

Contents

1. Introduction

1.1. What is an Algorithm?

1.2. Algorithm Specification

1.3. Analysis Framework

2. Performance Analysis

2.1. Space complexity

2.2. Time complexity

3. Asymptotic Notations

3.1. Big-Oh notation

3.2. Omega notation

3.3. Theta notation

3.4. Little-oh notation

3.5. Mathematical analysis

4. Important Problem Types

4.1. Sorting

4.2. Searching

4.3. String processing

4.4. Graph Problems

4.5. Combinatorial Problems

5. Fundamental Data Structures

5.1. Linear Data Structures

5.2. Graphs

5.3. Trees

5.4. Sets and Dictionaries

Module-1:Introduction to Algorithm

MODULE 1: Introduction to Algorithms

1.1 Introduction

Module-1: Introduction

1.1.1 What is an Algorithm?

Algorithm: An algorithm is a finite sequence of unambiguous instructions to solve a

particular problem.

Input. Zero or more quantities are externally supplied.

a. Output. At least one quantity is produced.

b. Definiteness. Each instruction is clear and unambiguous. It must be perfectly clear

what should be done.

c. Finiteness. If we trace out the instruction of an algorithm, then for all cases, the

algorithm terminates after a finite number of steps.

d. Effectiveness. Every instruction must be very basic so that it can be carried out, in

principle, by a person using only pencil and paper. It is not enough that each

operation be definite as in criterion c; it also must be feasible.

1.1.2. Algorithm Specification

An algorithm can be specified in

1) Simple English

2) Graphical representation like flow chart

3) Programming language like c++/java

4) Combination of above methods.

Example: Combination of simple English and C++, the algorithm for selection sort is

specified as follows.

Example: In C++ the same algorithm can be specified as follows. Here Type is a basic or user

defined data type.

MODULE 1: Introduction to Algorithms

1.1.3. Analysis Framework

Measuring an Input’s Size

It is observed that almost all algorithms run longer on larger inputs. For example, it takes

longer to sort larger arrays, multiply larger matrices, and so on. Therefore, it is logical to

investigate an algorithm's efficiency as a function of some parameter n indicating the

algorithm's input size.

There are situations, where the choice of a parameter indicating an input size does matter.

The choice of an appropriate size metric can be influenced by operations of the algorithm in

question. For example, how should we measure an input's size for a spell-checking

 algorithm? If the algorithm examines individual characters of its input, then we should

measure the size by the number of characters; if it works by processing words, we should

count their number in the input.

We should make a special note about measuring the size of inputs for algorithms involving

properties of numbers (e.g., checking whether a given integer n is prime). For such

algorithms, computer scientists prefer measuring size by the number b of bits in the n's binary

representation: b = [log2 n] + 1. This metric usually gives a better idea about the efficiency

of algorithms in question.

Units for Measuring Running lime

To measure an algorithm's efficiency, we would like to have a metric that does not depend

on these extraneous factors. One possible approach is to count the number of times each of

the algorithm's operations is executed. This approach is both excessively difficult and, as we

shall see, usually unnecessary. The thing to do is to identify the most important operation of

the algorithm, called the basic operation, the operation contributing the most to the total

running time, and compute the number of times the basic operation is executed.

For example, most sorting algorithms work by comparing elements (keys) of a list being

sorted with each other; for such algorithms, the basic operation is a key comparison.

As another example, algorithms for matrix multiplication and polynomial evaluation

require two arithmetic operations: multiplication and addition.

Let cop be the execution time of an algorithm's basic operation on a particular computer, and

let C(n) be the number of times this operation needs to be executed for this algorithm. Then we

can estimate the running time T(n) of a program implementing this algorithm on that computer

by the formula:

T(n) = copC(n)

Unless n is extremely large or very small, the formula can give a reasonable estimate of the

algorithm's running time.

It is for these reasons that the efficiency analysis framework ignores multiplicative constants

and concentrates on the count's order of growth to within a constant multiple for large-size

inputs.

MODULE 1: Introduction to Algorithms

Orders of Growth

Why this emphasis on the count's order of growth for large input sizes? Because for large values

of n, it is the function's order of growth that counts: just look at table which contains values of

a few functions particularly important for analysis of algorithms.

Table: Values of several functions important for analysis of algorithms

Algorithms that require an exponential number of operations are practical for solving only

problems of very small sizes.

1.2. Performance Analysis

There are two kinds of efficiency: time efficiency and space efficiency.

 Time efficiency indicates how fast an algorithm in question runs;

 Space efficiency deals with the extra space the algorithm requires.

In the early days of electronic computing, both resources time and space were at a premium.

The research experience has shown that for most problems, we can achieve much more

spectacular progress in speed than inspace. Therefore, we primarily concentrate on time

efficiency.

1.2.1 Space complexity

Total amount of computer memory required by an algorithm to complete its execution is called

as space complexity of that algorithm. The Space required by an algorithm is the sum of

following components

 A fixed part that is independent of the input and output. This includes memory space

for codes, variables, constants and so on.

 A variable part that depends on the input, output and recursion stack. (We call these

parameters as instance characteristics)

Space requirement S(P) of an algorithm P, S(P) = c + Sp where c is a constant depends on the

fixed part, Sp is the instance characteristics\

Example-1: Consider following algorithm abc()

Here fixed component depends on the size of a, b and c. Also instance characteristics Sp=0

MODULE 1: Introduction to Algorithms

Example-2: Let us consider the algorithm to find sum of array. For the algorithm given here

the problem instances are characterized by n, the number of elements to be summed. The space

needed by a[]depends on n. So the space complexity can be written as; Ssum(n) ≥ (n+3); n for

a[], One each for n, i and s.

1.2.2 Time complexity

Usually, the execution time or run-time of the program is refereed as its time complexity

denoted by tp(instance characteristics). This is the sum of the time taken to execute all

instructions in the program. Exact estimation runtime is a complex task, as the number of

instructions executed is dependent on the input data. Also different instructions will take

different time to execute. So for the estimation of the time complexity we count only the

number of program steps. We can determine the steps needed by a program to solve a

particular problem instance in two ways.

Method-1: We introduce a new variable count to the program which is initialized to zero. We

also introduce statements to increment count by an appropriate amount into the program. So

when each time original program executes, the count also incremented by the step count.

Example: Consider the algorithm sum(). After the introduction of the count the program will

be as follows. We can estimate that invocation of sum() executes total number of 2n+3 steps.

Method-2: Determine the step count of an algorithm by building a table in which we list the

total number of steps contributed by each statement. An example is shown below. The code

will find the sum of n numbers

MODULE 1: Introduction to Algorithms

Example: Matrix addition

The above method is both excessively difficult and, usually unnecessary. The thing to do is to

identify the most important operation of the algorithm, called the basic operation, the operation

contributing the most to the total running time, and compute the number of times the basic

operation is executed.

Trade-off

There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with

few computing time and low memory consumption. One has to make a compromise and to

exchange computing time for memory consumption or vice versa, depending on which

algorithm one chooses and how one parameterizes it.

1.3. Asymptotic Notations

The efficiency analysis framework concentrates on the order of growth of an algorithm’s

basic operation count as the principal indicator of the algorithm’s efficiency. To compare and

rank such orders of growth, computer scientists use three notations:O(big oh), Ω(big omega),

Θ (big theta) and o(little oh)

1.3.1. Big-Oh notation

Definition: A function t(n) is said to be in O(g(n)),

denoted t(n)∈O(g(n)), if t (n) is bounded above by

some constant multiple of g(n) for all large n, i.e.,

if there exist some positive constant c and some

nonnegative integer n0 such that

t(n) ≤ cg(n) for all n ≥ n0.

Informally, O(g(n)) is the set of all functions with a lower or same order of growth as g(n).

Note that the definition gives us a lot of freedom in choosing specific values for constants c

and n0.

Examples: n c 0(n2), 100n + 5 c 0(n2), 1 n(n — 1)c0(n2)
2

n3 ∉ 0(n2), 0.00001n3 ∉ 0(n2), n4 + n + 1 ∉ 0(n2)

MODULE 1: Introduction to Algorithms

Strategies to prove Big-O: Sometimes the easiest way to prove that f (n) = O(g(n)) is to take c

to be the sum of the positive coefficients off(n). We can usually ignore the negative coefficients.

Example: To prove 100n + 5 ∈ O(n2)

100n + 5 ≤ 105n2. (c=105, n0=1)
Example: To prove n2 + n = O(n3)

Take c = 1+1=2, if n ≥n0=1, then n2 + n =

O(n3)

i) Prove 3n+2=O(n) ii) Prove 1000n2+100n-6 = O(n2)

1.3.2. Omega notation

Definition: A function t(n) is said to be in Ω(g(n)),

denoted t(n)∈Ω(g(n)), if t(n) is bounded below by

some positive constant multiple of g(n) for all large

n,i.e., if there exist some positive constant c and

some nonnegative integer n0 such that t(n) ≥ c g(n)

for all n ≥ n0.

Here is an example of the formal proof that n3 ∈Ω(n2):n3 ≥ n2 for all n ≥ 0, i.e., we can

select c = 1 and n0 = 0.

Example:

Example: To prove n3 + 4n2 = Ω(n2)

We see that, if n≥0, n3+4n2≥ n3≥ n2; Therefore n3+4n2 ≥ 1n2for alln≥0

Thus, we have shown that n3+4n2 =Ω(n2) where c = 1 & n0=0

1.3.3. Theta notation

A function t(n) is said to be in Θ(g(n)), denoted t(n)

∈ Θ(g(n)),if t (n) is bounded both above and below

by some positive constant multiples of g(n) for all

large n, i.e., if there exist some positive constants

c1 and c2 and some nonnegative integer n0 such that

c2g(n) ≤ t(n) ≤c1g(n) for all n ≥ n0.

MODULE 1: Introduction to Algorithms

Example: n2 + 5n + 7 = Θ(n2)

Strategies for Ω and Θ

 Proving that a f(n) = Ω(g(n)) often requires more thought.

– Quite often, we have to pick c < 1.

– A good strategy is to pick a value of c which you think will work, and determine

which value of n0 is needed.

– Being able to do a little algebra helps.

– We can sometimes simplify by ignoring terms of f(n)

coefficients.

with the positive

 The following theorem shows us that proving f(n) = Θ(g(n)) is nothing new:

Theorem: f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) =

Ω(g(n)).

Thus, we just apply the previous two strategies.

MODULE 1: Introduction to Algorithms

Theorem: If t1(n) ∈O(g1(n)) and t2(n) ∈O(g2(n)), then t1(n) + t2(n) ∈O(max{g1(n), g2(n)}).

(The analogous assertions are true for the Ω and Ө notations as well.)

Proof: The proof extends to orders of growth the following simple fact about four arbitrary

real numbers a1, b1, a2, b2: if a1 ≤ b1 and a2 ≤ b2, then a1 + a2 ≤ 2 max{b1, b2}.

Since t1(n) ∈O(g1(n)), there exist some positive constant c1 and some nonnegative integer n1

such that t1(n) ≤ c1g1(n) for all n ≥ n1.

Similarly, since t2(n) ∈O(g2(n)), t2(n) ≤ c2g2(n) for all n ≥ n2.

Let us denote c3 = max{c1, c2} and consider n ≥ max{n1, n2} so that we can use both

inequalities. Adding them yields the following:

t1(n) + t2(n) ≤ c1g1(n) + c2g2(n)

≤ c3 g1(n) + c3g2(n) = c3[g1(n) + g2(n)]

≤ c32 max{g1(n), g2(n)}.

Hence, t1(n) + t2(n) ∈ O(max{g1(n), g2(n)}), with the constants c and n0 required by the O

definition being 2c3 = 2 max{c1, c2} and max{n1, n2}, respectively.

3.4. Little Oh The function f(n)= o(g(n)) [i.e f of n is a little oh of g of n] if and only if

lim
ƒ(n)

= 0
n→œ g(n)

For comparing the order of growth limit is used

If the case-1 holds good in the above limit, we represent it by little-oh.

Example:

MODULE 1: Introduction to Algorithms

1.3.5. Basic asymptotic efficiency Classes

Class Name Comments

MODULE 1: Introduction to Algorithms

1.3.6. Mathematical Analysis of Non-recursive & Recursive Algorithms

Analysis of Non-recursive Algorithms

General Plan for Analyzing the Time Efficiency of Non-recursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation. (As a rule, it is located in innermost loop.)

3. Check whether the number of times the basic operation is executed depends only on

the size of an input. If it also depends on some additional property, the worst-case,

average-case, and, if necessary, best-case efficiencies have to be investigated separately.

4. Set up a sum expressing the number of times the algorithm’s basic operation is executed.

5. Using standard formulas and rules of sum manipulation, either find a closedform

formula for the count or, at the very least, establish its order of growth.

Example-1: To find maximum element in the given array

Here comparison is the basic operation. Note that number of comparisions will be same for

all arrays of size n. Therefore, no need to distinguish worst, best and average cases. Total

number of basic operations

are,

(comparison)

Example-2: To check whether all the elements in the given array are distinct

Here basic operation is comparison. The maximum no. of comparisons happen in the worst

case. (i.e. all the elements in the array are distinct and algorithms return true).

Total number of basic operations (comparison) in the worst case are,

MODULE 1: Introduction to Algorithms

2

Other than the worst case, the total comparisons are less than
1
n2. For example if the first

two elements of the array are equal, only one comparison is computed.

So in general C(n) =O(n2)

Example-3: To perform matrix multiplication

Number of basic operations

(multiplications) is

Total running time:

Suppose if we take into account of addition; Algorithm also have same number of additions

A(n) = n3

Total running time:

Example-4: To count the bits in the binary representation

MODULE 1: Introduction to Algorithms

The basic operation is count=count + 1 repeats no. of times

Analysis of Recursive Algorithms

General plan for analyzing the time efficiency of recursive algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation.

3. Check whether the number of times the basic operation is executed can vary on

different inputs of the same size; if it can, the worst-case, average-case,and best-case

efficiencies must be investigated separately. Set up a recurrence relation, with an

appropriate initial condition, for the number of times the basic operation is executed.

4. Solve the recurrence or, at least, ascertain the order of growth of its solution.

Since the function F(n) is computed according to the formula

The number of multiplications M(n) needed to compute it must satisfy the equality

Such equations are called recurrence relations

Condition that makes the algorithm stop if n = 0 return 1. Thus recurrence relation and initial

condition for the algorithm’s number of multiplications M(n) can be stated as

We can use backward substitutions method to solve this

….

Example-1

MODULE 1: Introduction to Algorithms

Example-2: Tower of Hanoi puzzle. In this puzzle, There are n disks of different sizes that

canslide onto any of three pegs. Initially, all the disks are on the first peg in order of size, the

largest on the bottom and the smallest on top. The goal is to move all the disks to the third peg,

using the second one as an auxiliary, if necessary. We can move only one disk at a time, and it

is forbidden to place a larger disk on top of a smaller one. The problem has an elegant recursive

solution, which is illustrated in Figure.

1. If n = 1, we move the single disk directly from the source peg to the destination peg.

2. To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary),

o we first move recursively n-1 disks from peg 1 to peg 2 (with peg 3 as auxiliary),

o then move the largest disk directly from peg 1 to peg 3, and,

o finally, move recursively n-1 disks from peg 2 to peg 3 (using peg 1 as auxiliary).

Figure: Recursive solution to the Tower of Hanoi puzzle

Computation of Number of Moves

The number of moves M(n) depends only on n. The recurrence equation is

We have the following recurrence relation for the number of moves M(n):

We solve this recurrence by t e same method of backward substitutions:

Algorithm: TowerOfHanoi(n, source, dest, aux)

If n == 1, THEN

move disk from source to dest

else

TowerOfHanoi (n - 1, source, aux, dest)

move disk from source to dest

TowerOfHanoi (n - 1, aux, dest, source)

End if

MODULE 1: Introduction to Algorithms

The pattern of the first three sums on the left suggests that the next one will be

24M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get

Since the initial condition is specified for n = 1, which is achieved for i = n-1, we get the

following formula for the solution to recurrence,

Example-3: To count bits of a decimal number in its binary representation

The recurrence relation can b

Also note that A(1) = 0.

written as

.

The standard approach to solving such a recurrence is to solve it only for n = 2k and then take

advantage of the theorem called the smoothness rule which claims that under very broad

assumptions the order of growth observed for n = 2k gives a correct answer about the order of

growth for all values of n.

MODULE 1: Introduction to Algorithms

1.4. Important Problem Types

In this section, we are going to introduce the most important problem types: Sorting,

Searching, String processing, Graph problems, Combinatorial problems.

1.4.1. Sorting

The sorting problem is to rearrange the items of a given list in non-decreasing order. As a

practical matter, we usually need to sort lists of numbers, characters from an alphabet or

character strings. Although some algorithms are indeed better than others, there is

noalgorithm that would be the best solution in all situations. Some of the algorithms are

simple but relatively slow, while others are faster but more complex; some work better on

randomly ordered inputs, while others do better on almost-sorted lists; some are suitable only

for lists residing in the fast memory, while others can be adapted for sorting large files stored

on a disk; and so on.

Two properties of sorting algorithms deserve special mention. A sorting algorithm is called

stable if it preserves the relative order of any two equal elements in its input. The second

notable feature of a sorting algorithm is the amount of extra memory the algorithm requires.

An algorithm is said to be in-place if it does not require extra memory, except, possibly, for a

few memory units.

1.4.2. Searching

The searching problem deals with finding a given value, called a search key, in a given set. (or

a multiset, which permits several elements to have the same value).There are plenty of

searching algorithms to choose from. They range from the straight forward sequential search

to a spectacularly efficient but limited binary search and algorithms based on representing the

underlying set in a different form more conducive to searching. The latter algorithms are of

particular importance for real-world applications because they are indispensable for storing and

retrieving information from large databases.

1.4.3. String Processing

In recent decades, the rapid proliferation of applications dealing with non-numerical data has

intensified the interest of researchers and computing practitioners in string-handling algorithms. A

string is a sequence of characters from an alphabet. String-processing algorithms have been important

for computer science in conjunction with computer languages and compiling issues.

1.4.4. Graph Problems

One of the oldest and most interesting areas in algorithmics is graph algorithms. Informally, a

graph can be thought of as a collection of points called vertices, some of which are connected

by line segments called edges. Graphs can be used for modeling a wide variety of

applications, including transportation, communication, social and economic networks, project

scheduling, and games. Studying different technical and social aspects of the Internet in

particular is one of the active areas of current research involving computer scientists,

economists, and social scientists.

MODULE 1: Introduction to Algorithms

1.4.5. Combinatorial Problems

Generally speaking, combinatorial problems are the most difficult problems in computing,

from both a theoretical and practical standpoint. Their difficulty stems from the following

facts. First, the number of combinatorial objects typically grows extremely fast with a

problem’s size, reaching unimaginable magnitudes even for moderate-sized instances. Second,

there are no known algorithms for solving most such problems exactly in an acceptable amount

of time.

1.5. Fundamental Data Structures

Since the vast majority of algorithms of interest operate on data, particular ways of

organizing data play a critical role in the design and analysis of algorithms. A data structure

can be defined as a particular scheme of organizing related data items.

1.5.1. Linear Data Structures

The two most important elementary data structures are the array and the linked list.

An (one-dimensional) array is a sequence of n items of the same data type that are stored

contiguously in computer memory and made accessible by specifying a value of the array’s

index.

A linked list is a sequence of zero or more elements called nodes, each containing two kinds

of information: some data and one or more links called pointers to other nodes of the linked

list. In a singly linked list, each node except the last one contains a single pointer to the next

element. Another extensions the structure called the doubly linked list, in which every

node, except the first and the last, contains pointers to both its successor and its predecessor.

A list is a finite sequence of data items, i.e., a collection of data items arranged in a certain

linear order. The basic operations performed on this data structure are searching for,

inserting, and deleting an element. Two special types of lists, stacks and queues, are particularly

important.

A stack is a list in which insertions and deletions can be done only at the end. This end is called

the top because a stack is usually visualized not horizontally but vertically—akin to a stack of

plates whose “operations” it mimics very closely.

MODULE 1: Introduction to Algorithms

A queue, on the other hand, is a list from which elements are deleted from one end of the

structure, called the front (this operation is called dequeue), and new elements are added to the

other end, called the rear (this operation is called enqueue). Consequently, a queue operates in

a “first-in–first-out” (FIFO) fashion—akin to a queue of customers served by a single teller in

a bank. Queues also have many important applications, including several algorithms for graph

problems.

Many important applications require selection of an item of the highest priority among a

dynamically changing set of candidates. A data structure that seeks to satisfy the needs of such

applications is called a priority queue. A priority queue is a collection of data items from a

totally ordered universe (most often, integer or real numbers). The principal operations on a

priority queue are finding its largest element, deleting its largest element, and adding a new

element.

1.5.2. Graphs

A graph is informally thought of as a collection of points in the plane called “vertices” or

nodes,” some of them connected by line segments called “edges” or “arcs.” A graph G is called

undirected if every edge in it is undirected. A graph whose every edge is directed is called

directed. Directed graphs are also called digraphs.

The graph depicted in Figure (a) has six vertices and seven undirected edges:

V = {a, b, c, d, e, f }, E = {(a, c), (a, d), (b, c), (b, f), (c, e), (d, e), (e, f)}.

The digraph depicted in Figure 1.6b has six vertices and eight directed edges:

V = {a, b, c, d, e, f }, E = {(a, c), (b, c), (b, f), (c, e), (d, a), (d, e), (, c), (e, f)}.

Graph Representations- Graphs for computer algorithms are usually represented in one of

two ways: the adjacency matrix and adjacency lists.

The adjacency matrix of a graph with n vertices is an n x n boolean matrix with one row and

one column for each of the graph’s vertices, in which the element in the ith row and the jth

column is equal to 1 if there is an edge from the ith vertex to the jth vertex, and equal to 0 if

there is no such edge.

The adjacency lists of a graph or a digraph is a collection of linked lists, one for each vertex,

that contain all the vertices adjacent to the list’s vertex (i.e., all the vertices connected to it by

an edge).

MODULE 1: Introduction to Algorithms

Weighted Graphs: A weighted graph (or weighted digraph) is a graph (or digraph) with

numbers assigned to its edges. These numbers are called weights or costs.

Among the many properties of graphs, two are important for a great number of applications:

connectivity and acyclicity. Both are based on the notion of a path. A path from vertex u to

vertex v of a graph G can e defined as a sequence of adjacent (connected by an edge)

vertices that starts with u and ends with v.

A graph is said to be connected if for every pair of its vertices u and v there is a path from u to

v. Graphs with several connected components do happen in real-world applications. It is

important to know for many applications whether or not a graph under consideration has cycles.

A cycle is a path of a positive length that starts and ends at the same vertex and does not traverse

the same edge more than once.

1.5.3. Trees

A tree (more accurately, a free tree) is a

connected acyclic graph. A graph that has no

cycles but is not necessarily connected is

called a forest: each of its connected

components is a tree. Trees have several

important properties other graphs do not have. In particular, the number of edges in a tree is

always one less than the number of its vertices:|E| = |V|-1

Rooted Trees: Another very important property of trees is the fact that for every two vertices

in a tree, there always exists exactly one simple path from one of these vertices to the other.

This property makes it possible to select an arbitrary vertex in a free tree and consider it as the

root of the so-called rooted tree. A rooted tree is usually depicted by placing its root on the top

(level 0 of the tree), the vertices adjacent to the root below it (level 1), the vertices two edges

apart from the roots till below (level 2), and so on.

MODULE 1: Introduction to Algorithms

The depth of a vertex v is the

length of the simple path from the

root to v. The height of a tree is the

length of the longest simple path

from the root to a leaf.

Ordered Trees- An ordered tree

is a rooted tree in which all the children of each vertex are ordered. It is convenient to assume

that in a tree’s diagram; all the children are ordered left to right. A binary tree can be defined

as an ordered tree in which every vertex has no more than two children and each child is

designated as either a left child or a right child of its parent; a binary tree may also be empty.

If a number assigned to each parental vertex is

larger than all the numbers in its left subtree and

smaller than all the numbers in its right subtree.

Such trees are called binary search trees. Binary

trees and binary search trees have a wide variety

of applications in computer science.

1.5.4. Sets and Dictionaries

A set can be described as an unordered collection (possibly empty) of distinct items called

elements of the set. A specific set is defined either by an explicit listing of its elements (e.g., S

= {2,3, 5, 7}) or by specifying a property that all the set’s elements and only they must satisfy

(e.g., S = {n: n is a prime number smaller than 10}).

The most important set operations are: checking membership of a given item in a given set;

finding the union of two sets, which comprises all the elements in either or both of them; and

finding the intersection of two sets, which comprises all the common elements inthe sets.

Sets can be implemented in computer applications in two ways. The first considers only sets

that are subsets of some large set U, called the universal set. If set U has n elements, then any

subset S of U can be represented by a bit string of size n, called a bit vector, in which the ith

element is 1 if and only if the ith element of U is included in set S.

The second and more common way to represent a set for computing purposes is to use the list

structure to indicate the set’s elements. This is feasible only for finite sets. The requirement

for uniqueness is sometimes circumvented by the introduction of a multiset, or bag, an

unordered collection of items that are not necessarily distinct. Note that if a set is represented

by a list, depending on the application at hand, it might be worth maintaining the list in a sorted

order.

Dictionary: In computing, the operations we need to perform for a set or a multiset most

often are searching for a given item, adding a new item, and deleting an item from the

collection. A data structure that implements these three operations is called the dictionary.

An efficient implementation of a dictionary has to strike a compromise between the

efficiency

MODULE 1: Introduction to Algorithms

of searching and the efficiencies of the other two operations. They range from an

unsophisticated use of arrays (sorted or not) to much more sophisticated techniques such as

hashing and balanced search trees.

A number of applications in computing require a dynamic partition of so men-element set into

a collection of disjoint subsets. After being initialized as a collection of n one-element subsets,

the collection is subjected to a sequence of intermixed union and search operations. This

problem is called the set union problem.

