

 Page: 1

Q1. Explain briefly the data processing instructions for ARM processor.

Answer:

The data processing instructions manipulate data within registers. They are move instructions,

arithmetic instructions, logical instructions, comparison instructions and multiply instructions.

Most data processing instructions can process one of their operands using the barrel shifter.

If S is suffixed on a data processing instruction, then it updates the flags in the cpsr.

Move instructions:

It copies N into a destination register Rd, where N is a register or immediate value.

Syntax: <instruction> {<cond>} {S} Rd,N

MOV Move a 32-bit value into a register Rd=N

MVN Move the NOT of the 32-bit value into a register Rd= ~N

In the example shown below, the MOV instruction takes the contents of register r5 and copies

them into register r7.

PRE r5=5

 r7=8

 MOV r7,r5

POST r5=5

 r7=5

Barrel shifter: Data processing instructions are processed within the arithmetic and logic

unit(ALU). A unique and powerful feature of the ARM processor is the ability to shift the 32-bit

binary pattern in one of the source registers left or right by a specific number of positions before

it enters the ALU. This shift increases the power and flexibility of many data processing

operations.

For example, We apply a logical shift left (LSL) to register Rm before moving it to the

destination register.

PRE r5=5

 r7=8

MOV r7,r5,LSL #2

POST r5=5

 r7=20

The above example shift logical left r5=5 (00000101 in binary) by two bits and then r7=20

(00010100 in binary).

Following table shows barrel shifter operation

Mnemonics Description Shift Result

LSL Logical shift left xLSLy x<< y

LSR Logical shift right xLSRy (unsigned) x>>y

ASR Arithmetic right shift xASRy (signed) x>>y

ROR Rotate right xRORy ((unsigned)x>>y)|(x<<(32-y))

RRX Rotate right extended xRRX (c flag<<31)|((unsigned) x>>1)

 Page: 2

Arithmetic instruction: The arithmetic instructions implement addition and subtraction of 32-bit

signed and unsigned values.

Syntax: <instruction>{<cond>} {S} Rd, Rn,N

ADC Add two 32-bit values and carry Rd=Rn+N+carry

ADD Add two 32-bit values Rd=Rn+N

RSB Reverse subtract of two 32-bits values Rd=N-Rd

RSC Reverse subtract with carry of two 32-bits values Rd=N-Rd-!(carry flag)

SBC Subtract with carry of two 32-bits values Rd=Rn-N-!(carry flag)

SUB Subtract two 32-bit values Rd=Rn-N

In the following example, subtract instruction subtracts a value stored in register r2 from a value

stored in the register r1. The result is stored in register r0.

PRE r0=0x00000000

 r1=0x00000002

 r2=0x00000001

 SUB r0,r1,r2

POST r0=0x00000001

In the following example, the reverse subtract instruction (RSB) subtract r1 from the constant

value #0, writing the result in r0.

PRE r0=0x00000000

 r1=0x00000077

 RSB r0,r1,#0 ; Rd=0x0-r1

POST r0=-r1=0xffffff89

Using the barrel shifter with arithmetic instructions: Example below illustrate the use of the

inline barrel shifter with an arithmetic instruction. The instruction multiplies the value stored in

register r1 by three.

PRE r0=0x00000000

 r1=0x00000005

 ADD r0, r1, r1, LSL #1

POST r0=0x0000000f

 R1=0x00000005

Logical instructions: logical instructions perform bitwise operations on the two source registers.

Syntax: <instruction> {<cond>} {S} Rd, Rn, N

ADD Logical bitwise AND of two 32 bits values Rd=Rn & N

ORR Logical bitwise OR of two 32-bits values Rd= Rn|N

EOR Logical exclusive OR of two 32-bits values Rd=Rn^N

BIC Logical bit clear (AND NOT) Rd= Rn^~N

In the example shown below, a logical OR operation between registers r1 and r2 and the result is

in r0.

PRE r0=0x00000000

 Page: 3

 r1=0x02040608

 r2=0x10305070

 0RR r0, r1, r2

POST r0=0x12345678

Comparison instructions: The comparison instructions are used to compare or test a register with

a 32-bit value. They update the cpsr flag bits according to the result, but do not affect other

registers. After the bits have been set, the information can be used to change program flow by

using conditional execution.

Syntax: <instruction> {<cond>} Rn, N

CMN Compare negated Flags set as result of Rn+N

CMP Compare Flags set as result of Rn-N

TEQ Test for quality of two 32-bit values Flags set as result of Rn^N

TST Test bits of a 32-bit value Flags set as result of Rn&N

Example shown below for CMP instruction. Both r0 and r1 are equal before the execution of the

instruction. The value of the z flag prior to the execution is 0 and after the execution z flag

changes to 1 (upper case of Z).

PRE cpsr=nzcvqiFt_USER

 r0=4

 r1=4

 CMP r0, r1

POST cpsr=nZcvqiFt_USER

The CMP is effectively a subtract instruction with the result discarded; similarly the TST

instruction is a logical AND operation and TEQ is a logical exclusive OR operation. For each,

the results are discarded but the condition bits are updated in the cpsr.

Multiply instructions: The multiply instructions multiply the contents of a pair of registers and

depending upon the instruction, accumulate the results in another register. The long multiplies

accumulate onto a pair of registers representing a 64-bit value.

Syntax: MLA {<cond>} {S} Rd, Rm, Rs, Rn

 MUL {<cond>} {S} Rd,Rm,Rs

MLA Multiply and accumulate Rd=(Rm*Rs)+Rn

MUL Multiply Rd=Rm*Rs

Syntax: <instruction> {<cond>} {S} RdLo, RdHi, Rm, Rs

SMLAL Signed multiply accumulate long {RdHi, RdLo}={ RdHi,

RdLo}+(Rm*Rs)

SMULL Signed multiply long {RdHi, RdLo}= Rm*Rs

UMLAL Unsigned multiply accumulate long {RdHi, RdLo}={ RdHi,

RdLo}+(Rm*Rs)

UMULL Unsigned multiply long {RdHi, RdLo}=Rm*Rs

 Page: 4

In the following example below shows a multiply instruction that multiplies registers r1 and r2

and places the result into the register r0.

PRE r0=0x00000000

 r1=0x00000002

 r2=0x00000002

 MUL r0,r1,r2 ; r0=r1*r2

POST r0=0x00000004

 r1=0x00000002

 r2=0x00000002

The long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64-bit

result.

Q2. Explain briefly branch instructions for ARM processor.

Answer: A branch instruction changes the flow of execution or is used to call a routine. This type

of instruction allows programs to have subroutines, if-then-else structures, and loops. The change

of execution flow forces the program counter (pc) to point to a new address.

Syntax: B{<cond>}label

 BL{<cond>}label

 BX{<cond>}label

 BLX{<cond>}label

B Branch pc=label

BL Branch with link pc=label

lr=address of the next instruction after the BL

BX Branch exchange pc=Rm & 0xfffffffe, T=Rm & 1

BLX Branch exchange with link pc=label, T=1

pc= Rm & 0xfffffffe, T=Rm & 1

lr=address of the next instruction after the BLX

The address label is stored in the instruction as signed pc-relative offset and must be within

approximately 32MB of the branch instruction. T refers to the Thumb bit in the cpsr. When

instruction set T, the ARM switches to Thumb state.

The example shown below is a forward branch. The forward branch skips three instructions.

 B forward

 ADD r1, r2, #4

 ADD r0, r6, #2

 ADD r3, r7, #4

forward

 SUB r1, r2, #4

 The branch with link (BL) instruction changes the execution flow in addition overwrites the

link register lr with a return address. The example shows below a fragment of code that branches

to a subroutine using the BL instruction.

 BL subroutine ; branch to subroutine

 Page: 5

 CMP r1, #5 ; compare r1 with 5

 MOVEQ r1,#0 ; if (r1==5) then r1=0

Subroutine

 MOV pc,lr ; return by moving pc=lr

The branch exchange (BX) instruction uses an absolute address stored in register Rm. It is

primarily used to branch to and from Thumb code. The T bit in the cpsr is updated by the least

significant bit of the branch register.

Similarly, branch exchange with link (BLX) instruction updates the T bit of the cpsr with the

least significant bit and additionally sets the link register with the return address.

Q3. Explain briefly the software interrupt instruction.

Answer: A software interrupt instruction (SWI) causes a software interrupt exception, which

provides a mechanism for applications to call operating system routines.

Syntax: SWI {<cond>} SWI_number

SWI Software interrupt lr_svc=address of instruction following the SWI

spsr_svc=cpsr

pc=vectors+0x8

cpsr mode= SVC

cpsr I=I (mask IRQ interrupt)

When the processor executes an SWI instruction, it sets the program counter pc to the offset 0xB

in the vector table. The instruction also forces the processor mode to SVC, which allows an

operating system routine to be called in a privileged mode.

Each SWI instruction has an associated SWI number, which is used to represent a particular

function call or feature.

The example below shows an SWI call with SWI number 0x123456, used by ARM toolkits as a

debugging SWI.

PRE cpsr=nzcVqift_USER

 pc=0x00008000

 lr=0x003fffff ; lr=r14

 r0=0x12

 0x00008000 SWI 0x123456

POST cpsr=nzcVqIft_SVC

 spsr= nzcVqift_USER

 pc=0x000000008

 lr=0x00008004

 r0=0x12

Since SWI instructions are used to call operating system routines, it is required some form of

parameter passing. This achieved by using registers. In the above example, register r0 is used to

pass parameter 0x12. The return values are also passed back via register.

 Page: 6

Q4. Explain briefly program status register instructions.

Answer: The ARM instruction set provides two instructions to directly control a program status

register (psr). The MRS instruction transfers the contents of either the cpsr or spsr into a register;

in the reverse direction, the MSR instruction transfers the contents of a register into the cpsr or

spsr. Together these instructions are used to read and write the cpsr and spsr.

Syntax: MRS {<cond>} Rd <cpsr |spsr>

 MSR {<cond>} <cpsr|spsr} _<fields>,Rm

 MSR {<cond>} <cpsr|spsr} _<fields>, #immediate

The table shows the program status register instructions

MRS Copy program status register to a general-purpose register Rd=psr

MSR Move a general-purpose register to a program status register psr[field]=Rm

MSR Move an immediate value to a program status register psr[field]=immediate

Q5. Explain briefly coprocessor instructions.

Answer: Coprocessor instructions are used to extend the instruction set. A coprocessor can

either provide additional computation capability or be used to control the memory subsystem

including caches and memory management. The coprocessor instructions include data

processing, register transfer, and memory transfer instructions. These instructions are used only

by core with a coprocessor.

Syntax: CPD {<cond>} cp,opcode1, Cd, Cn {,opcode2}

 <MRC|MCR>{<cond>}cp,opcode1,Rd,Cn,Cm{,opcode2}

<LDC|STC>{<cond>}cp,Cd,addressing

CDP Coprocessor data processing-perform an operation in a coprocessor

MRC,

MCR

Coprocessor register transfer-move data to/from coprocessor registers

LDC,STC Coprocessor memory transfer-load and store blocks of memory to/from a

coprocessor

In the syntax of the coprocessor instructions, the cp field represents the number between p0 and

p15. The opcode fields describe the operation to take place on the coprocessor. The Cn, Cm and

Cd fields describe registers within the coprocessor.

For example: The instruction below copies CP15 register into a general purpose register.

 MPC p15,0,r10,c0,c0,0 ; CP15 register-0 is copied into general purpose register

r10.

CP15 is called the system control coprocessor. Both MRC and MCR are used to read and write

to CP15 where Rd is the core destination register, Cn is the primary register, Cm is the secondary

register and opcode2 is a secondary register modifier.

For example: The instruction below moves the contents of CP15 control register c1 into register

r1 of the processor core.

MRC p15,0,r1,c1,c0,0

 Page: 7

Q6. Explain briefly the loading constants.

Answer: There are two pseudo instructions to move a 32-bit constant value to a register.

Syntax: LDR Rd,=constant

 ADR Rd,label

LDR Load constant pseudo instruction Rd=32-bit constant

ADR Load address pseudo instruction Rd=32-bit relative address

The example below shows an LDR instruction loading a 32-bit constant 0xff00ffff into register

r0.

LDR r0,=0xff00ffff

Q7. If r0=0x00000000, r1=0x80000004

Find the content of the registers r0 and r1 after the following instructions are executed in

isolation. Mention if the CPSR register is updated or not.

(i) MOV r0,r1 (ii) MOV r0,r1,LSL #1 (iii) MOVS r0,r1,LSL #1 (iv) MVN r0,r1 (v) MOV

r0,r1,LSR #1

Answer:

(i) r0=0x80000004 and r1=0x80000004. CPSR is not updated.

(ii) Before execution of the instruction, r1=0x80000004=1000 0000 0000 0000 0000 0000 0000

0100 in binary.

After 1 bit logical shift left(LSL), the value is 0000 0000 0000 0000 0000 0000 0000 1000 which

is copied to r0.

After the execution of the instruction, r0=0x00000008 and r1=0x80000004. CPSR is not

updated.

(iii) Before execution of the instruction, r1=0x80000004=1000 0000 0000 0000 0000 0000 0000

0100 in binary.

After 1 bit logical left shift (LSL), the value is 0000 0000 0000 0000 0000 0000 0000 1000

which is copied to r0.Most significant bit (MSB) is copied to the carry flag and carry flag is set.

After the execution of the instruction, r0=0x00000008 and r1=0x80000004. CPSR is updated.

(iv) NOT of r1 is 0111 1111 1111 1111 1111 1111 1111 1011=0x7ffffffb is copied to ro.

After the execution, r0=0x7ffffffb and r1=0x80000004. CPSR is not updated.

(v) Before execution of the instruction, r1=0x80000004=1000 0000 0000 0000 0000 0000 0000

0100 in binary.

After 1 bit logical shift right (LSR), the value is 0100 0000 0000 0000 0000 0000 0000 0010

which is copied to r0.

After the execution of the instruction, r0=0x40000002 and r1=0x80000004. CPSR is not

updated.

Q8. If r0=0x00000000, r1=0x00000002 and r2=0x00000001

Find the content of the register r0, r1 and r2 after the following instructions are executed in

isolation. Mention if the CPSR register is updated or not.

(i) ADD r0,r1,r2,LSL #1 (ii) SUB r0,r1,r2 (iii) RSB r0,r1,#0 (iv) SUBS r1,r1,#2

Answer:

 Page: 8

(i) r2=0x00000001=0000 0000 0000 0000 0000 0000 0000 0001.After logic shift left(LSL) it is

0000 0000 0000 0000 0000 0000 0000 0010=0x00000002 which is added to r1 and the result is

at r0.

r0=0x00000004, r1=0x00000002 and r2=0x00000001. CPSR is not updated.

(ii) r0=0x00000001, r1=0x00000002 and r2=0x00000001. CPSR is not updated.

(iii) r0=0x0-r1=-r1 which is copied to r0 as 2’s complement of r1.

r1=0x00000002=0000 0000 0000 0000 0000 0000 0000 0010

1’s complment=1111 1111 1111 1111 1111 1111 1111 1101

2’s complment=1111 1111 1111 1111 1111 1111 1111 1110=0xfffffffe

Hence, r0=0xfffffffe, r1=0x00000002 and r2=0x00000001. CPSR is not updated.

(iv)) r0=0x00000000, r1=0x00000000 and r2=0x00000001. CPSR is updated (Zero flag is set).

Q9. If r0=0x00000000, r1=0x02040608 and r2=0x10305070

Find the content of the register r0 after the following instructions are executed in isolation and

also mention if the CPSR register updated or not.

(i) AND r0,r1,r2 (ii) ORR r0,r1,r2 (iii) (iv) BIC r0,r1,r2

Answer:

(i) r1=0x02040608=0000 0010 0000 0100 0000 0110 0000 1000

 r2=0x10305070=0001 0000 0011 0000 0101 0000 0111 0000

 Hence, r0=0000 0000 0000 0000 0000 0000 0000 0000=0x00000000

After execution, r0=0x00000000, r1=0x02040608 and r2=0x10305070

(ii) r1=0x02040608=0000 0010 0000 0100 0000 0110 0000 1000

 r2=0x10305070=0001 0000 0011 0000 0101 0000 0111 0000

 Hence, r0=0001 0010 0011 0100 0101 0110 0111 1000=0x12345678

After execution, r0=0x12345678, r1=0x02040608 and r2=0x10305070

(iii) r1=0x02040608=0000 0010 0000 0100 0000 0110 0000 1000

 r2=0x10305070=0001 0000 0011 0000 0101 0000 0111 0000

 Hence, r0=0001 0010 0011 0100 0101 0110 0111 1000=0x12345678

After execution, r0=0x12345678, r1=0x02040608 and r2=0x10305070

(iv) r2=0x10305070=0001 0000 0011 0000 0101 0000 0111 0000

 NOT r2=1110 1111 1100 1111 1010 1111 1000 1111

 r1=0x02040608=0000 0010 0000 0100 0000 0110 0000 1000

r0=r1 AND (NOT r2)=0000 0010 0000 0100 0000 0110 0000 1000=0x02040608

 After execution, r0=0x02040608, r1=0x02040608 and r2=0x10305070. CPSR is not updated.

Q10. If r1=0x00000002 and r2=0x00000002

Find the content of the register r1 and r2 after the following instructions are executed in isolation

and also mention if the CPSR register is updated or not.

(i) CMP r1,r2 (ii) CMN r1,r2 (iii) TST r1,r2 (iv) TEQ r1,r2

Answer:

(i) After execution, r1=0x00000002 and r2=0x00000002. CPSR is updated (Zero flag is set if r1-

r2=0).

 Page: 9

(ii) After execution, r1=0x00000002 and r2=0x00000002. CPSR is not updated (Zero flag is set

if r1+r2=0).

(iii) After execution, r1=0x00000002 and r2=0x00000002.CPSR is updated (Zero flag is set if

Exclusive OR of r1and r2=0).

(iv) After execution, r1=0x00000002 and r2=0x00000002.CPSR is not updated (Zero flag is set

if AND of r1and r2=0).

Q11.If r0=0x00000000, r1=0x00000001, r2=0x00000002 and r3=0x00000003

Find the content of the register r0, r1, r2 and r3 after the following instructions are executed in

isolation. Mention if the CPSR register is updated or not.

(i) MUL r0,r1,r2 (ii) MLA r0,r1,r2,r3 (iii) UMULL r0,r1,r2,r3

Answer:

(i)After execution, r0=r1*r2

Hence, after execution, r0=0x00000002, r1=0x00000001, r2=0x00000002 and r3=0x00000003

(ii) After execution, r0=r1*r2+r3

Hence, after execution, r0=0x00000005, r1=0x00000001, r2=0x00000002 and r3=0x00000003

(iii) After execution, [r0,r1]=r2*r3 where r0 contains lower 32 bits and r1 contains higher 32 bits.

Hence, after execution, r0=0x00000006, r1=0x00000000, r2=0x00000002 and r3=0x00000003

Q12. If r0=0x00000000, r1=0x00090000

mem32[0x00090000]=0x01010101 and mem32[00090004]=0x02020202

Find the content of the register r0, r1 after the following instructions are executed in isolation.

(i) LDR r0,[r1,#4] (ii) LDR r0,[r1,#4]! (iii) LDR r0,[r1],#4

Answer:

(i) After the execution, r0=0x02020202 and r1=0x00090000

(ii) After the execution, r0=0x02020202 and r1=0x00090004

(iii) After the execution, r0=0x01010101 and r1=0x00090004

Q13. If r0=0x00000010, r1=0x00000000, r2=0x00000000, r3=0x00000000

mem32[0x00000010]=0x00000001 and mem32[00000014]=0x00000002

mem32[0x00000018]=0x00000003 and mem32[0000001c]=0x00000004

Find the content of the register r0, r1,r2 and r3 after the following instructions are executed in

isolation.

(i) LDMIA r0!, {r1-r3} (ii) LDMIB r0!, {r1,r2,r3}

Answer:

(i) After the execution, r0=0x0000001c, r1=0x00000001, r0=0x00000002 and r0=0x00000003

(ii) After the execution, r0=0x0000001c, r1=0x00000002, r0=0x00000003 and r0=0x00000004

 Page: 10

Q.14 write ALP program for ARM7 demonstrating the data transfer.

Answer:

 AREA DATATRANSFER, CODE, READONLY

 ENTRY

 LDR R0, =0x40000000

 LDR R1, =0x40000080

 LDR R2, =0x0000000A

UP LDRB R3, [R0]

 STRB R3, [R1]

 ADD R0, R0, #1

 ADD R1, R1, #1

 ADD R2, R2, #-1

 CMP R2, #0

 BEQ NEXT

 B UP

NEXT MOV R0, #0x18

 LDR R1, =0x20026

 SVC #0x123456

 END

Q.15 Write ALP program for ARM7 demonstrating logical operation.

Answer:

AREA LOGIC , CODE, READONLY

 ENTRY

 LDR R0, =0x40000000

 LDR R1, =0x40000010

 LDRB R2, [R0]

 LDRB R3, [R0, #1]

 AND R4, R2, R3

 STRB R4, [R1]

 ORR R4, R2, R3

 STRB R4, [R1, #1]

 MOV R0, #0x18

 LDR R1, =0x20026

 SVC #0x123456

 END

 Page: 11

Q.16 Write ALP program for ARM7 demonstrating arithmetic operation.

Answer:

 AREA MULTIPLY, CODE, READONLY

 ENTRY

 LDR R0, =0x40000000

 LDRB R1, [R0]

 LDRB R2, [R0, #1]

 ADD R3, R1, R2

 STRH R3, [R0, #2]

 MUL R4, R1, R2

 STRH R4, [R0, #4]

 SUB R5, R1, R2

 STR R5, [R0, #6]

 MOV R0, #0x18

 LDR R1, =0x20026

 SVC #0x123456

 END

Q17. Write ALP program for ARM7 to find factorial of a positive number.

Answer:

 AREA Factorial, CODE, READONLY

 ENTRY

 LDR R0, =0X40000000

 LDRB R1, [R0]

 MOV R2, R1

UP ADD R1, R1, #-1

 CMP R1, #0

 BEQ NEXT

 MUL R3, R2, R1

 MOV R2, R3

 B UP

NEXT STR R2, [R0, #4]

 MOV R0, #0X18

 LDR R1, =0X20016

 SVC #0123456

 END

 Page: 12

Q18. Write ALP program for ARM7 to find number of zeros and number of ones in a 32-bit

number.

Answer:

 AREA CountOneZero, CODE, READONLY

 ENTRY

 LDR R0, =0X40000000

 LDR R1, [R0]

 MOV R2, #32

AGAIN RORS R1, #1

 BCS ONES

 ADD R3, R3, #1

 B NEXT

ONES ADD R4, R4, #1

NEXT ADD R2, R2, #-1

 CMP R2, #0

 BNE AGAIN

 ADD R0, R0, #4

 STRB R3, [R0]

 STRB R4, [R0,#1]

 MOV R0, #0X18

 LDR R1, =0X20026

 SVC #0123456

 END

 Page: 13

Q19. Write ALP program to add array of 16 bit numbers and store the result in 32 bit memory.

Answer:

 AREA ArrayAddition, CODE, READONLY

 ENTRY

 LDR R0, =0X40000000

 LDRB R1, [R0]

 MOV R5, #0

UP ADD R0, R0, #2

 LDRH R2, [R0]

 ADD R1, #-1

 ADD R0, R0, #2

 LDRH R3, [R0]

 ADD R1, #-1

 ADD R4, R2, R3

 ADD R5, R5, R4

 CMP R1, #0

 BNE UP

 STR R5, [R0, #4]

 MOV R0, #0X18

 LDR R1, =0X20026

 SVC #0123456

 END

