal to, and larger than the pivot

Limitations: 1. It is not stable. 2. It requires a stack to store parameters of subarrays that are

yet to be sorted. 3. While Performance on randomly ordered arrays is known to be sensitive

not only to the implementation details of the algorithm but also to both computer architecture

and data type.

Lakshmi Priya P, CSE, ACSCE Page|.20

Module 2: Divide and Conquer

n

7. Stassen’s Matrix multiplication

Direct Method: Suppose we want to multiply two n x n matrices, A and B. Their product,

C=AB, will be an n by n matrix and will therefore have n2 elements. The number of

multiplications involved in producing the product in this way is Θ(n3)

Divide and Conquer method: Using the divide and conquer matrix achieved through

multiplication is multiplying the submatrices recursively.

In the above method, we do 8 multiplications for matrices of size n/2 x n/2 and 4 additions.

Addition of two matrices takes O(n2) time. So the time complexity can be written as T(n) =

8T(n/2) + O(n2) which happen to be O(n3); same as the direct method

Divide and Conquer through Strassen’s Method: By using divide-and-conquer approach

proposed by Strassen in 1969, we can reduce the number of multiplications.

Multiplication of 2×2 matrices: The principal insight of the algorithm lies in the discovery

that we can find the product C of two 2 × 2 matrices A and B with just 7 multiplications as

opposed to the eight required by the brute-force algorithm. This is accomplished by using the

following formulas:

where

Thus, to multiply two 2×2 matrices, Strassen’s algorithm makes seven multiplications and 18

additions/subtractions, whereas the brute-force algorithm requires eight multiplications and

four additions.

Lakshmi Priya P, CSE, ACSCE Page|.21

Module 2: Divide and Conquer

Multiplication of n×n matrices: Let A and B be two n × n matrices where n is a power of

2. (If n is not a power of 2, matrices can be padded with rows and columns of zeros.) We can

divide A,B, and their product C into four n/2 × n/2 submatrices each as follows:

It is not difficult to verify that one can treat these submatrices as numbers to get the correct

product. For example, C00 can be computed as M1 + M4– M5 + M7 where M1, M4, M5, and M7

are found by Strassen’s formulas, with the numbers replaced by the corresponding submatrices.

If the seven products of n/2 × n/2 matrices are computed recursively by the same method, we

have Strassen’s algorithm for matrix multiplication.

Analysis(from text book T1: Levtin et al)

Here the basic operation is multiplication. If M(n) is the number of multiplications made by

Strassen’s algorithm in multiplying two n × n matrices (where n is a power of 2), we get the

following recurrence relation for it:

This implies M(n) = Θ(n2.807)which is smaller than n3 required by the brute-force algorithm.

Analysis(From T2: Horowitz et al)

Suppose if we consider both multiplication and addition. The resulting recurrence ration

T(n) is

Note: No. of addition/ subtraction

Operations18(n/2)2= an2

Lakshmi Priya P, CSE, ACSCE Page|.22

Module 2: Divide and Conquer

8. Advantages and Disadvantages of Divide And Conquer

Advantages

 Parallelism: Divide and conquer algorithms tend to have a lot of inherent parallelism.

Once the division phase is complete, the sub-problems are usually independent and

can therefore be solved in parallel. This approach typically generates more enough

concurrency to keep the machine busy and can be adapted for execution in multi-

processor machines.

 Cache Performance: divide and conquer algorithms also tend to have good cache

performance. Once a sub-problem fits in the cache, the standard recursive solution

reuses the cached data until the sub-problem has been completely solved.

 It allows solving difficult and often impossible looking problems like the Tower of

Hanoi. It reduces the degree of difficulty since it divides the problem into sub

problems that are easily solvable, and usually runs faster than other algorithms would.

 Another advantage to this paradigm is that it often plays a part in finding other

efficient algorithms, and in fact it was the central role in finding the quick sort and

merge sort algorithms.

Disadvantages

 One of the most common issues with this sort of algorithm is the fact that the

recursion is slow, which in some cases outweighs any advantages of this divide and

conquer process.

 Another concern with it is the fact that sometimes it can become more complicated

than a basic iterative approach, especially in cases with a large n. In other words, if

someone wanted to add a large amount of numbers together, if they just create a

simple loop to add them together, it would turn out to be a much simpler approach

than it would be to divide the numbers up into two groups, add these group recursively,

and then add the sums of the two groups together.

 Another downfall is that sometimes once the problem is broken down into sub

problems, the same sub problem can occur many times. It is solved again. In cases

like these, it can often be easier to identify and save the solution to the repeated sub

problem, which is commonly referred to as memorization.

9. Decrease and Conquer Approach

Decrease-and-conquer is a general algorithm design technique, based on exploiting a

relationship between a solution to a given instance of a problem and a solution to a smaller

instance of the same problem. Once such a relationship is established, it can be exploited

either top down (usually recursively) or bottom up. There are three major variations of

decrease-and-conquer:

 decrease-by-a-constant, most often by one (e.g., insertion sort)

 decrease-by-a-constant-factor, most often by the factor of two (e.g., binary search)

 variable-size-decrease (e.g., Euclid’s algorithm)

Lakshmi Priya P, CSE, ACSCE Page|.23

Module 2: Divide and Conquer

In the decrease-by-a-constant variation, the size of an instance is reduced by the same

constant on each iteration of the algorithm. Typically, this constant is equal to one although

other constant size reductions do happen occasionally.

Figure: Decrease-(by one)-and-conquer

technique

Example: an = an-1×a

The decrease-by-a-constant-factor technique suggests reducing a problem instance by the

same constant factor on each iteration of the algorithm. In most applications, this constant factor

is equal to two.

Figure: Decrease-(by half)-and-conquer

technique.

Example:

Finally, in the variable-size-decrease variety of decrease-and-conquer, the size-reduction

pattern varies from one iteration of an algorithm to another.

Example: Euclid’s algorithm for computing the greatest common divisor. It is based on the

formula. gcd(m, n) = gcd(n, m mod n).

Though the value of the second argument is always smaller on the right-hand side than on

the left-hand side, it decreases neither by a constant nor by a constant factor.

Lakshmi Priya P, CSE, ACSCE Page|.24

Module 2: Divide and Conquer

10. Topological Sort

Background: A directed graph, or digraph for short, is a graph with directions specified for

all its edges. The adjacency matrix and adjacency lists are the two principal means of

representing a diagraph. There are only two notable differences between undirected and

directed graphs in representing them: (1) the adjacency matrix of a directed graph does not have

to be symmetric; (2) an edge in a directed graph has just one (not two) corresponding nodes in

the digraph’s adjacency list.

Depth-first search and breadth-first search are principal traversal algorithms for traversing

digraphs as well, but the structure of corresponding forests can be more complex than for

undirected graphs. Thus, even for the simple example of Figure, the depth-first search forest

(Figure b) exhibits all four types of edges possible in a DFS forest of a directed graph:

 tree edges (ab, bc, de),

 back edges (ba) from vertices to their ancestors,

 forward edges (ac) from vertices to their descendants in the tree other than their

children, and

 cross edges (dc), which are none of the aforementioned types.

Note that a back edge in a DFS forest of a directed graph can connect a vertex to its parent.

Whether or not it is the case, the presence of a back edge indicates that the digraph has a

directed cycle. A directed cycle in a digraph is a sequence of three or more of its vertices that

starts and ends with the same vertex and in which every vertex is connected to its immediate

predecessor by an edge directed from the predecessor to the successor. For example, a, b, a

is a directed cycle in the digraph in Figure given above. Conversely, if a DFS forest of

a digraph has no backedges, the digraph is a dag, an acronym for directed acyclic graph.

Motivation for topological sorting: Consider a set of five required

courses {C1, C2, C3, C4,C5} a part-time student has to take in some

degree program. The courses can be taken in any order as long as the

following course prerequisites are met: C1 andC2 have no prerequisites,

C3 requires C1 and C2, C4 requires C3, and C5 requiresC3 and C4. The

student can take only one course per term. In which order should the student take the

Lakshmi Priya P, CSE, ACSCE Page|.25

Module 2: Divide and Conquer

courses? The situation can be modeled by a digraph in which vertices represent courses and

directed edges indicate prerequisite requirements.

In terms of this digraph, the question is whether we can list its vertices in such an order that

for every edge in the graph, the vertex where the edge starts is listed before the vertex where

the edge ends. In other words, can you find such an ordering of this digraph’s vertices? This

problem is called topological sorting.

Topological Sort: For topological sorting to be possible, a digraph in question must be a

DAG. i.e., if a digraph has no directed cycles, the topological sorting problem for it has a

solution.

There are two efficient algorithms that both verify whether a digraph is a dag and, if it is,

produce an ordering of vertices that solves the topological sorting problem. The first one is

based on depth-first search; the second is based on a direct application of the decrease-by-one

technique.

Topological Sorting based on DFS

Method

1. Perform a DFS traversal and note the order in which vertices become dead-ends

2. Reversing this order yields a solution to the topological sorting problem, provided, of

course, no back edge has been encountered during the traversal. If a back edge has

been encountered, the digraph is not a DAG, and topological sorting of its vertices is

impossible.

Illustration

a) Digraph for which the topological sorting problem needs to be solved.

b) DFS traversal stack with the subscript numbers indicating the popping off order.

c) Solution to the problem. Here we have drawn the edges of the digraph, and they all

point from left to right as the problem’s statement requires. It is a convenient way to

check visually the correctness of a solution to an instance of the topological sorting

problem.

Topological Sorting using decrease-and-conquer technique

Method: The algorithm is based on a direct implementation of the decrease-(by one)-and-

conquer technique:

Lakshmi Priya P, CSE, ACSCE Page|.26

Module 2: Divide and Conquer

1. Repeatedly, identify in a remaining digraph a source, which is a vertex with no

incoming edges, and delete it along with all the edges outgoing from it. (If there are

several sources, break the tie arbitrarily. If there are none, stop because the problem

cannot be solved.)

2. The order in which the vertices are deleted yields a solution to the topological sorting

problem.

Illustration - Illustration of the source-removal algorithm for the topological sorting problem

is given here. On each iteration, a vertex with no incoming edges is deleted from the digraph.

Note: The solution obtained by the source-removal algorithm is different from the one

obtained by the DFS-based algorithm. Both of them are correct, of course; the topological

sorting problem may have several alternative solutions.

Applications of Topological Sorting

 Instruction scheduling in program compilation

 Cell evaluation ordering in spreadsheet formulas,

 Resolving symbol dependencies in linkers.
