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1.1 Introduction 

Module-1: Introduction 

1.1.1 What is an Algorithm? 

Algorithm: An algorithm is a finite sequence of unambiguous instructions to solve a 

particular problem. 

Input. Zero or more quantities are externally supplied. 

a. Output. At least one quantity is produced. 

b. Definiteness. Each instruction is clear and unambiguous. It must be perfectly clear 

what should be done. 

c. Finiteness. If we trace out the instruction of an algorithm, then for all cases, the 

algorithm terminates after a finite number of steps. 

d. Effectiveness. Every instruction must be very basic so that it can be carried out, in 

principle, by a person using only pencil and paper. It is not enough that each 

operation be definite as in criterion c; it also must be feasible. 

1.1.2. Algorithm Specification 

An algorithm can be specified in 

1) Simple English 

2) Graphical representation like flow chart 

3) Programming language like c++/java 

4) Combination of above methods. 

Example: Combination of simple English and C++, the algorithm for selection sort is 

specified as follows. 

Example: In C++ the same algorithm can be specified as follows. Here Type is a basic or user 

defined data type. 
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1.1.3. Analysis Framework 

Measuring an Input’s Size 

It is observed that almost all algorithms run longer on larger inputs. For example, it takes 

longer to sort larger arrays, multiply larger matrices, and so on. Therefore, it is logical to 

investigate  an  algorithm's  efficiency  as  a  function  of  some  parameter  n  indicating  the 

algorithm's input size. 

There are situations, where the choice of a parameter indicating an input size does matter. 

The choice of an appropriate size metric can be influenced by operations of the algorithm in 

question.  For   example,   how should   we  measure   an  input's  size  for   a  spell-checking 

 algorithm?  If  the  algorithm  examines  individual  characters  of  its  input,  then  we should 

measure the size by the number of characters; if it works by processing words, we should 

count their number in the input. 

We should make a special note about measuring the size of inputs for algorithms involving 

properties  of  numbers  (e.g.,  checking  whether  a  given  integer  n  is  prime).  For  such 

algorithms, computer scientists prefer measuring size by the number b of bits in the n's binary 

representation: b = [log2 n ] + 1. This metric usually gives a better idea about the efficiency 

of algorithms in question. 

 

Units for Measuring Running lime 

To measure an algorithm's efficiency, we would like to have a metric that does not depend 

on these extraneous factors. One possible approach is to count the number of times each of 

the algorithm's operations is  executed. This approach is both excessively difficult and, as we 

shall see, usually unnecessary. The thing to do is to identify the most important operation of 

the algorithm, called the basic operation, the operation contributing the most to the total 

running time, and compute the number of times the basic operation is executed. 

For example, most sorting algorithms work by comparing elements (keys) of a list being 

sorted with each other; for such algorithms, the basic operation is a key comparison. 

As another example, algorithms for matrix multiplication and polynomial evaluation 

require two arithmetic operations: multiplication and addition. 

Let cop be the execution time of an algorithm's basic operation on a particular computer, and 

let C(n) be the number of times this operation needs to be executed for this algorithm. Then we 

can estimate the running time T(n) of a program implementing this algorithm on that computer 

by the formula: 

T(n) = copC(n) 

Unless n is extremely large or very small, the formula can give a reasonable estimate of the 

algorithm's running time. 

It is for these reasons that the efficiency analysis framework ignores multiplicative constants 

and concentrates on the count's order of growth to within a constant multiple for large-size 

inputs. 



MODULE 1: Introduction to Algorithms 

 

 

Orders of Growth 

Why this emphasis on the count's order of growth for large input sizes? Because for large values 

of n, it is the function's order of growth that counts: just look at table which contains values of 

a few functions particularly important for analysis of algorithms. 

Table: Values of several functions important for analysis of algorithms 
 

 

Algorithms that require an exponential number of operations are practical for solving only 

problems of very small sizes. 

1.2. Performance Analysis 

There are two kinds of efficiency: time efficiency and space efficiency. 

 Time efficiency indicates how fast an algorithm in question runs; 

 Space efficiency deals with the extra space the algorithm requires. 

In the early days of electronic computing, both resources time and space were at a premium. 

The research experience has shown that for most problems, we can achieve much more 

spectacular progress in speed than inspace. Therefore, we primarily concentrate on time 

efficiency. 

1.2.1 Space complexity 

Total amount of computer memory required by an algorithm to complete its execution is called 

as space complexity of that algorithm. The Space required by an algorithm is the sum of 

following components 

 A fixed part that is independent of the input and output. This includes memory space 

for codes, variables, constants and so on. 

 A variable part that depends on the input, output and recursion stack. ( We call these 

parameters as instance characteristics) 

Space requirement S(P) of an algorithm P, S(P) = c + Sp where c is a constant depends on  the 

fixed part, Sp is the instance characteristics\ 

Example-1: Consider following algorithm abc() 
 

Here fixed component depends on the size of a, b and c. Also instance characteristics Sp=0 
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Example-2: Let us consider the algorithm to find sum of array. For the algorithm given here 

the problem instances are characterized by n, the number of elements to be summed. The space 

needed by a[ ]depends on n. So the space complexity can be written as; Ssum(n) ≥ (n+3); n for 

a[ ], One each for n, i and s. 

 

 

 

 

 

 
1.2.2 Time complexity 

Usually, the execution time or run-time of the program is refereed as its time complexity 

denoted  by tp(instance  characteristics).   This  is  the  sum  of  the  time  taken  to  execute all 

instructions in the program.  Exact estimation runtime is a complex task, as the number of 

instructions executed is dependent on the input data. Also different instructions will take 

different time to execute. So for the estimation of the time complexity we count only the 

number of program steps. We can determine the steps needed by a program to solve a 

particular problem instance in two ways. 

Method-1: We introduce a new variable count to the program which is initialized to zero. We 

also introduce statements to increment count by an appropriate amount into the program. So 

when each time original program executes, the count also incremented by the step count. 

Example: Consider the algorithm sum(). After the introduction of the count the program will 

be as follows. We can estimate that invocation of sum() executes total number of 2n+3 steps. 

 
 

Method-2: Determine the step count of an algorithm by building a table in which we list the 

total number of steps contributed by each statement. An example is shown below. The code 

will find the sum of n numbers 
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Example: Matrix addition 
 

The above method is both excessively difficult and, usually unnecessary. The thing to do is to 

identify the most important operation of the algorithm, called the basic  operation,  the operation 

contributing the most to the total running time, and compute the number of times the basic 

operation  is executed.

 

Trade-off 

There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with 

few computing time and low memory consumption. One has to make a compromise and to 

exchange computing time for memory consumption or vice versa, depending on which 

algorithm one chooses and how one parameterizes it. 

 

1.3. Asymptotic Notations 

The efficiency analysis framework concentrates on the order of growth of an algorithm’s 

basic operation count as the principal indicator of the algorithm’s efficiency. To compare and 

rank such orders of growth, computer scientists use three notations:O(big oh), Ω(big omega), 

Θ (big theta) and o(little oh) 

1.3.1. Big-Oh notation 

Definition: A function t(n) is said to be in O(g(n)), 

denoted t(n)∈O(g(n)), if t (n) is bounded above by 

some constant multiple of g(n) for all large n, i.e., 

if there exist some positive constant c and some 

nonnegative integer n0 such that 

t(n) ≤ cg(n) for all n ≥ n0. 
 
 

 
Informally, O(g(n)) is the set of all functions with a lower or same order of growth as g(n). 

Note that the definition gives us a lot of freedom in choosing specific values for constants c 

and n0. 

Examples: n c 0(n2), 100n + 5 c 0(n2),  1 n(n — 1)c0(n2) 
2 

n3 ∉  0(n2), 0.00001n3 ∉  0(n2), n4 + n + 1  ∉ 0(n2) 
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Strategies to prove Big-O: Sometimes the easiest way to prove that f (n) = O(g(n)) is to take c 

to be the sum of the positive coefficients off(n). We can usually ignore the negative coefficients. 
 

Example: To prove 100n + 5 ∈ O(n2) 

100n + 5 ≤ 105n2. (c=105, n0=1) 
Example: To prove n2 + n = O(n3) 

Take c = 1+1=2, if n ≥n0=1, then n2 + n = 

O(n3) 

 

i) Prove 3n+2=O(n) ii) Prove 1000n2+100n-6 = O(n2) 

1.3.2. Omega notation 

Definition: A function t(n) is said to be in Ω(g(n)), 

denoted t(n)∈Ω(g(n)), if t(n) is bounded below by 

some positive constant multiple of g(n) for all large 

n,i.e., if there exist some positive constant c and 

some nonnegative integer n0 such that t(n) ≥ c g(n) 

for all n ≥ n0. 

 

 

 

 
Here is an example of the formal proof that n3 ∈Ω(n2):n3 ≥ n2 for all n ≥ 0, i.e., we can 

select c = 1 and n0 = 0. 

 
Example: 

 
Example: To prove n3 + 4n2 = Ω(n2) 

We see that, if n≥0, n3+4n2≥ n3≥ n2; Therefore n3+4n2 ≥ 1n2for alln≥0 

Thus, we have shown that n3+4n2 =Ω(n2) where c = 1 & n0=0 

 

1.3.3. Theta notation 

A function t(n) is said to be in Θ(g(n)), denoted t(n) 

∈  Θ(g(n)),if t (n) is bounded both above and below 

by some positive constant multiples of g(n) for  all  

large n,  i.e.,  if  there exist  some  positive constants 

c1 and c2 and some nonnegative integer n0 such that 

c2g(n) ≤ t(n) ≤c1g(n) for all n ≥ n0. 
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Example: n2 + 5n + 7 = Θ(n2) 

Strategies for Ω and Θ 

 Proving that a f(n) = Ω(g(n)) often requires more thought. 

– Quite often, we have to pick c < 1. 

– A good strategy is to pick a value of c which you think will work, and determine 

which value of n0 is needed. 

– Being able to do a little algebra helps. 

– We can sometimes simplify by ignoring terms of f(n) 

coefficients. 

with the positive 

 The following theorem shows us that proving f(n) = Θ(g(n)) is nothing new: 

Theorem: f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = 

Ω(g(n)). 

Thus, we just apply the previous two strategies. 
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Theorem: If t1(n) ∈O(g1(n)) and t2(n) ∈O(g2(n)), then t1(n) + t2(n) ∈O(max{g1(n), g2(n)}). 

(The analogous assertions are true for the Ω and Ө notations as well.) 

Proof: The proof extends to orders of growth the following simple fact about four arbitrary 

real numbers a1, b1, a2, b2: if a1 ≤ b1 and a2 ≤ b2, then a1 + a2 ≤ 2 max{b1, b2}. 

Since t1(n) ∈O(g1(n)), there exist some positive constant c1 and some nonnegative integer n1 

such that t1(n) ≤ c1g1(n) for all n ≥ n1. 

Similarly, since t2(n) ∈O(g2(n)), t2(n) ≤ c2g2(n) for all n ≥ n2. 

Let us denote c3 = max{c1, c2} and consider n ≥ max{n1, n2} so that we can use both 

inequalities. Adding them yields the following: 

t1(n) + t2(n) ≤ c1g1(n) + c2g2(n) 

≤ c3 g1(n) + c3g2(n) = c3[g1(n) + g2(n)] 

≤ c32 max{g1(n), g2(n)}. 

Hence, t1(n) + t2(n) ∈  O(max{g1(n), g2(n)}), with the constants c and n0 required by the O 

definition being 2c3 = 2 max{c1, c2} and max{n1, n2}, respectively. 

 

3.4. Little Oh The function f(n)= o(g(n)) [ i.e f of n is a little oh of g of n ] if and only if 

lim 
ƒ(n) 

= 0 
n→œ g(n) 

 
 
 
 

 

For comparing the order of growth limit is used 
 

 

If the case-1 holds good in the above limit, we represent it by little-oh. 

Example: 
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1.3.5. Basic asymptotic efficiency Classes 
 

Class Name Comments 
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1.3.6. Mathematical Analysis of Non-recursive & Recursive Algorithms 

Analysis of Non-recursive Algorithms 

General Plan for Analyzing the Time Efficiency of Non-recursive Algorithms 

1. Decide on a parameter (or parameters) indicating an input’s size. 

2. Identify the algorithm’s basic operation. (As a rule, it is located in innermost loop.) 

3. Check whether the number of times the basic operation is executed depends only on 

the size of an input. If it also depends on some additional property, the worst-case, 

average-case, and, if necessary, best-case efficiencies have to be investigated separately. 

4. Set up a sum expressing the number of times the algorithm’s basic operation is executed. 

5. Using standard formulas and rules of sum manipulation, either find  a closedform 

formula for the count or, at the very least, establish its order of growth. 

Example-1: To find maximum element in the given array 
 

 

Here comparison is the basic operation. Note that number of comparisions will be same for 

all arrays of size n. Therefore, no need to distinguish worst, best and average cases. Total 

number of basic operations 

are, 

(comparison) 

 

 

Example-2: To check whether all the elements in the given array are distinct 
 

 

Here basic operation is comparison. The maximum no. of comparisons happen in the worst 

case. (i.e. all the elements in the array are distinct and algorithms return true). 

Total number of basic operations (comparison) in the worst case are, 
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2 

 

 

Other than the worst case, the total comparisons are less than 
1 
n2. For example if the first  

two elements of the array are equal, only one comparison is computed. 

So in general C(n) =O(n2) 

Example-3: To perform matrix multiplication 

Number of basic operations 

(multiplications) is 

 
Total running time:  

Suppose if we take into account of addition; Algorithm also have same number of additions 

A(n) = n3 

Total running time:  

Example-4: To count the bits in the binary representation 
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The basic operation is count=count + 1 repeats   no. of times 

Analysis of Recursive Algorithms 
 

General plan for analyzing the time efficiency of recursive algorithms 
 

1. Decide on a parameter (or parameters) indicating an input’s size. 

2. Identify the algorithm’s basic operation. 

3. Check whether the number of times the basic operation is executed can vary on 

different inputs of the same size; if it can, the worst-case, average-case,and best-case 

efficiencies must be investigated separately. Set up a recurrence relation, with  an 

appropriate initial condition, for the number of times the basic operation is executed. 

4. Solve the recurrence or, at least, ascertain the order of growth of its solution. 

 

Since the function F(n) is computed according to the formula 

The number of multiplications M(n) needed to compute it must satisfy the equality 
 

Such equations are called recurrence relations 

Condition that makes the algorithm stop if n = 0 return 1. Thus recurrence relation and initial 

condition for the algorithm’s number of multiplications M(n) can be stated as 

 

We can use backward substitutions method to solve this 

…. 
 

Example-1 
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Example-2: Tower of Hanoi puzzle. In this puzzle, There are n disks of different sizes that 

canslide onto any of three pegs. Initially, all the disks are on the first peg in order of size, the 

largest on the bottom and the smallest on top. The goal is to move all the disks to the third peg, 

using the second one as an auxiliary, if necessary. We can move only one disk at a time, and it 

is forbidden to place a larger disk on top of a smaller one. The problem has an elegant recursive 

solution, which is illustrated in Figure. 

1. If n = 1, we move the single disk directly from the source peg to the destination peg. 

2. To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), 

o we first move recursively n-1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), 

o then move the largest disk directly from peg 1 to peg 3, and, 

o finally, move recursively n-1 disks from peg 2 to peg 3 (using peg 1 as auxiliary). 
 

Figure: Recursive solution to the Tower of Hanoi puzzle 

 

 

Computation of Number of Moves 

The number of moves M(n) depends only on n. The recurrence equation is 

We have the following recurrence relation for the number of moves M(n): 

 

We solve this recurrence by t e same method of backward substitutions: 
 

Algorithm: TowerOfHanoi(n, source, dest, aux) 

If n == 1, THEN 

move disk from source to dest 

else 

TowerOfHanoi (n - 1, source, aux, dest) 

move disk from source to dest 

TowerOfHanoi (n - 1, aux, dest, source) 

End if 
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The pattern of the first three sums on the left suggests that the next one will be 

24M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get 

Since the initial condition is specified for n = 1, which is achieved for i = n-1, we get the 

following formula for the solution to recurrence, 

 
 

 

Example-3: To count bits of a decimal number in its binary representation 
 

 

The recurrence relation can b 

Also note that A(1) = 0. 

written as 

. 

 

The standard approach to solving such a recurrence is to solve it only for n = 2k and then take 

advantage of the theorem called the smoothness rule which claims that under very broad 

assumptions the order of growth observed for n = 2k gives a correct answer about the order of 

growth for all values of n. 
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1.4. Important Problem Types 

In this section, we are going to introduce the most important problem types: Sorting, 

Searching, String processing, Graph problems, Combinatorial problems. 

1.4.1. Sorting 

The sorting problem is to rearrange the items of a given list in non-decreasing order. As a 

practical matter, we usually need to sort lists of numbers, characters from an alphabet or 

character  strings.  Although  some  algorithms  are  indeed  better  than  others,  there  is 

noalgorithm  that  would  be the best  solution  in  all  situations.  Some of the algorithms  are 

simple but relatively slow, while others are faster but more complex; some work better on 

randomly ordered inputs, while others do better on almost-sorted lists; some are suitable only 

for lists residing in the fast memory, while others can be adapted for sorting large files stored 

on a disk; and so on. 

Two properties of sorting algorithms deserve special mention. A sorting algorithm is called 

stable if it preserves the relative order of any two equal elements in its input. The second 

notable feature of a sorting algorithm is the amount of extra memory the algorithm requires. 

An algorithm is said to be in-place if it does not require extra memory, except, possibly, for a 

few memory units. 

1.4.2. Searching 

The searching problem deals with finding a given value, called a search key, in a given set. (or 

a multiset, which permits several elements to have the same value).There are plenty of 

searching algorithms to choose from. They range from the straight forward sequential search 

to a spectacularly efficient but limited binary search and algorithms based on representing the 

underlying set in a different form more conducive to searching. The latter algorithms are of 

particular importance for real-world applications because they are indispensable for storing and 

retrieving information from large databases. 

1.4.3. String Processing 

In recent decades, the rapid proliferation of applications dealing with non-numerical data has 

intensified the interest of researchers and computing practitioners in string-handling algorithms. A 

string is a sequence of characters from an alphabet. String-processing algorithms have been important     

for computer science in conjunction with computer languages and compiling issues.

 

1.4.4. Graph Problems 

One of the oldest and most interesting areas in algorithmics is graph algorithms. Informally, a 

graph can be thought of as a collection of points called vertices, some of which are connected 

by  line  segments  called  edges.  Graphs  can  be  used  for  modeling  a  wide  variety  of 

applications, including transportation, communication, social and economic networks, project 

scheduling,  and  games.  Studying different  technical  and  social  aspects  of  the  Internet in 

particular is one of the active areas of current research involving computer scientists, 

economists, and social scientists. 
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1.4.5. Combinatorial Problems 

Generally speaking, combinatorial problems are the most difficult problems in computing, 

from both a theoretical and practical standpoint. Their difficulty stems from the following 

facts.  First,  the  number  of  combinatorial  objects  typically  grows  extremely  fast  with  a 

problem’s size, reaching unimaginable magnitudes even for moderate-sized instances. Second, 

there are no known algorithms for solving most such problems exactly in an acceptable amount 

of time. 

1.5. Fundamental Data Structures 
 

Since the vast majority of algorithms of interest operate on data, particular ways of 

organizing data play a critical role in the design and analysis of algorithms. A data structure 

can be defined as a particular scheme of organizing related data items. 

1.5.1. Linear Data Structures 

The two most important elementary data structures are the array and the linked list. 
 

An (one-dimensional) array is a sequence of n items of the same data type that are stored 

contiguously in computer memory and made accessible by specifying a value of the array’s 

index. 

 

 

 

A linked list is a sequence of zero or more elements called nodes, each containing two kinds 

of information: some data and one or more links called pointers to other nodes of the linked 

list. In a singly linked list, each node except the last one contains a single pointer to the next 

element. Another extensions the structure called the doubly linked list, in which every 

node, except the first and the last, contains pointers to both its successor and its predecessor. 

 

 

 

A list is a finite sequence of data items, i.e., a collection of data items arranged in a certain 

linear  order.  The  basic  operations  performed  on  this  data  structure  are  searching  for, 

inserting, and deleting an element. Two special types of lists, stacks and queues, are particularly 

important. 

A stack is a list in which insertions and deletions can be done only at the end. This end is called 

the top because a stack is usually visualized not horizontally but vertically—akin to a stack of 

plates whose “operations” it mimics very closely. 
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A queue, on the other hand, is a list from which elements are deleted from one end of the 

structure, called the front (this operation is called dequeue), and new elements are added to the 

other end, called the rear (this operation is called enqueue). Consequently, a queue operates in 

a “first-in–first-out” (FIFO) fashion—akin to a queue of customers served by a single teller in 

a bank. Queues also have many important applications, including several algorithms for graph 

problems. 

Many important applications require selection of an item of the highest priority among a 

dynamically changing set of candidates. A data structure that seeks to satisfy the needs of such 

applications is called a priority queue. A priority queue is a collection of data items from a 

totally ordered universe (most often, integer or real numbers). The principal  operations on a 

priority queue are finding its largest element, deleting its largest element, and adding a new 

element. 

1.5.2. Graphs 

A graph is informally thought of as a collection of points in the plane called “vertices” or 

nodes,” some of them connected by line segments called “edges” or “arcs.” A graph G is called 

undirected if every edge in it is undirected. A graph whose every edge is directed is called 

directed. Directed graphs are also called digraphs. 

The graph depicted in Figure (a) has six vertices and seven undirected edges: 

V = {a, b, c, d, e, f }, E = {(a, c), (a, d), (b, c), (b, f ), (c, e), (d, e), (e, f )}. 

The digraph depicted in Figure 1.6b has six vertices and eight directed edges: 
 

V = {a, b, c, d, e, f }, E = {(a, c), (b, c), (b, f ), (c, e), (d, a), (d, e), ( , c), (e, f )}. 
 

 

Graph Representations- Graphs for computer algorithms are usually represented in one of 

two ways: the adjacency matrix and adjacency lists. 

The adjacency matrix of a graph with n vertices is an n x n boolean matrix with one row  and 

one column for each of the graph’s vertices, in which the element in the ith row and the jth 

column is equal to 1 if there is an edge from the ith vertex to the jth vertex, and equal to 0 if 

there is no such edge. 

The adjacency lists of a graph or a digraph is a collection of linked lists, one for each vertex, 

that contain all the vertices adjacent to the list’s vertex (i.e., all the vertices connected to it by 

an edge). 
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Weighted Graphs: A weighted graph (or weighted digraph) is a graph (or digraph) with 

numbers assigned to its edges. These numbers are called weights or costs. 

Among the many properties of graphs, two are important for a great number of applications: 

connectivity and acyclicity. Both are based on the notion of a path. A path from vertex u to 

vertex  v  of  a  graph G can e  defined  as  a sequence of adjacent  (connected  by an   edge) 

vertices that starts with u and ends with v. 
 

 

A graph is said to be connected if for every pair of its vertices u and v there is a path from u to 

v. Graphs with several connected components do happen in real-world applications. It is 

important to know for many applications whether or not a graph under consideration has cycles. 

A cycle is a path of a positive length that starts and ends at the same vertex and does not traverse 

the same edge more than once. 

1.5.3. Trees 
 

A  tree  (more  accurately,  a  free  tree)  is  a 

connected acyclic graph. A graph that has no 

cycles  but  is  not  necessarily  connected   is 

called a   forest: each of   its connected 

components  is  a  tree.  Trees  have  several 

important properties other graphs do not have. In particular, the number of edges in a tree is 

always one less than the number of its vertices:|E| = |V|-1 

Rooted Trees: Another very important property of trees is the fact that for every two vertices 

in a tree, there always exists exactly one simple path from one of these vertices to the other. 

This property makes it possible to select an arbitrary vertex in a free tree and consider it as the 

root of the so-called rooted tree. A rooted tree is usually depicted by placing its root on the top 

(level 0 of the tree), the vertices adjacent to the root below it (level 1), the vertices  two edges 

apart from the roots till below (level 2), and so on. 
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The depth of a vertex v is the 

length of the simple path from the 

root to v. The height of a tree is the 

length of the longest simple path 

from the root to a leaf. 

 

 
Ordered Trees- An ordered tree 

is a rooted tree in which all the children of each vertex are ordered. It is convenient to assume 

that in a tree’s diagram; all the children are ordered left to right. A binary tree can be defined 

as an ordered tree in which every vertex has no more than two children and each child is 

designated as either a left child or a right child of its parent; a binary tree may also be empty. 

If a number assigned to each parental vertex is 

larger than all the numbers in its left subtree and 

smaller than all the numbers in its right subtree. 

Such trees are called binary search trees. Binary 

trees and binary search trees have a wide variety 

of applications in computer science. 

1.5.4. Sets and Dictionaries 

A set can be described as an unordered collection (possibly empty) of distinct items called 

elements of the set. A specific set is defined either by an explicit listing of its elements (e.g., S 

= {2,3, 5, 7}) or by specifying a property that all the set’s elements and only they must satisfy 

(e.g., S = {n: n is a prime number smaller than 10}). 

The most important set operations are: checking membership of a given item in a given set; 

finding the union of two sets, which comprises all the elements in either or both of them; and 

finding the intersection of two sets, which comprises all the common elements inthe sets. 

Sets can be implemented in computer applications in two ways. The first considers only sets 

that are subsets of some large set U, called the universal set. If set U has n elements, then any 

subset S of U can be represented by a bit string of size n, called a bit vector, in which the ith 

element is 1 if and only if the ith element of U is included in set S. 

The second and more common way to represent a set for computing purposes is to use the list 

structure to indicate the set’s elements. This is feasible only for finite sets. The requirement 

for  uniqueness  is  sometimes  circumvented  by  the  introduction  of  a  multiset,  or  bag, an 

unordered collection of items that are not necessarily distinct. Note that if a set is represented 

by a list, depending on the application at hand, it might be worth maintaining the list in a sorted 

order. 

Dictionary: In computing, the operations we need to perform for a set or a multiset most 

often are searching for a given item, adding a new item, and deleting an item from the 

collection. A data structure that implements these three operations is called the dictionary. 

An efficient implementation of a dictionary has to strike a compromise between the 

efficiency 
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of searching and the efficiencies of the other two operations. They range from an 

unsophisticated use of arrays (sorted or not) to much more sophisticated techniques such as 

hashing and balanced search trees. 

A number of applications in computing require a dynamic partition of so men-element set into 

a collection of disjoint subsets. After being initialized as a collection of n one-element subsets, 

the collection is subjected to a sequence of intermixed union and search operations. This 

problem is called the set union problem. 


