
C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 1

MODULE 4



FUNCTIONS

 A function as series of instructions or group of statements with one specific purpose.

 A function is a program segment that carries out some specific, well defined task.

 A function is a self contained block of code that performs a particular task.

 4.1 Types of functions

 C functions can be classified into two types,

1. Library functions /pre defined functions /standard functions /built in functions

2. User defined functions

1. Library functions /pre defined functions /standard functions/Built in Functions

 These functions are defined in the library of C compiler which are used frequently in

the C program.

 These functions are written by designers of c compiler.

 C supports many built in functions like

 Mathematical functions

 String manipulation functions

 Input and output functions

 Memory management functions

 Error handling functions

 EXAMPLE:

 pow(x,y)-computes xy

 sqrt(x)-computes square root of x

 printf()- used to print the data on the screen

 scanf()-used to read the data from keyboard.

2. User Defined Functions

 The functions written by the programmer /user to do the specific tasks are called user

defined function(UDF’s).

 The user can construct their own functions to perform some specific task. This type of

functions created by the user is termed as User defined functions.

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 2

 Elements of User Defined Function

The Three Elements of User Defined function structure consists of :

1. Function Definition

2. Function Declaration

3. Function call

1. Function Definition:

 A program Module written to achieve a specific task is called as function definition.

 Each function definition consists of two parts:

i. Function header

ii. Function body

General syntax of function definition

Function Definition Syntax Function Definition Example

Datatype functionname(parameters)

{

declaration part;

executable part;

return statement;

}

void add()

{

int sum,a,b;

printf(“enter a and b\n”);

scanf(“%d%d”,&a,&b);

sum=a+b;

printf(“sum is %d”,sum);

}

i. Function header

Syntax

datatype functionname(parameters)

 It consists of three parts

a) Datatype:

 The data type can be int,float,char,double,void.

 This is the data type of the value that the function is expected to return to

calling function.

b) functionname:

 The name of the function.

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 3

datatypefunctionname(type p1,type p2,………type pn);

Example

int add(int a, int b);

void add(int a, int b);

Function Declaration Syntax

 It should be a valid identifier.

c) parameters

 The parameters are list of variables enclosed within parenthesis.

 The list of variables should be separated by comma.

Ex: void add(int a, int b)

 In the above example the return type of the function is void

 the name of the function is add and

 The parameters are 'a' and 'b' of type integer.

ii. Function body

 The function body consists of the set of instructions enclosed between { and } .

 The function body consists of following three elements:

a) declaration part: variables used in function body.

b) executable part: set of Statements or instructions to do specific activity.

c) return : It is a keyword,it is used to return control back to calling function.

If a function is not returning value then statement is:

return;

If a function is returning value then statement is:

return value;

2. Function Declaration

 The process of declaring the function before they are used is called as function

declaration or function prototype.

 function declaration Consists of the data type of function, name of the function

and parameter list ending with semicolon.

Note: The function declaration should end with a semicolon ;

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 4

3. Function Call:

 The method of calling a function to achieve a specific task is called as function

call.

 A function call is defined as function name followed by semicolon.

 A function call is nothing but invoking a function at the required place in the

program to achieve a specific task.

Ex:

void main()

{

add(); // function call without parameter

}

 Formal Parameters and Actual Parameters

 Formal Parameters:

 The variables defined in the function header of function definition are called

formal parameters.

 All the variables should be separately declared and each declaration must be

separated by commas.

 The formal parameters receive the data from actual parameters.

 Actual Parameters:

 The variables that are used when a function is invoked)in function call) are called

actual parameters.

 Using actual parameters, the data can be transferred from calling function.

to the called function.

 The corresponding formal parameters in the function definition receive them.

 The actual parameters and formal parameters must match in number and type of

data.

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 5

Actual Parameters Formal Parameters

Actual parameters are also called as

argument list.

Ex: add(m,n)

Formal parameters are also

called as dummy parameters.

Ex:int add(int a, int b)

The variables used in function call are

called as actual parameters

The variables defined in function

header are called formal

parameters

Actual parameters are used in calling

function when a function is called or

invoked

Ex: add(m,n)

Here, m and n are called actual

parameters

Formal parameters are used in

the function header of a called

function.

Example:

int add(int a, int b)

{ ………..

}

Here, a and b are called formal

parameters.

Actual parameters sends data to the

formal parameters

Example:

Formal parameters receive data

from the actual parameters.

 Differences between Actual and Formal Parameters

 4.2 Categories of the functions

1. Function with no parameters and no return values

2. Function with no parameters and return values.

3. Function with parameters and no return values

4. Function with parameters and return values

1. Function with no parameters and no return values

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 6

1. Function with no parameters and no return values

(void function without parameter)

Calling function Called function

/*program to find sum of two numbers

using function*/

#include<stdio.h>

void add();

void main()

{

add();

}

void add ()

{

int sum;

printf(“enter a and b values\n”);

scanf(“%d%d”,&a,&b);

sum=a+b;

printf(“\n The sum is %d”, sum);

return;

}

 In this category no data is transferred from calling function to called function,

hence called function cannot receive any values.

 In the above example,no arguments are passed to user defined function add().

 Hence no parameter are defined in function header.

 When the control is transferred from calling function to called function a ,and b

values are read,they are added,the result is printed on monitor.

 When return statement is executed ,control is transferred from called function/add

to calling function/main.

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 7

2. Function with parameters and no return values

(void function with parameter)

Calling function Called function

/*program to find sum of two numbers

using function*/

#include<stdio.h>

void add(int m, int n);

void main()

{

int m,n;

printf(“enter values for m and n:”);

scanf(“%d %d”,&m,&n);

add(m,n);

}

void add(int a, int b)

{

int sum;

sum = a+b;

printf(“sum is:%d”,sum);

return;

}

 In this category, there is data transfer from the calling function to the called

function using parameters.

 But there is no data transfer from called function to the calling function.

 The values of actual parameters m and n are copied into formal parameters a and b.

 The value of a and b are added and result stored in sum is displayed on the screen

in called function itself.

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 8

3. Function with no parameters and with return values

Calling function Called function

/*program to find sum of two numbers

using function*/

#include<stdio.h>

int add();

void main()

{

int result;

result=add();

printf(“sum is:%d”,result);

}

int add() /* function header */

{

int a,b,sum;

printf(“enter values for a and

b:”);

scanf(“%d %d”,&a,&b);

sum= a+b;

return sum;

}

 In this category there is no data transfer from the calling function to the

called function.

 But, there is data transfer from called function to the calling function.

 No arguments are passed to the function add(). So, no parameters are defined in

the function header

 When the function returns a value, the calling function receives one value from

the called function and assigns to variable result.

 The result value is printed in calling function.

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 9

4. Function with parameters and with return values

Calling function Called function

/*program to find sum of two numbers

using function*/

#include<stdio.h>

int add();

void main()

{

int result,m,n;

printf(“enter values for m and

n:”);

scanf(“%d %d”,&m,&n);

result=add(m,n);

printf(“sum is:%d”,result);

}

int add(int a, int b) /* function header */

{

int sum;

sum= a+b;

return sum;

}

 In this category, there is data transfer between the calling function and called

function.

 When Actual parameters values are passed, the formal parameters in called

function can receive the values from the calling function.

 When the add function returns a value, the calling function receives a value from

the called function.

 The values of actual parameters m and n are copied into formal parameters a and

b.

 Sum is computed and returned back to calling function which is assigned to

variable result.

 4.3 Passing parameters to functions or Types of argument passing

The different ways of passing parameters to the function are:

 Pass by value or Call by value

 Pass by address or Call by address

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 10

1. Call by value:

 In call by value, the values of actual parameters are copied into formal parameters.

 The formal parameters contain only a copy of the actual parameters.

 So, even if the values of the formal parameters changes in the called function, the

values of the actual parameters are not changed.

 The concept of call by value can be explained by considering the following program.

Example:

#include<stdio.h>

void swap(int a,int b);

void main()

{

int m,n;

printf("enter values for a and b:");

scanf("%d %d",&m,&n);

printf("the values before swapping are m=%d n=%d \n",m,n);

swap(m,n);

printf("the values after swapping are m=%d n=%d \n",m,n);

}

void swap(int a, int b)

{

int temp;

temp=a;

a=b;

b=temp;

}

 Execution starts from function main() and we will read the values for variables

m and n, assume we are reading 10 and 20 respectively.

 We will print the values before swapping it will print 10 and 20.

 The function swap() is called with actual parameters m=10 and n=20.

 In the function header of function swap(), the formal parameters a and b

receive the values 10 and 20.

 In the function swap(), the values of a and b are exchanged.

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 11

 But, the values of actual parameters m and n in function main() have not been

exchanged.

 The change is not reflected back to calling function.

2. Call by Address

 In Call by Address, when a function is called, the addresses of actual

parameters are sent.

 In the called function, the formal parameters should be declared as pointers

with the same type as the actual parameters.

 The addresses of actual parameters are copied into formal parameters.

 Using these addresses the values of the actual parameters can be changed.

 This way of changing the actual parameters indirectly using the addresses of

actual parameters is known as pass by address.

Example:

#include<stdio.h>

void swap(int a,int b);

void main()

{

int m,n;

printf("enter values for a and b:");

scanf("%d %d",&m,&n);

printf("the values before swapping are m=%d n=%d \n",m,n);

swap(&m,&n);

printf("the values after swapping are m=%d n=%d \n",m,n);

}

void swap(int*a, int*b)

{

}

NOTE:

int temp;

temp=*a;

*a=*b;

*b=temp;

C Programming and Problem Solving-18CPS23 Module 4

 Dr. Jyoti Metan Dept of CSE,ACSCE 12

Pointer: A pointer is a variable that is used to store the address of another variable.

Syntax: datatype *variablename;

Example: int *p;

#include<stdio.h>

void main()

{

inta ,*p;

p=&a;

}

In the above program p is a pointer variable, which is storing the address of variable a.

Differences between Call by Value and Call by reference

Call by Value Call by Address

When a function is called the values

of variables are passed

When a function is called the addresses of

variables are passed

The type of formal parameters should

be same as type of actual parameters

The type of formal parameters should be

same as type of actual parameters, but

they have to be declared as pointers.

Formal parameters contains the

values of actual parameters

Formal parameters contain the addresses

of actual parameters.

 Scope and Life time of a variable

Scope of a variable is defined as the region or boundary of the program in which

the variable is visible. There are two types

(i) Global Scope

(ii) Local Scope

i. Global Scope:

 The variables that are defined outside a block have global scope.

 That is any variable defined in global area of a program is visible from its

definition until the end of the program.

 For Example, the variables declared before all the functions are visible

everywhere in the program and they have global scope.

Programming in C and Data Structures Module 3

Dr. Jyoti Metan Dept of CSE,ACSCE Page 13

ii. Local Scope

a. The variables that are defined inside a block have local scope.

b. They exist only from thepoint of their declaration until the end of the block.

c. They are not visible outside the block.

 Life Span of a variable

 The life span of a variable is defined as the period during which a variable is

active during execution of a program.

For Example

 The life span of a global variable is the life span of the program.

 The life span of local variables is the life span of the function, they are created.

 Storage Classes

 There are following storage classes which can be used in a C Program:

i. Global variables

ii. Local variables

iii. Static variables

iv. Register variables

i. Global variables:

 These are the variables which are defined before all functions in global area of

the program.

 Memory is allocated only once to these variables and initialized to zero.

 These variables can be accessed by any function and are alive and active

throughout the program.

 Memory is deallocated when program execution is over.
e.g
#include<stdio.h>
int x;
main()
{
x=10;
printf(“%d”,x);
printf(“x=%d”,fun1());
printf(“x=%d”,fun2());
printf(“x=%d”,fun3());

}

ii. Local variables(automatic variables)

Programming in C and Data Structures Module 3

Dr. Jyoti Metan Dept of CSE,ACSCE Page 14

 These are the variables which are defined within a functions.

 These variables are also called as automatic variables.

 The scope of these variables are limited only to the function in which they are

declared and cannot be accessed outside the function.

 e.g

#include<stdio.h>
main()
{
 int m=1000;
 func2();
 printf(“%d\n”,m);
}
func1()
{
 int m=10;
 printf(“%d\n”,m);
}

iii. Static variables

 The variables that are declared using the keyword static are called static

variables.

 The static variables can be declared outside the function and inside the function.

They have the characteristics of both local and global variables.

 Static can also be defined within a function.

Ex: static int a,b;

#include<stdio.h>
main()
{
int I;
for (I=1;I<=3;I++)
stat();
}
stat()
{
static int x=0;
x=x+1;
printf(“x=%d\n”,x);

}

iv. Register variables

Programming in C and Data Structures Module 3

Dr. Jyoti Metan Dept of CSE,ACSCE Page 15

 Any variables declared with the qualifier register is called a register variable.

 This declaration instructs the compiler that the variable under use is to be stored

in one of the registers but not in main memory.

 Register access is much faster compared to memory access. Ex:
register int a;

Recursion

 Recursion is a method of solving the problem where the solution to a problem depends

on solutions to smaller instances of the same problem.

 Recursive function is a function that calls itself during the execution.
 Consider Example for finding factrorial of 5

Factorial(5)=n*fact(n-1)

Example 1.
/******* Factorial of a given number using Recursion ******/
#include<stdio.h>
int fact(int n);

void main()
{
int num,result;
printf("enter number:");
scanf("%d",&num);
result=fact(num);
printf("The factorial of a number is: %d",result);
}

int fact(int n)
{
 if(n==0)
 return 1;
 else
 return (n*fact(n-1));

Programming in C and Data Structures Module 3

Dr. Jyoti Metan Dept of CSE,ACSCE Page 16

}
output :
enter number:5
The factorial of a number is:120

 Fibonacci Sequence:

 The Fibonacci Sequence is the series of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
 The next number is found by adding up the two numbers before it.

 The 2 is found by adding the two numbers before it (1+1)
 The 3 is found by adding the two numbers before it (1+2),
 And the 5 is (2+3),

 and so on!
Example 2.
/******* Factorial of a given number using Recursion ******/

#include<stdio.h>

int fibonacci(int);

void main ()

{

 int n,f;

 printf("Enter the value of n?");

 scanf("%d",&n);

 f = fibonacci(n);

 printf("%d",f);

}

int fibonacci (int n)

{

 if (n==0)

 {

 return 0;

 }

 else if (n == 1)

 {

 return 1;

 }

 else

 {

 return fibonacci(n-1)+fibonacci(n-2);

 }

}

