
OOP'S WITH C++ 17BM63

[Type text]

MODULE-2
CLASSES AND OBJECTS – I

Topics covered

Classes & Objects – I: Class Specification, Class Objects, Scope resolution operator,

Access members, Defining member functions, Data hiding, Constructors, Destructors,

Parameterized constructors, Static data members, Functions

MODULE-2 Summary

In C++, the class forms the basis for object-oriented programming. The class is

used to define the nature of an object, and it is C++'s basic unit of

encapsulation. This chapter examines classes and objects in detail.

OOP'S WITH C++ 17BM63

[Type text]

1. Class Specification

Classes are created using the keyword class. A class declaration
defines a new type that links code and data. This new type is then used to
declare objects of that class. Thus, a class is a logical abstraction, but an
object
class.

has physical existence. In other words, an object is an instance of a

A class declaration is similar syntactically to a structure. a
simplified general form of a class declaration was shown. Here is the entire
general form of a class declaration that does not inherit any other class.

class class-name {
private data and functions

access-specifier:
data and functions

access-specifier:
data and functions

// ...
access-specifier:

data and functions
} object-list;

The object-list is optional. If present, it declares objects of the class. Here,
access-specifier is one of these three C++ keywords:

public

private

protected

class employee {
char name[80];
double wage;

public:
void putname(char *n);
void getname(char *n);
void putwage(double w);
double getwage();

};

Functions

that

are

declared

within

a class

are

called

member

functions. Member functions may access any element of the class of
which they are a part. This includes all private elements. Variables that
are elements of a class are called member variables or data members. (The
term instance variable is also used.) Collectively, any element of a class can
be referred to as a member of that class. There are a few restrictions that

OOP'S WITH C++ 17BM63

[Type text]

apply to class members. A non-static member variable cannot have an
initializer. No member can be an object of the class that is being declared.

OOP'S WITH C++ 17BM63

[Type text]

(Although a member can be a pointer to the class that is being declared.)
No member can be declared as auto, extern, or register. In general, you
should make all data members of a class private to that class. This is part
of the way that encapsulation is achieved. However, there may be
situations in which you will need to make one or more variables public.
(For example, a heavily used variable may need to be accessible globally
in order to achieve faster run times.) When a variable is public, it may be
accessed directly by any other part of your program. The syntax for
accessing a public data member is the same as for calling a member
function: Specify the object's name, the dot operator, and the variable
name. This simple program illustrates the use of a public variable:

2. Class Objects

#include <iostream>
using namespace std;

class myclass {
public:

int i, j, k; // accessible to entire program
};

int main()
{

myclass a, b;

a.i = 100; // access to i, j, and k is OK
a.j = 4;
a.k = a.i * a.j;

b.k = 12; // remember, a.k and b.k are different
cout << a.k << " " << b.k;

return 0;
}

3. Scope resolution operator

As you know, the :: operator links a class name with a member name in order to
tell the compiler what class the member belongs to. However, the scope
resolution operator has another related use: it can allow access to a name in an
enclosing scope that is "hidden" by a local declaration of the same name. For
example, consider this

OOP'S WITH C++ 17BM63

[Type text]

fragment:

OOP'S WITH C++ 17BM63

[Type text]

int i; // global i

void f()
{

int i; // local i

i = 10; // uses local i
}

As the comment suggests, the assignment i = 10 refers to the local i. But what if
function f() needs to access the global version of i? It may do so by preceding the
i with the :: operator, as shown here.

int i; // global i

void f()
{

int i; // local i

::i = 10; // now refers to global i
}

4. Access members
By default, functions and data declared within a class are private to

that class and may be accessed only by other members of the class. The
public access specifier allows functions or data to be accessible to other
parts of your program. The protected access specifier is needed only
when inheritance is involved. Once an access specifier has been used, it
remains in effect until either another access specifier is encountered or
the end of the class declaration is reached.

You may change access specifications as often as you like within a
class declaration. For example, you may switch to public for some
declarations and then switch back to private again. The class declaration
in the following example illustrates this feature:

5. Constructors

Constructors are special member functions that are executed whenever we create new
objects of a class type. The job of a constructor is to ensure that the data members of
each object start out with sensible initial values. If a constructor only has one
parameter, there is a third way to pass an initial value to that constructor.
For example, consider the following short program.

#include <iostream>

OOP'S WITH C++ 17BM63

[Type text]

using namespace std;

OOP'S WITH C++ 17BM63

[Type text]

class X {
int a;

public:

X(int j) { a = j; }
int geta() { return a; }

};

int main()
{

X ob = 99; // passes 99 to j

cout << ob.geta(); // outputs 99

return 0;

}

Here, the constructor for X takes one parameter. Pay special attention to
how ob is declared in main(). In this form of initialization, 99 is
automatically passed to the j parameter in the X() constructor. That is, the
declaration
this:

statement is handled by the compiler as if it were written like

X ob = X(99);

In general, any time you have a constructor that requires only one
argument, you can use either ob(i) or ob = i to initialize an object. The reason
for this is that whenever you create a constructor that takes one argument,
you are also implicitly creating a conversion from the type of that argument
to the type of the class. Remember that the alternative shown here
only to constructors that have exactly one parameter.

applies

6. Destructors

One purpose of a constructor is to provide for the automatic acquisition of a resource. For
example, a constructor might allocate a buffer or open a file. Having allocated the
resource in the constructor, we need a corresponding operation that automatically
deallocates or otherwise releases the resource. The destructor is a special member
function that can be used to do whatever resource deallocation is needed. It serves as the
complement to the constructors of the class.
When a Destructor Is Called

The destructor is called automatically whenever an object of its class is destroyed:
// p points to default constructed object
Sales_item *p = new Sales_item;

OOP'S WITH C++ 17BM63

[Type text]

{

OOP'S WITH C++ 17BM63

[Type text]

Sales_item item(*p);
delete p;

}

// new scope
// copy constructor copies *p into item

// destructor called on object pointed to by p
// exit local scope; destructor called on item

Variables such as item are destroyed automatically when they go out of scope. Hence, the
destructor on item is run when the close curly is encountered. An object that is
dynamically allocated is destroyed only when a pointer pointing to the object is delete d.
If we do not delete a pointer to a dynamically allocated object, then the destructor is
never run on that object. The object will persist forever, leading to a memory leak.
Moreover, any resources used inside the object will also not be released.

7. Parameterized constructors

It is possible to pass arguments to constructors. Typically, these arguments
help initialize an object when it is created. To create a parameterized
constructor, simply add parameters to it the way you would to any other
function. When you define the constructor's body, use the parameters to
initialize the object. For example, here is a simple class that includes a
parameterized constructor:

#include <iostream>
using namespace std;

class myclass {
int a, b;

public:
myclass(int i, int j) {a=i; b=j;}
void show() {cout << a << " " << b;}

};

int main()
{

myclass ob(3, 5);

ob.show();

return 0;
}

Notice that in the definition of myclass(), the parameters i and j are
used to give initial values to a and b.

The program illustrates the most common way to specify arguments
when you declare an object that uses a parameterized constructor.
Specifically, this statement

myclass ob(3, 4);

causes an object called ob to be created and passes the arguments
3 and 4 to the i and j parameters of myclass(). You may also pass
arguments using this type of declaration statement:

OOP'S WITH C++ 17BM63

[Type text]

myclass ob = myclass(3, 4);

However, the first method is the one generally used, and this is the
approach taken by most of the examples in this book. Actually, there is a small
technical difference between the two types of declarations that relates to copy
constructors. Here is another example that uses a parameterized constructor. It
creates a class that stores information about library books.

#include <iostream>
#include <cstring>
using namespace std;

const int IN = 1;
const int CHECKED_OUT = 0;

class book {

char author[40];
char title[40];
int status;

public:
book(char *n, char *t, int s);
int get_status() {return status;}
void set_status(int s) {status = s;}
void show();

};

book::book(char *n, char *t, int s)
{

strcpy(author, n);
strcpy(title, t);
status = s;

}

void book::show()
{

cout << title << " by " << author;
cout << " is ";
if(status==IN) cout << "in.\n";
else cout << "out.\n";

}

int main()
{

book b1("Twain", "Tom Sawyer", IN);

OOP'S WITH C++ 17BM63

[Type text]

book b2("Melville", "Moby Dick", CHECKED_OUT);

OOP'S WITH C++ 17BM63

[Type text]

b1.show();
b2.show();

return 0;

}
Parameterized constructors are very useful because they allow you to

avoid having to make an additional function call simply to initialize one or
more variables in an object. Each function call you can avoid makes your
program more efficient. Also, notice that the short get_status() and
set_status() functions are defined in line, within the book class. This is a
common practice when writing C++ programs.

8. Static data members

When you precede a member variable's declaration with static, you are
telling the compiler that only one copy of that variable will exist and that all
objects of the class will share that variable. Unlike regular data members,
individual copies of a static member variable are not made for each object.
No matter how many objects of a class are created, only one copy of a static
data member exists. Thus, all objects of that class use that same variable. All
static variables are initialized to zero before the first object is created.

When you declare a static data member within a class, you are not
defining it. (That is, you are not allocating storage for it.) Instead, you must
provide a global definition for it elsewhere, outside the class. This is done by
redeclaring the static variable using the scope resolution operator to identify
the class to which it belongs. This causes storage for the variable to be
allocated. (Remember, a class declaration is simply a logical construct that
does not have physical reality.) To understand the usage and effect of a
static data member, consider this program:

#include <iostream>
using namespace std;

class shared {

static int a;
int b;

public:
void set(int i, int j) {a=i; b=j;}
void show();

} ;

int shared::a; // define a

void shared::show()

{
cout << "This is static a: " << a;
cout << "\nThis is non-static b: " << b;
cout << "\n";

OOP'S WITH C++ 17BM63

[Type text]

}

OOP'S WITH C++ 17BM63

[Type text]

int main()
{

shared x, y;

x.set(1, 1); // set a to 1
x.show();

y.set(2, 2); // change a to 2
y.show();

x.show(); /* Here, a has been changed for both x and y
because a is shared by both objects. */

return 0;
}

This program displays the following output when run.

This is static a: 1
This is non-static b: 1
This is static a: 2
This is non-static b: 2
This is static a: 2
This is non-static b: 1

9. Static Member Functions
Member functions may also be declared as static. There are several

restrictions placed on static member functions. They may only directly refer to
other static members of the class. (Of course, global functions and data may be
accessed by static member functions.) A static member function does not have a
this pointer.

There cannot be a static and a non-static version of the same function. A
static member function may not be virtual. Finally, they cannot be declared as
const or volatile. Following is a slightly reworked version of the shared-
resource program from the previous section. Notice that get_resource() is now
declared as static. As the program illustrates, get_resource() may be called
either by itself, independently of any object, by using the class name and the
scope resolution operator, or in connection with an object

#include <iostream>
using namespace std;
class cl {

static int resource;
public:

static int get_resource();
void free_resource() { resource = 0; }

};

OOP'S WITH C++ 17BM63

[Type text]

int cl::resource; // define resource
int cl::get_resource()
{

if(resource) return 0; // resource already in use
else {

resource = 1;
return 1;

}
}

// resource allocated to this object

int main()
{

cl ob1, ob2;
/* get_resource() is static so may be called independent

of any object. */
if(cl::get_resource()) cout << "ob1 has resource\n";
if(!cl::get_resource()) cout << "ob2 denied resource\n";
ob1.free_resource();
if(ob2.get_resource()) // can still call using object syntax

cout << "ob2 can now use resource\n";
return 0; }

Actually, static member functions have limited applications, but one good
use for them is to "preinitialize" private static data before any object is actually
created. For example, this is a perfectly valid C++ program:

#include <iostream>

using namespace std;

class static_type {
static int i;

public:
static void init(int x) {i = x;}
void show() {cout << i;}

};

int static_type::i; // define i

int main()

{
// init static data before object creation
static_type::init(100);

static_type x;
x.show(); // displays 100

return 0; }

OOP'S WITH C++ 17BM63

[Type text]

UNIT – III

CLASSES AND OBJECTS – II

Topics covered

Classes & Objects –II: Friend functions, Passing objects as arguments, Returning objects,

Arrays of objects, Dynamic objects, Pointers to objects, Copy constructors, Generic functions

and classes, Applications Operator overloading using friend functions such as +, - , pre-

increment, post-increment, [] etc., overloading <<, >>.

UNIT-3 Summary

In Part One, pointers and arrays were examined as they relate to C++'s

built-in types. Here, they are discussed relative to objects. This chapter also

looks at a feature related to the pointer called a reference. The chapter

concludes with an examination of C++'s dynamic allocation operators.

1. Friend functions

It is possible to grant a nonmember function access to the private members of a
class by using a friend. A friend function has access to all private and protected
members of the class for which it is a friend. To declare a friend function,
include its prototype within the class, preceding it with the keyword friend.
Consider this program:

#include <iostream>

using namespace std;

class myclass {
int a, b;
public:
friend int sum(myclass x);
void set_ab(int i, int j);

};

void myclass::set_ab(int i, int j)
{
a = i;
b = j;

OOP'S WITH C++ 17BM63

[Type text]

}

OOP'S WITH C++ 17BM63

[Type text]

// Note: sum() is not a member function of any class.
int sum(myclass x)
{
/* Because sum() is a friend of myclass, it can
directly access a and b. */

return x.a + x.b;
}

int main()
{
myclass n;

n.set_ab(3, 4);

cout << sum(n);

return 0;

}

In this example, the sum() function is not a member of myclass. However, it
still has full access to its private members. Also, notice that sum() is called
without the use of the dot operator. Because it is not a member function, it does
not need to be (indeed, it may not be) qualified with an object's name.

2. Passing objects as arguments

Objects may be passed to functions in just the same way that any other
type of variable can. Objects are passed to functions through the use of the
standard call-by-value mechanism. Although the passing of objects is
straightforward, some rather unexpected events occur that relate to
constructors
program.

and destructors. To understand why, consider this short

// Passing an object to a function.
<iostream>
namespace std;

class
i;

myclass {

public:
myclass(int n);
~myclass();
void set_i(int n) { i=n; }
int get_i() { return i; }
};

OOP'S WITH C++ 17BM63

[Type text]

myclass::myclass(int n)

OOP'S WITH C++ 17BM63

[Type text]

{
i = n;
cout << "Constructing " << i << "\n";
}

myclass::~myclass()
{
cout << "Destroying " << i << "\n";
}

void f(myclass ob);

main()

myclass

f(o);
cout <<

cout <<o.get_i() <<

"\n";

return 0;
}

void f(myclass ob)
{
ob.set_i(2);

cout << "This is local i: " << ob.get_i();
cout << "\n";
}

This program produces this output:

Constructing 1

This is local i: 2
Destroying 2
This is i in main: 1
Destroying 1

As the output shows, there is one call to the constructor, which occurs
when o is created in main(), but there are two calls to the destructor. Let's
see why this is the case. When an object is passed to a function, a copy of
that object is made (and this copy becomes the parameter in the function).

OOP'S WITH C++ 17BM63

[Type text]

This means that a new object comes into existence. When the function
terminates, the copy of the argument (i.e., the parameter) is destroyed. This

OOP'S WITH C++ 17BM63

[Type text]

raises two fundamental questions: First, is the object's constructor called
when the copy is made? Second, is the object's destructor called when the
copy is destroyed? The answers may, at first, surprise you.

When a copy of an argument is made during a function call, the normal
constructor is not called. Instead, the object's copy constructor is called. A
copy constructor defines how a copy of an object is made. you can explicitly
define a copy constructor for a class that you create . However, if a class
does not explicitly define a copy constructor, as is the case here, then C++
provides one by default. The default copy constructor creates a bitwise
(that is, identical) copy of the object. The reason a bitwise copy is made is
easy to understand if you think about it. Since a normal constructor is used to
initialize some aspect of an object, it must not be called to make a copy of
an already existing object. Such a call would alter the contents of the object.

When passing an object to a function, you want to use the current state of
the object, not its initial state. However, when the function terminates and
the copy of the object used as an argument is destroyed, the destructor is
called. This is necessary because the object has gone out of scope. This is
why the preceding program had two calls to the destructor. The first was
when the parameter to f() went out-of-scope. The second is when o inside
main() was destroyed when the program ended.

To summarize: When a copy of an object is created to be used as an
argument to a function, the normal constructor is not called. Instead, the
default copy constructor makes a bit-by-bit identical copy. However, when
the copy is destroyed (usually by going out of scope when the function
returns), the destructor is called. Because the default copy constructor
creates an exact duplicate of the original, it can, at times, be a source of
trouble. Even though objects are passed to functions by means of the
normal call-by-value parameter passing mechanism which, in theory,
protects and insulates the calling argument, it is still possible for a side
effect to occur that may affect, or even damage, the object used as an
argument. For example, if an object used as an argument allocates
memory and frees that memory when it is destroyed, then its local copy
inside the function will free the same memory when its destructor is called.
This will leave the original object damaged and effectively useless.

3. Returning objects

A function may return an object to the caller. For example, this is a valid
C++ program:

// Returning objects from a function.
#include <iostream>
using namespace std;

class myclass {

OOP'S WITH C++ 17BM63

[Type text]

int i;

OOP'S WITH C++ 17BM63

[Type text]

public:
void set_i(int n) { i=n; }
int get_i() { return i; }
};

myclass f();

int main()

{
myclass o;

o = f();

// return object of type myclass

cout << o.get_i() << "\n";

return 0;

}

myclass f()
{
myclass x;

x.set_i(1);

return x;

}

When an object is returned by a function, a temporary object is
automatically created that holds the return value. It is this object that is
actually returned by the function. After the value has been returned, this
object is destroyed. The destruction

of this temporary object may cause unexpected side effects in some
situations. For example, if the object returned by the function has a
destructor that frees dynamically allocated memory, that memory will be
freed even though the object that is receiving the return value is still using
it.

4. Arrays of objects

In C++, it is possible to have arrays of objects. The syntax for declaring
and using an object array is exactly the same as it is for any other type of
array. For example, this program uses a three-element array of objects:

#include <iostream>

using namespace std;

class cl {
int i;
public:

OOP'S WITH C++ 17BM63

[Type text]

void set_i(int j) { i=j; }

OOP'S WITH C++ 17BM63

[Type text]

int get_i() { return i; }
};

int main()
{
cl ob[3];
int i;

for(i=0; i<3; i++) ob[i].set_i(i+1);

for(i=0; i<3; i++)
cout << ob[i].get_i() << "\n";

return 0;
}

This program displays the numbers 1, 2, and 3 on the screen. If a class
defines a parameterized constructor, you may initialize each object in an
array by specifying an initialization list, just like you do for other types of
arrays. However, the exact form of the initialization list will be decided by
the number of parameters required by the object's constructors. For objects
whose constructors have only one parameter, you can simply specify a list
of initial values, using the normal array-initialization syntax. As each
element in the array is created, a value from the list is passed to the
constructor's parameter. For example, here is a slightly different version of
the preceding program that uses an initialization:

#include <iostream>

using namespace std;

class cl {
int i;

public:
cl(int j) { i=j; } // constructor

{
int get_i()
};

int main()
{

return i; }

cl ob[3] = {1, 2, 3}; // initializers
int i;

for(i=0; i<3; i++)
cout << ob[i].get_i() << "\n";

return 0;

}

OOP'S WITH C++ 17BM63

[Type text]

As before, this program displays the numbers 1, 2, and 3 on the screen.
Actually, the initialization syntax shown in the preceding program is
shorthand for this longer form:

cl ob[3] = { cl(1), cl(2), cl(3) };

Here, the constructor for cl is invoked explicitly. Of course, the short
form used in the program is more common. The short form works because
of the automatic conversion that applies to constructors taking only one
argument. Thus, the short form can only be used to initialize object arrays
whose constructors only require one argument. If an object's constructor
requires two or more arguments, you will have to use the longer
initialization form. For example,

#include <iostream>
using namespace std;
class cl {
int h;
int i;
public:
cl(int j, int k) { h=j; i=k; } // constructor with 2 parameters
int get_i() {return i;}
int get_h() {return h;}
};

int main()
{
cl ob[3] = {
cl(1, 2), // initialize
cl(3, 4),
cl(5, 6)
};

int i;

for(i=0; i<3; i++) {
cout << ob[i].get_h();
cout << ", ";
cout << ob[i].get_i() << "\n";
}

return 0;
}

OOP'S WITH C++ 17BM63

[Type text]

Here, cl's constructor has two parameters and, therefore, requires two
arguments. This means that the shorthand initialization format cannot be
used and the long form, shown in the example, must be employed.

5. Dynamic objects

C++ allows you to generate a special type of pointer that "points"
generically to a member of a class, not to a specific instance of that member
in an object. This sort of pointer is called a pointer to a class member or a
pointer-to-member, for short. A pointer to a member is not the same as a
normal C++ pointer. Instead, a pointer to a member provides only an offset
into an object of the member's class at which that member can be found.
Since member pointers are not true pointers, the . and –> cannot be applied
to them. To access a member of a class given a pointer to it, you must use
the special pointer-to-member operators .* and –>*. Their job is to allow
you to access a member of a class given a pointer to that member.

C++ provides two dynamic allocation operators: new
operators are

and delete. These

used to allocate and free memory at run time. Dynamic allocation is an
important of almost all real-world programs. As explained in Part One,
C++ also supports dynamic memory allocation functions, called malloc()
and free(). These are included for the sake of compatibility with C.
However, for C++ code, you should use the new and delete operators
because they have several advantages.

The new operator allocates memory and returns a pointer to the start of
it. The delete operator frees memory previously allocated using new. The
general forms of new and delete are shown here:

p_var = new type;
delete p_var;

Here, p_var is a pointer variable that receives a pointer to memory that is
large enough to hold an item of type type.

Since the heap is finite, it can become exhausted. If there is insufficient
available memory to fill an allocation request, then new will fail and a
bad_alloc exception will be generated. This exception is defined in the
header <new>. Your program should handle this exception and take
appropriate action if a failure occurs. If this exception is not handled by
your program, then your program will be terminated. The actions of new on
failure as just described are specified by Standard C++. The trouble is that
not all compilers, especially older ones, will have implemented new in
compliance with Standard C++. When C++ was first invented, new
returned null on failure. Later, this was changed such that new caused an
exception on failure. Finally, it was decided that a new failure will generate
an exception by default, but that a null pointer could be returned instead,
as an option. Thus, new has been implemented differently, at different
times, by compiler manufacturers. Although all compilers will eventually

OOP'S WITH C++ 17BM63

[Type text]

implement new in compliance with Standard C++, currently the only way

OOP'S WITH C++ 17BM63

[Type text]

to know the precise action of new on failure is to check your compiler's
documentation.

Since Standard C++ specifies that new generates an exception on failure,
this is the way the code in this book is written. If your compiler handles an
allocation failure differently, you will need to make the appropriate changes.
Here is a program that allocates memory to hold an integer:

#include <iostream>
#include <new>
using namespace std;

int main()
{
int *p;

try {
p = new int; // allocate space for an int
(bad_alloc xa) {
<< "Allocation Failure\n";
return 1;
}

*p = 100;

} catch
cout

cout << "At " << p << " ";
cout << "is the value " << *p << "\n";

delete p;

return 0;
}

This program assigns to p an address in the heap that is large enough to
hold an integer. It then assigns that memory the value 100 and displays the
contents of the memory on the screen. Finally, it frees the dynamically
allocated memory. Remember, if your compiler implements new such that it
returns null on failure, you must change the preceding program
appropriately. The delete operator must be used only with a valid pointer
previously allocated by using new. Using any other type of pointer with
delete is undefined and will almost certainly cause serious problems, such
as a system crash. Although new and delete perform functions similar to
malloc() and free(), they have several advantages. First, new automatically
allocates enough memory to hold an object of the specified type. You do not
need to use the sizeof operator. Because the size is computed automatically, it
eliminates any possibility for error in this regard. Second, new automatically
returns a pointer of the specified type. You don't need to use an explicit
type cast as you do when allocating memory by using malloc(). Finally,

OOP'S WITH C++ 17BM63

[Type text]

both new and delete can be overloaded, allowing you to create customized

OOP'S WITH C++ 17BM63

[Type text]

allocation systems.
Although there is no formal rule that states this, it is best not to mix new

and delete with malloc() and free() in the same program. There is no
guarantee that they are mutually compatible.

6. Pointers to objects

Just as you can have pointers to other types of variables, you can have
pointers to objects. When accessing members of a class given a pointer to an
object, use the arrow (–>) operator instead of the dot operator. The next
program illustrates how to access an object given a pointer to it:

#include <iostream>
using namespace std;

class cl {
int i;
public:
cl(int j) { i=j; }
int get_i() { return i; }
};

int main()
{
cl ob(88), *p;

p = &ob; // get address of ob

cout << p->get_i(); // use -> to call get_i()

return 0;

}

As you know, when a pointer is incremented, it points to the next element
of its type. For example, an integer pointer will point to the next integer. In
general, all pointer arithmetic is relative to the base type of the pointer.
(That is, it is relative to the type of data that the pointer is declared as
pointing to.) The same is true of pointers to objects. For example, this
program uses a pointer to access all three elements of array ob
assigned ob's starting address:

after being

#include <iostream>

using namespace std;

class cl {
int i;

OOP'S WITH C++ 17BM63

[Type text]

public:

OOP'S WITH C++ 17BM63

[Type text]

cl() { i=0; }
cl(int j) { i=j; }
int get_i() { return i; }
};

int main()
{
cl ob[3] = {1, 2, 3};
cl *p;
int i;

p = ob; // get start of array
for(i=0; i<3; i++) {
cout << p->get_i() << "\n";
p++; // point to next object
}

return 0;
}
You can assign the address of a public member of an object to a pointer

and then access that member by using the pointer. For example, this is a
valid C++ program that displays the number 1 on the screen:

#include <iostream>

using namespace std;

class cl {
public:
int i;
cl(int j) { i=j; }
};

int main()
{
cl ob(1);
int *p;

p = &ob.i; // get address of ob.i

cout << *p; // access ob.i via p

return 0;

}

Because p is pointing to an integer, it is declared as an integer pointer. It
is irrelevant that i is a member of ob in this situation.

7. Copy constructors

OOP'S WITH C++ 17BM63

[Type text]

One of the more important forms of an overloaded constructor is the
copy constructor. Defining a copy constructor can help you prevent problems
that might occur when one object is used to initialize another. Let's begin by
restating the problem that the copy constructor is designed to solve. By
default, when one object is used to initialize another, C++ performs a
bitwise copy. That is, an identical copy of the initializing object is created in
the target object.

Although this is perfectly adequate for many cases—and generally
exactly what you want to happen—there are situations in which a bitwise
copy should not be used. One of the most common is when an object
allocates memory when it is created. For example, assume a class called
MyClass that allocates memory for each object when it is created, and an
object A of that class. This means that A has already allocated its memory.
Further, assume that A is used to initialize B, as shown here:

MyClass B = A;

If a bitwise copy is performed, then B will be an exact copy of A. This
means that B will be using the same piece of allocated memory that A is
using, instead of allocating its own. Clearly, this is not the desired outcome.
For example, if MyClass includes a destructor that frees the memory, then
the same piece of memory will be freed twice when A and B are destroyed!

The same type of problem can occur in two additional ways: first, when a
copy of an object is made when it is passed as an argument to a function;
second, when a temporary object is created as a return value from a
function. Remember, temporary objects are automatically created to hold
the return value of a function and they may also be created in certain other
circumstances.

To solve the type of problem just described, C++ allows you to create a
copy constructor, which the compiler uses when one object initializes
another. Thus, your copy constructor bypasses the default bitwise copy. The
most common general form of a copy constructor is

classname (const classname &o) {
// body of constructor
}

Here, o is a reference to the object on the right side of the initialization. It
is permissible for a copy constructor to have additional parameters as
long as they have default arguments defined for them. However, in all
cases the first parameter must be a reference to the object doing the
initializing.

It is important to understand that C++ defines two distinct types of
situations in which the value of one object is given to another. The first is
assignment. The second is initialization, which can occur any of three ways:

■ When one object explicitly initializes another, such as in a declaration

■ When a copy of an object is made to be passed to a function

OOP'S WITH C++ 17BM63

[Type text]

■ When a temporary object is generated (most commonly, as a return

OOP'S WITH C++ 17BM63

[Type text]

value)

The

copy

constructor

applies

only to

initializations.

For

example,
assuming a class called myclass, and that y is an object of type myclass,
each of the following statements involves initialization.

myclass x = y; //y explicitly initializing x

func(y); //
y

passed as a parameter

y = func(); // y receiving a temporary, return object

Following is an example where an explicit copy constructor is needed.
This program creates a very limited "safe" integer array type that prevents
array boundaries from being overrun. Storage for each array is allocated
by the use of new, and a pointer to the memory is maintained within each
array object.

/* This program creates a "safe" array class. Since space
for the array is allocated using new, a copy constructor
is provided to allocate memory when one array object is
used to initialize another.
*/
#include <iostream>
#include <new>
#include <cstdlib>
using namespace std;

class array {
int *p;
int size;
public:
array(int sz) {
try {
p = new int[sz];
} catch (bad_alloc xa) {
cout << "Allocation Failure\n";
exit(EXIT_FAILURE);
}
size = sz;
}
~array() { delete [] p; }

OOP'S WITH C++ 17BM63

[Type text]

// copy constructor

OOP'S WITH C++ 17BM63

[Type text]

array(const array &a);

void put(int i, int j) {
if(i>=0 && i<size) p[i] = j;
}
int get(int i) {
return p[i];
}
};

// Copy Constructor
array::array(const array &a) {
int i;

try {
p = new int[a.size];
} catch (bad_alloc xa) {
cout << "Allocation Failure\n";
exit(EXIT_FAILURE);
}
for(i=0; i<a.size; i++) p[i] = a.p[i];
}
int main()
{
array num(10);
int i;

for(i=0; i<10; i++) num.put(i,

for(i=9; i>=0; i--) cout << num.get(i);

cout << "\n";

// create another array and initialize with num
array x(num); // invokes copy constructor
for(i=0; i<10; i++) cout << x.get(i);

return 0;
}

Let's look closely at what happens when num is used to initialize x in the
statement

array x(num); // invokes copy constructor

The copy constructor is called, memory for the new array is allocated
and stored in x.p, and the contents of num are copied to x's array. In this

OOP'S WITH C++ 17BM63

[Type text]

way, x and num have arrays that contain the same values, but each array is

OOP'S WITH C++ 17BM63

[Type text]

separate and distinct. (That is, num.p and x.p do not point to the same piece
of memory.) If the copy constructor had not been created, the default
bitwise initialization would have resulted in x and num sharing the same
memory for their arrays. (That is, num.p and x.p would have indeed
pointed to the same location.)

8. Generic functions and classes

C++ allows a function to assign a parameter a default value when no
argument corresponding to that parameter is specified in a call to that
function. The default value is specified in a manner syntactically similar to
a variable initialization. For example, this declares myfunc() as taking one
double argument with a default value of 0.0:

void myfunc(double d = 0.0)
{
// ...
}
Now, myfunc() can be called one of two ways, as the following

examples show:

myfunc(198.234); // pass an explicit value
myfunc(); // let function use default

The first call passes the value 198.234 to d. The second call automatically
gives d the default value zero. One reason that default arguments are
included in C++ is because they provide another method for the
programmer to manage greater complexity. To handle the widest variety of
situations, quite frequently a function contains more parameters than are
required for its most common usage. Thus, when the default arguments
apply, you need specify only the arguments that are meaningful to the
exact situation, not all those needed by the most general case. For example,
many of the C++ I/O functions make use of default arguments for just this
reason.

A simple illustration of how useful a default function argument can be is
shown by the clrscr() function in the following program. The clrscr()
function clears the screen by outputting a series of linefeeds (not the most
efficient way, but sufficient for this example). Because a very common
video mode displays 25 lines of text, the default argument of 25 is provided.
However, because some video modes display more or less than 25 lines,
you can override the default argument by specifying one explicitly.

9. Applications Operator overloading using friend functions such as +, - ,
pre-increment, post-increment, [] etc., overloading <<, >>.

OOP'S WITH C++ 17BM63

[Type text]

A member operator function takes this general form:

OOP'S WITH C++ 17BM63

[Type text]

ret-type
{

class-name::operator#(arg-list)

// operations
}

Often, operator functions return an object of the class they operate on,
but ret-type can be any valid type. The # is a placeholder. When you create
an operator function, substitute the operator for the #. For example, if you
are overloading the / operator, use operator/. When you are overloading a
unary operator, arg-list will be empty. When you are overloading binary
operators, arg-list will contain one parameter.

(The reasons for this seemingly unusual situation will be made clear in a
moment.)

Here is a simple first example of operator overloading. This program
creates a class called loc, which stores longitude and latitude values. It
overloads the + operator relative to this class. Examine this program
carefully, paying special attention to the definition of operator+():

#include<iostream>
namespace std;

Class loc {

longitude, latitude;
public:
loc() {}
loc(int lg, int lt) {
longitude = lg;
latitude
}

lt=;

void show() {
cout << longitude

<< " ";

cout << latitude
}

<< "\n";

loc operator+(loc op2);
};

// Overload + for loc.
loc loc::operator+(loc op2)
{
loc temp;

temp.longitude = op2.longitude + longitude;
temp.latitude

return temp;

}

OOP'S WITH C++ 17BM63

[Type text]

= op2.latitude +
latitude;

OOP'S WITH C++ 17BM63

[Type text]

inmtain()

{
loc ob1(10, 20), ob2(5, 30);

ob1.show(); // displays 10 20
ob2.show(); // displays 5 30

ob1 = ob1 + ob2;
ob1.show(); // displays 15 50

return 0;
}

As you can see, operator+() has only one parameter even though it
overloads the binary + operator. (You might expect two parameters
corresponding to the two operands of a binary operator.) The reason that
operator+() takes only one parameter is that the operand on the left side of
the + is passed implicitly to the function through the this pointer. The
operand on the right is passed in the parameter op2. The fact that the left
operand is passed using this also implies one important point: When
binary operators are overloaded, it is the object on the left that generates the
call to the operator function. As mentioned, it is common for an overloaded
operator function to return an object of the class it operates upon. By doing
so, it allows the operator to be used in larger expressions. For example, if
the operator+() function returned some other type, this expression would
not have been valid:

ob1 = ob1 + ob2;

In order for the sum of ob1 and ob2 to be assigned to ob1, the outcome of
that operation must be an object of type loc. Further, having operator+()
return an object of type loc makes possible the following statement:

(ob1+ob2).show(); // displays outcome of ob1+ob2

In this situation, ob1+ob2 generates a temporary object that ceases to
exist after the call to show() terminates.

It is important to understand that an operator function can return any
type and that the type returned depends solely upon your specific
application. It is just that, often, an operator function will return an object
of the class upon which it operates.

One last point about the operator+() function: It does not modify either
operand. Because the traditional use of the + operator does not modify
either operand, it makes sense for the overloaded version not to do so either.
(For example, 5+7 yields 12, but neither 5 nor 7 is changed.) Although you
are free to perform any operation you want inside an operator function, it is
usually best to stay within the context of the normal use of the operator.

OOP'S WITH C++ 17BM63

[Type text]

The next program adds three additional overloaded operators to the loc

OOP'S WITH C++ 17BM63

[Type text]

class: the –, the =, and the unary ++. Pay special attention to how these
functions are defined.

#include <iostream>

using namespace std;

class loc {
int longitude, latitude;
public:
loc() {} // needed to construct temporaries
loc(int lg, int
longitude = lg;

lt{)

latitude
}

lt=;

void show() {
cout << longitude

<< " ";

cout << latitude
}

<< "\n";

loc operator+(loc op2);
loc operator-(loc op2);
loc operator=(loc op2);
loc operator++();
};

// Overload + for loc.
loc loc::operator+(loc op2)
{
loc temp;

temp.longitude = op2.longitude + longitude;
temp.latitude

return temp;

}

= op2.latitude + latitude;

// Overload - for loc.
loc loc::operator-(loc op2)
{
loc temp;

// notice order of operands
temp.longitude = longitude - op2.longitude;
temp.latitude

return temp;

}

OOP'S WITH C++ 17BM63

[Type text]

= latitude - op2.latitude;

OOP'S WITH C++ 17BM63

[Type text]

// Overload asignment for loc.loc loc::operator=(loc op2)
{
longitude = op2.longitude;
latitude = op2.latitude;

return *this; // i.e., return object that generated call
}

// Overload prefix ++ for loc.
loc loc::operator++()
{
longitude++;

latitude++;

return *this;
}

int main()
{
loc ob1(10, 20), ob2(5, 30), ob3(90, 90);

ob1.show();
ob2.show();

++ob1;
ob1.show(); // displays 11 21

ob2 = ++ob1;

ob1.show(); // displays 12 22
ob2.show(); // displays 12 22

ob1 = ob2 = ob3; // multiple assignment
ob1.show(); // displays 90 90
ob2.show(); // displays 90 90

return 0;
}
First, examine the operator–() function. Notice the order of the operands

in the subtraction. In keeping with the meaning of subtraction, the operand
on the right side of the minus sign is subtracted from the operand on the
left. Because it is the object on the left that generates the call to the operator–
() function, op2's data must be subtracted from the data pointed to by this.
It is important to remember which operand generates the call to the
function.

In C++, if the = is not overloaded, a default assignment operation is

OOP'S WITH C++ 17BM63

[Type text]

created automatically for any class you define. The default assignment is
simply a member- by-member, bitwise copy. By overloading the =, you can

OOP'S WITH C++ 17BM63

[Type text]

define explicitly what the assignment does relative to a class. In this
example, the overloaded = does exactly the same thing as the default, but
in other situations, it could perform other operations. Notice that the
operator=() function returns *this, which is the object that generated the
call. This arrangement is necessary if you want to be able to use multiple
assignment operations such as this:

ob1 = ob2 = ob3; // multiple assignment

Now, look at the definition of operator++(). As you can see, it takes no
parameters. Since ++ is a unary operator, its only operand is implicitly
passed by using the this pointer.

Notice that both operator=() and operator++() alter the value of an
operand. In the case of assignment, the operand on the left (the one
generating the call to the operator=() function) is assigned a new value. In
the case of the ++, the operand is incremented. As stated previously,
although you are free to make these operators do anything you please, it is
almost always wisest to stay consistent with their original meanings.

In the preceding program, only the prefix form of the increment operator
was overloaded. However, Standard C++ allows you to explicitly create
separate prefix and postfix versions of the increment or decrement
operators. To accomplish this, you must define two versions of the
operator++() function. One is defined as shown in the foregoing program.
The other is declared like this:

loc operator++(int x);

If the ++ precedes its operand, the operator++() function is called. If the
++ follows its operand, the operator++(int x) is called and x has the value
zero. The preceding example can be generalized. Here are the general forms
for the prefix and postfix ++ and – – operator functions.

// Prefix increment
type operator++() {
// body of prefix operator
}
// Postfix increment
type operator++(int x) {
// body of postfix operator
}

// Prefix decrement
type operator– –() {
// body of prefix operator
}

Object Oriented Programming with C++ 10CS36

Dept. of BME, ACSCE

Page 55

 Dept. of IS

// Postfix decrement
type operator– –(int x) {
// body of postfix operator
}

9.1 Overloading []

In C++, the [] is considered a binary operator when you are overloading
it. Therefore, the general form of a member operator[]() function is as
shown here:

type class-name::operator[](int i)
{
// . . .
}

Technically, the parameter does not have to be of type int, but an
operator[]() function is typically used to provide array subscripting, and
as such, an integer value is generally used

Given an object called O, the expression

O[3]

translates into this call to the operator[]() function:

O.operator[](3)

That is, the value of the expression within the subscripting operators is
passed to the operator[]() function in its explicit parameter. The this pointer
will point to O, the object that generated the call. In the following program,
atype declares an array of three integers. Its constructor initializes each
member of the array to the specified values. The overloaded operator[]()
function returns the value of the array as indexed by the value of its
parameter.

#include <iostream>
using namespace std;

class atype {
int a[3];
public:
atype(int i, int j, int k) {
a[0] = i;

Object Oriented Programming with C++ 17BM63

Dept. of BME, ACSCE Page 56

a[1] = j;
a[2] = k;

}
int operator[](int i) { return a[i]; }
};

int main()
{
atype ob(1, 2, 3);

cout << ob[1]; // displays 2

return 0;

}

You can design the operator[]() function in such a way that the [] can be
used on both the left and right sides of an assignment statement. To do this,
simply specify the return value of operator[]() as a reference. The
following program makes this change and shows its use:

#include <iostream>
using namespace std;

class atype {
int a[3];
public:
atype(int i, int j, int k) {
=a[i0;]
=a[
j
1
;
]

= k;

a[2]
}
int &operator[](int i) { return a[i]; }
};

int main()
{
atype ob(1, 2, 3);

cout << ob[1]; // displays 2
cout << " ";

ob[1] = 25; // [] on left of =

cout << ob[1]; // now displays 25

return 0;

}

Object Oriented Programming with C++ 17BM63

Dept. of BME, ACSCE Page 57

Because operator[]() now returns a reference to the array element
indexed by i, it can be used on the left side of an assignment to modify an
element
well.)

of the array. (Of course, it may still be used on the right side as

One advantage of being able to overload the [] operator is that it allows
a means of implementing safe array indexing in C++. As you know, in C++,
it is possible to overrun (or underrun) an array boundary at run time
without generating a run-time error message. However, if you create a class
that contains the array, and allow access to that array only through the
overloaded [] subscripting operator, then you can intercept an out-of-
range index. For example, this program adds a range check to the
preceding program and proves that it works:

// A safe array example.
#include <iostream>
#include <cstdlib>
using namespace std;

class atype {
int a[3];
public:
atype(int i, int j, int k) {
a[0] = i;
a[1] = j;
a[2] = k;
}
int &operator[](int i);
};

// Provide range checking for atype.
int &atype::operator[](int i)
{
if(i<0 || i> 2) {
cout << "Boundary Error\n";
exit(1);
}
return a[i];
}

int main()
{
atype ob(1, 2, 3);

cout << ob[1]; // displays 2

Object Oriented Programming with C++ 17BM63

Dept. of BME, ACSCE Page 58

cout << " ";

ob[1] = 25; // [] appears on left
cout << ob[1]; // displays 25

ob[3] = 44; // generates runtime error, 3 out-of-range

return 0;

} In this program, when the statement

ob[3] = 44;

executes, the boundary error is intercepted by operator[](), and the
program is terminated before any damage can be done. (In actual practice,
some sort of error-handling function would be called to deal with the out-
of-range condition; the program would not have to terminate.)

9.2 Overloading –>
The –> pointer operator, also called the class member access operator, is

considered a unary operator when overloading. Its general usage is shown
here:

object->element;

Here, object is the object that activates the call. The operator–>() function
must return

a pointer to an object of the class that operator–>() operates upon. The
element must be some member accessible within the object. The following
program illustrates overloading the –> by showing the equivalence between
ob.i and ob–>i when operator–>() returns the this pointer:

#include <iostream>
using namespace std;

class myclass {

public:
int i;
myclass *operator->() {return this;}
};

int main()
{
myclass ob;
ob->i = 10; // same as ob.i

cout << ob.i << " " << ob->i;

return 0;

}
An operator–>() function must be a member of the class upon which it

works. The general skeleton of an overloaded output operator is
// general skeleton of the overloaded output operator
ostream&

Object Oriented Programming with C++ 17BM63

Dept. of BME, ACSCE Page 59

operator <<(ostream& os, const ClassType &object)
{
// any special logic to prepare object
// actual output of members
os << // ...
// return ostream object
return os;
}

We can now write the Sales_item output operator:

ostream&
operator<<(ostream& out, const Sales_item& s)
{
out << s.isbn << "\t" << s.units_sold << "\t"
<< s.revenue << "\t" <<
s.avg_price(); return out;
}

The Sales_item Input Operator
The Sales_item input operator looks like:

istream&
operator>>(istream& in, Sales_item& s)
{
double price;
in >> s.isbn >> s.units_sold >> price;
// check that the inputs succeeded
if (in)
s.revenue =
s.units_sold *
price; else
s = Sales_item(); // input failed: reset object to default state
return in;
}

