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" 1.2) LAMI'S THEOREM —

1 body is in ethbnum, urider the action of coplanar concurrent forces, it may be analyﬁed
... g equations of equilibrium (eqn. 8.2). However, if the body is in equilibrium under the action
- unly three forces, Lami’s theorem can be used conveniently. ! G5
L ami’s theorem states that if a body is in equilibrium under the action of only three forces each force
oportional to the sine of the angle-between the other two forces. Thus for t{m : sgstem ffﬂ foréa =

rig. 8.1(a),

‘. F] s Fz. Fa < i i
sino  sinp  siny T 69)

w1 .noduice

B T .
SERIER B SIS

i et 2 3 Ak
= 2 & .. b - -~ -
P
i a8 A DL s
vegi B 0 Dl -8 : o
Fig. 8.1

i B r@ Draw the three-forces F,, F, and F; one. after the other in direction and magnitude starting
- ~m point ‘a’. Since the body is in equilibrium the resultant should be zer, which means the last

- rint of force diagram <hould coincide with ‘2. Thus, it results in a triangle of forces abc as shown

- Fig. 8.1(b). Now the external angles at a, b and c are equal-to,B,Y and o, since ab, bc and ca are

. <rallel to F,, Fyand F3 respectively. In the triangle of forces abc,
' ab=F,
bc=F,
O, R ca=F,
. Applying sine rule for the triangle abc,

ab _ bc RS ..
sin(180—0)  sin(180—P) sin (186°- 7)

b

sina sinf siny
Tk 1z possible ko applt} Lami's kheorem L% =, jmm/s axe ackin
b anTI’_Idd o7 ak g.‘ Poﬁnk- ' ck

Eqgu ' ium of Forces —
- ‘\ .~ m of forces acting on a body are said to be in equilibrium when the resultant
of 2l forc . - szro and algebraic sum of moments of all the forces is zero.

2:2) Equakims of Equilibrium

i of forces is in equilibrium when R = "(zﬁ)z +(EF')2 0

and YM =0.

i.e., when (1) ZF=0
(2) ZF,=0|—> remember
also (3) XM =0 |
W % Fa= Algebraic sum of horizontal componé:;t of force.s
' F.}= Algebraic sum of vertical component; of forces -
.M = Algebraic sum of moments of forces about any point.
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EqUiIibran :

t is :

SO defined as a force or a moment required to keep an object
For 3 '

resupg concurrent force system, equilibrant is a force which has same magnitude

t force but opposite direction.

For ,

eq uilib-a A force system which has a non-zero resultant force, '

. *ant. is a force which has same magnitude as resultant force, opposite direction

e same line of action as that of the resultant force. In case the resultant force b
‘ﬁrznd ﬂ}e force system can be reduced to a single resultant couple moment,

equilibrant is a couple moment having same magnitude as resultant couple moment '

OPPOSitf.’ sense of rotation.
quilibrium for different force s : W
ystems pp £ auilibxiun o] conc mk and
1. Coplanar concurrent fi e » L L C‘T"_ﬁ’j’\‘m
orce system ~ Coneanvenk co plarar Joree sy sbens

IF, =0, ZF =0 (moment is already zero). See Figure 5.1.
FI
FS

F2
Figure 5.1 Coplanar concurrent force system.

e

Coplanar non-concurrent force system
' XF, =0, TF, =0, IM =0. See Figure 84

. Fy f R

)}“; Figure 5.2 Coplanar non-concurrent force system.
3‘. Parallel force system

TF=0, ZM=0

4 L Jon-coplanar force system

FRI<TION

Definition of Friction

When one body tends to move in contact over other body a resistance to its movement
is set-up. This resistance to movement is ﬁcalled Friction or Force of Friction or Frictional
Force. -

JE s SN SIS PRI

The Force of Friction always acts in the direction opposi ‘moti
3 3 pposite to the ‘mot ’
shown in figure ~ 2. g

l w
- > P=Applied Force
ér—“’ SITHaLs ¥ .
S 2 EFTLAET T Force of €—— foon T
| oo 1 [(Motion Trend) right]
Friction F
e R ov N
7 e . g (F Opposes Motion Trend)
{38 27318 o Fig. 2

®




2-5) Types of Friction
The various types of friction are : _ o
1) Static Friction : The friction acting on a body which ix at rest is called static
. friction.

2) Limiting Friction : The friction acting on a body which is just on the point or
verge of sliding is called limiting friction. :

3) Dynamical Friction : The friction acting on a body which is actually in motion is
called Dynamical friction or Kinetic friction. - ‘

4) Dry Friction : The friction acting on a body when the contact surfaces are dry

(i.e., unlubricated) and there is tendency of relative motion is called Dry Friction
or Coulomb friction.

Dry Friction is further divided into two types :

a) Solid Friction : The friction acting on a body when two surfaces have tendency
to slide relative to each other is called Solid friction (Figure 2. -

b) Rolling Friction : The friction acﬁng ona body due to rolling of one surface
over another is called Rolling friction.

5) Fluid Friction : The friction .acting on a body when the contact surfaces are
lubricated is called Fluid friction.

*.,»Fluid friction is further divided into :

a) Skin or greasy or Non-Viscous friction : The friction acting on a body when
the contact surfaces are lubricated with extremely thin layer of lubricant is
called Skin or greasy or Non-viscous Friction also called Bourdary Friction.

"b) Viscous or Film Friction™: The friction acting on a body when the contact
surfaces are completely separated by lubricant is called Viscous or Film
friction. I b eyt W
Motion Trend of a Block on Surface N |
Let a body of weight ‘W’ be subjected to pull ‘P’ \Yhict‘l t?nd to move tow?rds right g
shown in figure . 4.a. The forces induced are the Reaction ‘R acnngperpendicular to-thy

suppert and the force of Friction ‘F’ acting opposi;e to the motion t;end.

. Body . - - W (Body weight)
s > P(ull)
------- >

7777 F ——+— 7777 (Motion Trend)
o Moﬂf &
(F;l:r:gal TR (Reaction at

© N contact)
Fig. . 4.2.

] reaction and friction acting

g can see ‘that the ‘norma
. 4.(b) you stion"R,’ making angle

From figure > that the n ;
. ther can be replaced by a single Regultz‘i_m’iRe.:

perpendicular to each"{)'
'¢'. So that, | |
E -1 : 1y
Tan(P =— -2——-—' eV (‘ -‘.:.7)
--R--Nj' G
: RI 2 =
]
]
" : 3 -} 4 ,:(P—_. ‘

R oy N



Angle of Fi'ictionf. '
The angle which the Resultant Reaction R, due to normal Reaction R and Friction F
makes with the normal to the surface is called Angle of Friction (¢) . In figure .4.p

. _
S
ang R K‘— ............ ( 2

Co-efficient of Friction (n)

It is the ratio of the limiting friction F to “the normal i
e _ reaction R betw
This is also equal to the Tangent of angle of friction. HoEm fwo surfaces.

e

_F =F
S

. F . : :

& T_ancp:p === ..‘r:i. ......... remember ... ( -3)

w

7" Angle of Repose
 In figure . '_.7: if a body is placed on an inclined plane, then the angle at which the
body is just on the point or verge of sliding down is called Angle of Repose. '

Angle of repose (a) = Angle of Limiting Friction (o).

w

Cone of Friction

Whenever a body in contacf wiﬂlroﬂler tend to move, then the normal reaction OR and
Friction come into play. The normal reaction and Friction can be replaced by resultant reaction
OR,. When this resultant reaction OR, makirig angle is revolved around point O, will form a

right circular cone.
_ This cone having the point of contact as the vertex O, the normal OR at the point of
contact as its axis and ¢ as the semi-vertex angle is called the Cone of Friction (Fig. .8).

oW

s

o or N
Nt B i

() Cone of Friction




2.s) Laws of Dry Friction ’
S T ——

. The Force of Fricti
: tion always acts i i : e
body tends to move. YS ACts In the direction opposite to that' in which' the
a

‘““‘;’P

[Moliun Trend

3

Friction
Fig. 9

*o

0 i - i

(R) between the two surfaces i.e. = =u
'R (constant).

The magnitude of F
orce of Friction i
bod n is exactl
Y 0 move, as long as the body is at rf:stjziee:fl ualIJl_c,’Ft)he O Wl encigie

2¢%) LAMITING FRITION

The Fxickion déklm} on a baciuﬁ which 14 J’u/ﬁl'- on khe pﬁmk oy

NETge- Oj 4|l’dl’flc$
2‘?) coNcepT OF <TATIC AND DYNAM I & FpITcTTON

~ Frzbion ackm% on & bac&% which
on A foady which 8

Skakiz Frickion e, ak resk

— Fxlcklion 661:!%3

Dtﬁﬂmﬂfa FyicEion
(4 ca\led D%ﬂa'rﬂfc 0y

ackuolly N AT kine b1c Exlckion

K of weight 'W' is kept on @ rough
shown in Fig. 7.2.1.

horizontal surface and a hori

Suppose a bloc

force 'P' is applied to it as
When force P’ is small, the block does not
move. This is because of the frictional force
which balances P. The frictional force is largely
due to interlocking of irregularities in the two

surfaces in contact as shown in Fig. 7.22. The

frictional force is also, to a small extent, due to
the molecular forces of attraction between the
two surfaces in contact. If force P is increased, p
F, increases and remains equal to P as long as

the object is static. When P is increased
beyond a certain value (F,)ma the object
starts moving, the frictional force “decreases
and then remains nearly constant. This  Frf Limiting static
variation in magnitude of frictional force friction
with the applied force P is shown in(F),, ‘

Fig. 7.2.3. :

_ From the above discussion, we conclude

the following points which are important
while solving problems : )

Fig. 7.2.2

Kinetic
friction

/




I

1) As long as object is static, the frictional force has same magnitude as the net force
trying to move the object and has opposite direction,

2) Motion impends when net force trying to move the object becomes equal to the
maximum frictional force (F, )pyax kNown as the limiting static friction force,

. 3) When object starts moving, the frictional force is constant, independent of the net
applied force.

. Experimental evidence shows that the maximum valye of frictional force (the limiting
Ratic friction force) is proportional to the normal component of reaction N, "i'.&,
A

(Fr)m = usN - H_QR

Where Hs is a constant known as coefficient of static friction. Similarly, the )
itude of the kinetic friction force is expressed as

Fg = ;N = U K R
e Uy is a constant known as coefficient of kinetic friction.

- The coefficients us and 4y do not depend on the surface area. in contact but depend
 the nature of the surfaces in contact.
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nt Reaction

e of Friction and Resulta

Angl

; VTU : Aug-07, 08, 10, 11 Feb.-08. B
The normal reaction N and the frictional force F, can be combined to give a 1 ge_sulgat

R called the resultant reaction as shown in Fig. 7.5.1. W
le made by this resultant R with normal reaction N

The ang
is called the angle of friction ¢. P
g = & 7.51)
_ N w0 (15 P or NEESS ol
For impending motion, F; = (F)max = #sN Fig. 751 7
Tl'len, ; ]
N
tang, = ‘u;\l "= Hs
tanpg = Yy / SR (752)
where ¢, is called the angle of static friction.
. If motion takes place, .
Fe _ #kN i

tan gy = M :

where ¢ is called angle of kinetic friction.

If direction of applied force P is changed, keeping its
angle with the surface of contact same throughout, the
resultant R will take different positions in space but
making the same angle ¢ with the normal reaction N. In
such a case, R lies on the surface of a cone known as
cone of friction as shown in Fig. 7.5.2.

Fig. 7.5.2

If an object i"kept on an inclined plane and the angle
of inclination @ is increased, motion impends for a certain value of 6 known as angle
e s i e i B ’__———_-" e

\ -+

| repose. The angle of repose is equal to the
angle of friction. This can be proved as
follows : .

Consider F.B.D. of an object kept on an
inclined plane of angle 8 equal to the angle of
répose as shown in Fig. 7.5.3.

' EPy il
N—f;VcasB =0
N = Wcosé

ZF,:O

U, N—-Wsiné = 0

ps Weosb) = Wsiné
pg = tan@
t Ky = tang,

g
l a
t| ©
-
I
s
=
<

Problems involving dry friction can be solved using either N and F, or using R and



Problems involving Dry Friction

blems involvin
g dry friction can be broadly cl
of Pl'Oblems all fo yc¢ assified Into two types. In th first
rces acting on the object and coeffi : “

and clents of friction

ek we- have to determine whether the object will move Or#:‘oatndln# k Aare
ur’ e frictional force is also unknown and has to be determined The. P
e can be adopted for such problems : ¢ P following

') Draw F.B.D. of object without frictional force.
Choose x-axis parallel to the direction in which obje

ct can move and y-axis

| perpendicular to it.
3) Use 2 F,=0to find normal reaction N.

/

) Find limiting static friction force (F )max = #sN

l F’ s o at
ind E F,, excluding frictionale force. This will be net force trying to move the

_object.

6)'1;\2 Fx\ < (F, )max+ ODjeCt does not slide.
case, the actual value of frictional force will have

same magnitude as 2 F, but opposite direction.

2 F, in opposite direction.

In such a

ie. F, =

7) If \2 I-‘x\> (F, )max» ODjECt slides and

a direction opposite t0 z Ey.
ems where dimensions O
_ either slide or overturn. Consider an object a3
shown in Fig. 7.6.1 (a), where applied force P is zero. The
line of action as weight W

normal reaction N has same
son. There will be no frictional force.

force P 1is increased, the point of

towards right as shown in
d further, when the object is

il act at the right end B as

F = mN in

In probl f object are giver, the

object may

just about to overturn, N W

shown in Fig. 7.6.1 (c)-

We can find the value of force P required to overturn
the object by taking moment about the right edge B of the
object.

is known that there

In the second type of problems, it
In such problems draw FBD, use

is impending motion.
E = usN and use condition for equilibrium-




MoouLe -2

Q) F:'-rd *‘LVS!D!; n 4}:1?&3 LS{H /Srfirc‘ﬂ' 2 ur é‘qU}:fﬂuf ,g;qf,._;: T ,hi:""""f'

APP\‘\yw‘ Laml's Eovent 4o Yy pork D

AL = Ty 5

P

—

20
Sur (\;o‘) cn(1259) s (5c°+%t)

—-T____B = T& = 20
Smizd”  sSwlzs” Sun ('Cgi
T3 =20

cm[z0° S Qagc)
To* S (\os‘j = 2p X Sun (Boj

T, = 20X Sut ((20) . ssokn
Sun Cuosj
'T& = 20 R
Su 125° Sw 05

'21 voss kb ol cakion
T X 2w o5 =208 1og ©

T, = 20 sw 25° - 1z-9¢ kd
Sun |05 ° ©




Now wneder the 5tjsbmo'j’ ﬂowz af_k.ma ak o~

éF-:
&10

; o % =0
e =Ty WEEE T, oS 35 |
o
(s — 15°8L s ES” + T
O
T, we3s® = Is ¥ (58 6 WwSSE
T = IsAlse86eSE 9.2 WA
e 35°
SFy <0
2 S s
T, S 55° + T, S 3571
(=} _— —i"
e, iggS & EAE- A

29.87xN T Ty

®) Fwd wnkack pressure ak /suvj,awﬁ G‘g tonkack jm {he /ngd:m
Ashown Mury@ )0»{ 2 tMLle u}lm(ﬂvﬁ P and @

( duc w:q( Tan ww)

anth



Uzm(\ Lom's Ehoovem Jo-r wolley o

%
A - PB 8 |
s (90’ ?0) Sim (qrj”r é.f’j S 10°
2a .
" Re = il
Sun 120 “un ( \f—;") ‘wqo°
Va T
S IJD() cvn 40
Q(d (7055 ’m;;)}_lr;‘f/afrrm'
Pp Xemqd =2um 20 Al
NI\
Ya = 2u ??2?,' . 0'2F w A ) o
ﬁf/ﬁq()n
g = 4o
-wa.ﬂu sl 90

PLA X7k MJJJ,LJP lak iy

Ppxemqo = cmls? Xl

K = WK = 05 akdl
Smqo®
Fov vyolley
47 -0 O
-\ +Roem 60’ —Rgewz0” =p

= 4+ PLamp0’ = 0°269sw 30 = ()




R,eweo = I+ 00259 sms0°

R, = |+ olosﬂcw?jf’ L )»ZOWU} P
cmpoO”

‘ﬁrx ot &

Rp > Pewggu"— R, ws é0° =0

by — 029 ws30° — ["'30 we c0 ~ O

Rp = 130 wse0” + 0269 wez0° = 087N,

Q) Ladwloke Bu tongton e Ao ,skwé}/s - Ao cadudate & }lc}uve
(Twm} ‘Sullf ZO!O

T L=
Tep
300% sor
200 A

U@lnﬁ Lami's Ehaovem jc% poun):c;

TQ&: = T‘D = 800
S’\r}\(qo"_}éaj gbn[qoo_}gaj S QQOO"‘@OO-FéOO))

= 00
S 2
V‘HSD SD)‘\- ,Q_Oa Sm Cﬁaj




Vee e QOO

sw |=0° su 4p°
Bj (Yass muu;lplfcat Ta7%
Ta, X<€mq0° =800 X Sin 160 °

’(”BL = 00X S\ |sO - q-OUN

< wn q0°

|cD = 800

i el

Sin 120° sm q0°

Q(é (Yo&s wukﬂ:qo\lzaf 10

-

o]
s Z£mq0° = oOXSwlz0O

°
'TCP = Q00X sn |20  _ Vi b B N

S qp®

Yoy Pank R
o A
‘Tgf,wézoo — Tap®s0 = O

Log waan” = lapese =0

0
- = o0 wWs 30 = 2h6L4] —— ()
[Prg (0OsO 4 O
2[—'(,% =)
—\op0 — Tg&—é(/n_gﬁo -+ TABSUHQ =4
Ty Sue SHO00 ¥ pepewse® = 1280 ‘@
@ 2 TarSmo _ 200

0, Th Bipen Bl 64| @



F amp 1200 _

Bl bl

0 < tan ' 2o - 7301
Bl b 4

gu’o.&klkuiwcs o 7Q,q” m /’(VMIJ rﬂ/ﬂ(/’ )

Tag MO = 200

Tai B BOC . w [REE. - Vangeag

RN

< uno g%(??ﬂj



D ——

: cnown (1N
Q) (‘,H’,ldg bhe Lencione o e Ak s A2, g ad e as b
N

( du wls'/ Ton aolﬁ
th ¢

254

™

7 orus ak £
APP]LAH’(? Lami'ls klorem fov Lhe ,g(js umoj 1

T = T = 20

e —

Sums0° Swt ('180”"30j ‘ _C:’V,,'Ogo"—goa-l 30)

-y - Q—O
Tl - T’—- ) o)
2ME0°  Sin 15D Sup (wo

T

—_—

- 20_
2w 5p° gm’(woo)
B‘* 08 vl plieal ig,

T gvﬂcléoﬂ = 20X SwmED”

T = 20X cmep?
h‘\—'h—

Sw (1e07)

b4 e79N



Ta _ 20

— i, -

Q
Swisp® SN 160

[21 0S¢ ﬁmlbphza.hm
Tox Sum gl = 20XSMISD°

To= 20XSmis0” _ 29403 N
s leo®

F:a Bct{tj rhacimm 03 pnmL o

T

Ta !
X 50"

)

onaidea du e’(}unhbwumﬁ jmus ak ¢
‘{Fx =0
T,Swe — T,ems0 =0
TSmO = T Swmso'
T:g Swme = QQogsztnscf’ = 2239 N\ __—{D
Zr, =0
Y o

L2 J—
TLWwE0 + T, 0e50,~ O

B L
T 0ed + 29-23 WSSV e

26
T, wsO = -29-22 wesd = + 622! —@
[
@_/\T_gsmﬁ _ 2229 _ 3.¢0s
(2) Guse &2



kCMG }oéo‘; | -74"6
x .E - @-coﬁj
= o
O =

l !

°

2'-‘2
]25‘4{9 =2 ‘(
('j ‘"29‘2?
§ 5 &5
sm "
2

' N
3
23.2
22° 39 -

74«‘,
Su (& )




SLURAURL) Three cylinders wetghmg 500 N each 24
, in diameter are placed in c}mnnel as 9hown in. U
‘ 018 Determme reactwns at all cantact pamts.', '

Solution : The triangle formed by joining the
centres of the three cylinders is an isosceles
triangle as shown in Fig. 5.10. 18 (a).

i 17
az—COS 24

a, =49

1]

a;

i

a1

Fig. 5.10.18 (a)

The three free body diagrams are shown in Fig, 5.10.18 (b).

Fig. 5.10.18 (b)

FQrA,E F,=0:

EPy=0:
4

R2 sin 449 + Ra sin 44.9 - 500 = 0




]
o

R6 - 500— R2 sin 44.9

T

Fig. 5.10.19 (a)

g Lami's theorem,
R Tt 1000
sin 120 sin 130~ sin 110

which will
* collapsing.




Solution : The free body diagrams
of the three spheres are as shown in
fig. 5.10.25 (a).

When the arrangement is about
p collapse, P and Q tend to move
ay from each other. As a result,
Hon between P and Q tends to

From FBD of R :
S Bl

005 60—~ R, cos 60 =0

' Ri. ~*R;

2F

sin 60+ R, sin 60 — W =

0 Rp

Fig. 5.10.25 (a)

E 3. 3
1-2—+R17 =W
W
R; = —
&
rom FBD of P :
‘ E F, =0 : Rp cos(90—a)— Ry cos 60 =0
Rp sina = %% - (1)
=0: Rp sin(90—a)~ Ry sin 60~ W=0
3
p cosa = %-%——+W
‘ ) |
{ -0 |
Pk
23

,equaﬁon (1) by equation (2), tana =




{_\Q /\ e
R R
ALY
R ‘//' o T T v |
® WK 90 tan 30 180 - 50 - 90 tan 30 50 ™™
42 Fig. 5.10.15 (a)
S 180— 50— 90tan 30 = A
5 140 =
‘|“'~\‘\?
a = 56.12° ‘

The free body diagram of the two cylinders are shown in Fig. 5.10.15 (b).

-

it  Fig. 51015 ()

Using Lami's theorem for A,
Rp Rg 20

sind0 ~ simn14612  sin(180-56.12)

——

0

R sin30+ R~ 50— Rp sin56.12=0

Rp

A ,éa.zr
e
X 1

20kN













[ e
For cylinder 1 by Lami's theorern,

. o NS
sin 120 sin 135
Fe = 1201475 N
For cylinder 2: 3F, =0
~Peos45~Rycon 454 F- cn15 = 0
Pesd54R;com45 = 1201475 cow 15

)'_,Fy=0

Fig. 5.10.28 (a)
—Psin45+R; sin45—Fc sin15-50%9.81 = 0

—Psin45+R, sin45 = 801.465
From equations (1) and (2),

4

! ‘:IheFBDofissho&nmﬁ'g. 5.10.32 (a).
A4 =0 : — (200)(200)+(T)(50) = 0

- 0

F, =0 : 200c0s20+A, =0

A, = -187.94

Fig. 5.10.32 (a)

&




Ay = 800 - 200 sin 20
A, = 736N 1
Ry = JAZ+AZ = 187947 473167
S HR'A ’ 755«35N
o - tan"] E_y_l =fﬂ11_1 7316
A, 187.94
i L 265 Do
. 7 . = = L
[examvic 51033 108 —

cables tied together at C A5
are loaded by a force P.

If the  maximum
allowable  tension  in
each cable is 800 N.
Find a) The largest P
that may be applied at
)¢, and b) The
corresponding a. Refer
Fig 51039.

o

* Solution : FBD of point 'C' is shown in Fig. 5.10.39 (a). 800 N

Using Lami's theorem,

800 _ L i G
sin(50+a)  sin(180—a+ 35) ~ sin(180— 50— 35)

% 50+a = 180—a+ 35
’ 2a¢ = 165°

4 S

800 sin 95
sin(50+ 82.5)

Marks 10 §










(F)max = 0.3 (490.5+ 200 sin6)
2 F, = 200 cos® (=)

a) For 0 = 10°,
(F )max = 0.3 (490.5+ 200 sin 10°) = 157.57 N

2k

2 Y B

200 cos 10° = 196.96 N(-»)

.. Object moves towards right and

F = uN = 0.2X (490.5+ 200 sin 10°)

Eo=0505N

b) For 6 = 40°
(E)max = 0.3(490.5+ 200sin 40°) = 18572 N
> F, = 200sin 40 = 153.21 N (=)

2 Fy < (F)max -~ Object doesn't move

b -

Solution: The F.B.D. of block is shown in
Fig. 7.6.4 (a) without frictional force

E =0
N-—Psinf— 50x 9.81cosf = 0
N = Psin6+ 490.5 cos6

(F)max = #s N :
(E)max = 0.3[Psin@+ 2905 cos6] " (1)
3 F = Pcos- 50 9.81sin6 e @

a) For P =200 N and 6 = 20°,
(FE)mex = 1588 Nand ) F, = 2018N
As 2 F, is positive, the net force is directed upward along the inclined plane.

e

<. Object does not move.

E = 2 F, in opposite direction.













Example 7.9.2 AN

Solu‘on: The free body diagrams of the
two blocks are shown in Fig. 7.9.2 (a).

For the 2000 N block, 02N,

5
&
o
2

i 0.2N; :
cos 30 - (1)

> E=0:
Tsin30+ N;—2000 = 0

Substituting from equation (1), s

Fig. 7.9.2 (a)

Ny o
e X sin 30+ N; = 2000
N; = 179297 N
For the 4000 N block,
Y F=0:

N, —N; — 4000

N,
XK ~0"
02Ny +02Ny=F = 0
S B NG+ N
F = 0.2(1792.97 + 5792.97)

0
5792.97 N

§ Example 7.9.3

ICLION 10

VTU : Feb.-04, Marks 10

Solution : The F.B.D. of block without frictional force
shown in Fig. 7.9.3 (a).

As block cannot move perpendicular to the plane,

2F,=0:

=196.2 N
~ Fig. 7.9.3 (a)









Example 8.9 A block weighing 6 kN is attached 16 a strin , which iction
pulley and supports a weight of 3 kN, when the coefficient ofgfn'ction bi?ﬁ::not;:fbalof:;u
floor is 0.35 (Figure 8.26). Determine the value of force P when the -
(i) motion is impending towards right.

(ii) motion is impending towards left,

~ Whenever a body is hanging free in air, there is no need to consider normal reaction.,

Figure 8.26 Example 8.9.

n 'Case 1: When motion is impending rbﬂ‘&rd& right
Consider the free body diagram of 3 kN block (Figure 8.27):

6 kN

y /7
X
3 kN
ure 8.27 Example 8.9. . Figure 8.28 Example 8.9.
EFy =0
3-T=0"
T=3kN
Consider the free body diagram of 6 kN block (Figure 8.28):
IF,=0
3sin30°-6+N=0
N=4.5kN
IF =0
-P+3cos30°-uN=0 S
P =3cos30°-0.35x4.5=1.023 kN Ans.
2:  When motion is impending tawa(ds left (Flgurc 8.29):
g o A L oy
-3s5in30°-6+N=0 .
N=75kN
ZF;tﬁ'- O

P-3cos30°-uN=0










" Fg 799

SOluhon : The FBD. of crate for dowrxward impending motion is shown in

Fig. 7.9.9 (a).
2 F,=0:

=5689.8 cos 35— Psin 35 = 0
N; = Psin 35+ 5689.8 cos 35

E
2 F,=0: < E
: =P cos 35+ 5689.8 sin 35— 0.25 N; =0 1 iﬁ;‘é?M

Fig. 7.9.9 (a)

— P cos 35-+5689.8 sin 35— 0.25 (P sin 35+ 5689.8 cos 35) = 0
b 5689.8 sin 35— 0.25% 5689.8 cos 35 = P (cos 35 + 0.25 sin 35)

For impending motion up the plane, the F.B.D. is
_shown in Fig. 7.9.9 (b).

S =0
N; —5689.8 cos 35— Psin 35 = 0

N; = Psin 35+ 5689.8 cos 35 N, % +

= 5689.8 N
b =g Fig. 7.9.9 (b)

: — Pcos 35+ 5689.85in 35+ 0.25N; = 0
- Pcos35+ 5689.8 sin 35 + 0.25 (P sin 35+ 5689.8 cos 35) = 0

5689.8 sin 35+ 0.25% 5689.8 cos 35 = P (cos 35— 0.25 sin 35)
L

A EAS S

Feb.-08, Mark 8

on : As block A tends to move down the incline, B tends to move up the incline.
ﬁmbodymammofﬁlemoblocksmshownmﬁg7913(a)







For largest value of Wy, A tends to moye u
incline. The F.B.D.s are shown in Fig. 79.27 (b)

*J;

P and B tends to move down along

&
100N
+
: 4 Fig. 7.9.27 (b)
From EB.D. of 4, D E =0
T-100 = 0 BT S Y e i

b, T = 10N
From FBD. of B, 3, F, = 0

-~

Np—=Wj cos 30
--.l NB
2 E=0:

Wy sin 30-035N; ~T = 0

0

Wpg cos 30

s SN T SNV 7
Solution : The free body diagrams of the
two blocks are shown in Fig. 7.9.29 (a).
For 300 N block,

=
|
S
:

300cos 8

o Nl =

%
:

Fig. 7.9.29 (a)










N; N4'
Fig. 7.7.5 (a) =
N, = 683.036 N

0

£ N
For B, 2 F,

NS—NI Sl?l60+0268N1 sin30 =0
N3 = S(XJN

S5 =

Solution : The free body chagrams of the two blocks Craad
are shown in Fig. 7.94(a)-

2N
035N,




For the F n.D. of H,

Y F=0:
st
Ny=Nc0s82-035N, cos 8 = 0
S R =0: &
s N
=035N; +N; sin 82-0.35 N,sing-2 = 0 @

From equation (1) and equation (2),
N, = 2592 kN
For F.B.D. of wedge,

2 =0

N3=N,sin82+035N,sin8 = 0
N_; =2'44kN
E F,=0:
N;cos 82+ 0.35N, cos 8- P+035N; = 0

P =2113kN«

TR XYIR 11 the Fig. 7.9.28, determine the
"/ minimum value of P, just required to lift 3000 N up.
. The angle of friction between block and the wall is 15°
and for other surfaces it is 18"

3 T VTU : ‘Aug.-10, Marks 12

Fig. 7.9.28

lution : The two free body diagrams
shown in Fig. 7.9.28 (a)

" At the wall, u =tan 15

For other surfaces, x4 = tan 18

1— N cos80—Nj tan18cos10 = 0

(1)

2 Fy =0 #

, o : s Fig. 7.9.28 (a)
—Nltan15+stin80—N2 tan18 sin10 —3000 = 0 558
From equation (1) and 2), 4

N, = 37683 N
For B :
E Fy =0

_Nz Sin80+N2 tall




PN b e S s saaaiae s
2 LR

F. =0
N3 cos 80 + N, tan 18cos 10 + Njtan18-P =
T [ P= 209686N |
9.10.4 Problems on Ladder Friction

A ladder is a device used for climbing u ‘

ladde p or down, ;

contact point with floor and another contact point with wall, Wh]: c:agsi::m contact points. One
and. \_val_l are rough then friction will come into play. The forces wh‘fl reactions. If the floor
equilibrium are shown in figure below Figure .11. 1 keepithe Iniek in

The conditions of equilibrium used to solve ladder problems are

IV =0,ZH =0 also M, =0
[Motion Trend]
Wall
HaRy

Ladder R,

' B
| §
; o
Floor
| 0
g e e /_ /_{1_‘:/ {7/ P77 77777777777 0
Motion Trend [ 4 R, HaR,
- RA
s 3 Fig. ..11

ENPIERR) A ladder AB weighing 196 N is resting
| against a rough wall and a ‘rough floor, as shown in
L F _,“‘7;8..‘"1‘;.\;_"Calcu'late the,;.minirzfgﬂgn'-;h@riggntql.iforée ‘P!
required to be applied at C in order to push the ladder
towards the wall, Assume coefficient of friction at
' A = 0.3 and that B,“,a-J_O.Z.‘ ke (R

Solution : The F.B.D. of ladder is shown in
Fig. 7.8.1 (a).

There are three unknowns - P, N4 and Ng which
can be obtained using the three equations E F, =0;

EFy=0and2M=O

-0.3NA-NB+P=O ...(1)

Fig. 7.8.1 (a)

No-02Np-19 = 0 e (2) i

2 My
(N ) (4in 50)— (0.2 N g) (4 cos 50)— (P) (1 sin 50)~ (196) (2 cos 50) = 0
From equations (1), (2) and (3),

]
o




Fig 782 (a).

Y E =0

NB'-O.ZSNA =0

N4+03Ng—-850-500 =0
4Ng+03Ng = 1350
Np =31395N

Y My =0

B50) 75 cos 60) + (500) (x cos 60— (N5 ) (15 sin 60) (03 N5) (5 s 60) = 0
B ek 'fGNB'weget AT, 3

“The FB.D. of ladder when weight W is put at the
sttom is shown in Fig. 7.82 (b).

'T,. (75 cos 60) + (500) (15 cos 60)
(Ng)(155sin 60)— (03N g) (15 cos 60) = 0
1 NB = &MN

x

I
S




‘mt'of friction between  the wau
, 0.25 and that between the ladder
! the floor is 03. Determine the minimum
horizo tat jorc: to be applied at A to prevent g

acman weighing 600 N wants o
dmancc 3 m from A shawn in the

0.25 N ) (4 cos 60) = 0
Np = 27749 N

R

Na 730.63 N

4 NA
Fig. 7.9.1 (a)

P4 e 2
0-3 N, N, =
P = 2774},6; — 0 3XT30 L3 =5 ‘6".2”\}

TIREY) A ladder of % m weighing 200 N is
~ supported by a horizontal floor and vertical wall
shown in Fig. 7.9.5. If a man of weight 650 N,
climba to the top of the Iadder, determine the

_' incllmztion of the ladder with rqference lo the floor
~at which the ladder is ‘to be placed to prevent

- slipping. Take ;r- 0 25 for all contact surfaces.
VTU : Auq 04 Dec.-11, Jan~13, Marks 14

.lutlon: The F.B.D. the ladder is shown
Fig. 7.9.5 (a).

Y F=0:

0.25N4=Np = 0 ae)
2 Fy = 0

A +025Np -200-650 =0

Ny +025Ny = 8§50 ae (@)

From equation (1) and equation (2),

Ny = 200N
- My =0




~(200) (205 6)~ (650) (4 cos 6) + (N

B) (4 sing) +(0.25N 5)(4 cos) = 0
—400 cos 68— 2600 cos 8+ 200x 4 sinf+ 200 cos® = 0

800 sin6 = 2800 cos@

2800

tang = 2890

ano= 500

g a =7405°

A lﬂdder 5 m in length is ratmg agmnst a smooth vertical wall and a ,
horxzontal floor. The ladder makes an angle of 60° with the horizontal, When a 7 £

weight 800 N is af the top of the rung, what is the coefficient of frzctum required R &

bottom of the ladder and the floor such that the ladder does not slip? Take the ;": [
ladder as 200 N. ;o il

Solution: The EBD. of ladder is shown in
Fig. 7.9.12 .

E MA = 0 .
—(200)(2.5 cos 60)—(800)(5 cos 60)
+(Np)(5sin60) =0

EFyZO:

Np = 519.615N

TR S R .

—200-800 = 0
N4 = 1000 N
2 B =0k
ey T r
#NA—NB . N &2 E
Ng :
s
_ 519615 _ S Fig. 7.9.12
1000
4= 05'2

ﬁrm;ladder of lengﬂz 20 s _rs;s, agamsta vertwat with w
he WH' 1

Solution : Let we:ght of ladder be W
w

Then weight of man is 5~ The F.B.D. of

ladder is shown in Fig. 7.9.14 .

3 F=0:

e o -

1 20sind5.
_NA"NB =0 — A
2
NA = ZNB
S
E Fy':O %NA """"""" :
|
W 1 I
~W-Z+3Np = 0 . i .
20cos45 !
3w e =
2Np+-Ng = —=— 2
3 2 Fig. 7.9.14
:
7/ 3
§N3 = EW 2 ) 6_’/\



o ol . 5¢s

S ma =0

1
—(W)(10 cos 45)—(%)(1 cos 45)+(N 5)(20 sin 45)+(§ Ng)(ZO cos 45) = 0
in 45 = cos 45 = 2
As sin = JE

1N8X20=0

_Wx 10——v2£x+ N5x20+3

9w
Substituting Npg = =7~

W 9w 1. 9W
“WX10- x4+ TEX20+2x 0
X
2

: 9 . 30
b = 1420m |

P
This distance is along the ladder. The height from the floor will be
14.29 sin 45 = 10.1 m.

A ladder?mbngwaghngS%NwratmgagnMGMH#m jk&

60t the horizontal ground. A man weighing 700 N climbs the ladder, at what pszbar“

-

8 VTU : June-12, Marks §

—Xx20=0

-10-Z+ =0

~ does he induce é’ltppmg_L ake = 0.25 for all contactsurfﬂcai

Soluhon The F.B.D. of ladder is shown in Flg 7915,

Y E=0:

i\rA "025 NB = 0 NA_
NB = 4NA
2R =0

w ]~ % 1 ) i P [ o =
O._J_\__! +‘\B /00 300 O 7sin60
025N4+ 4N, = 1000

}.-. Ny = 235294 N
EE Mp=0: i

Fig. 7.9.15

)(3.5 cos 60) +(700) (x cos 60)— (N 4 ) (7 sin60)—(0.25 N 4 )(7 cos 60) = 0
cos 60 + 700 x cos 60 — 235.294 x 7 sin 60 — 0.25 X 235.294 X 7 cos 60 = 0







Friction
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Definition:

When one body tends to move in contact with
another body a resistance to its movement is
setup. This resistance to the movement is called
friction or force of friction or frictional force.

Motion ——Jp»

Pushing force



The force of friction always acts in the
direction opposite to the motion trend as
shown.

4 s P=Applied Force

Force of < 7y [(Motion Trend) right]
Friction F

R
(Left) (F Opposes Motion Trend)




Types of Friction
1. Static friction: friction acting on a body which is at
rest

2. Limiting friction: friction acting on a body which is
just on the point or edge of sliding

3. Dynamical friction: friction acting on a body which
is actually in motion. Also called kinetic friction

~




Types of Friction

4. Dry friction: friction acting on a body when the
contact surfaces are dry and there is tendency to
relative motion. Also called Coulomb friction.

2 types of dry friction

i. Solid friction: friction acting on a body when 2

surfaces have tendency to slide relative to each
other

ii. Rolling friction: friction acting on a body due to
rolling of one surface over another



Types of Friction

5. Fluid friction: friction acting on a body when the
contact surfaces are lubricated

2 types of fluid friction

i. Skin/ greasy/ Non viscous friction: friction
acting on a body when the contact surfaces are
lubricated with extremely thin layer of
lubricant. Also called Boundary friction

ii. Viscous / film friction: friction acting on a body
when the contact surfaces are completely
separated by lubricant



Motion trend of a block on a surface

A body of weight W is subjected to pull P which
tends to move towards right as shown

w (body weight)

Body

Fipu"}

—>

Motion Trend
Friction force

R (Reaction @ contact)



From figure we can see the normal reaction and
friction force are perpendicular to each other
and can be replaced by a single resultant
reaction R1 making angle ¢

Tand = F/R




Angle of friction: The angle which the resultant
reaction R1 due to normal Reaction R and
Friction F makes with the normal to the surface.

Tand = F/R

Co-efficient of friction: ()

It is the ratio of limiting friction F to Normal
reaction R between 2 surfaces. This is also equal
to Tangent of angle of friction.

u="F/R
Tand = u=F/R



Angle of Repose:

If a body is placed on an inclined plane, then
the angle @ which the body is just on the point
or verge of sliding down.

Motion Trenlc/



Cone of Friction:

* Whenever a body is in contact with other tends to
move, then the normal reaction OR and friction
come into play.

 The normal reaction and friction can be replaced by
resultant reaction OR1.

* When this resultant reaction OR1 making angle is
revolved around point O will form a right circular
cone.

* This cone having the contact point as the vertex O,
the normal OR at point of contact as its axis and ¢
as the semi vertex angle is cone of friction.



Cone of Friction:

R1 R R1

Cone of
Friction




Laws of Dry friction:

1.

The force of friction always acts in the direction
opposite to that in which the body tends to move.

. The magnitude of limiting friction F bears a

constant ratio to the normal reaction R between
the two surfacesi.e F/R=p

. The magnitude of force of friction is exactly equal

to force, which tends the body to move as long as
the body is at rest

The force of friction is independent of area of
contact between two surfaces.

. The force of friction depends upon the roughness

of the surfaces in contact.



Static friction:

 Under static conditions the friction force

opposes the tendency for relative motion
between 2 surfaces in contact and acts
tangential to surfaces.

* Limiting static friction force which is maximum
value of friction force is directly proportional to
normal reaction between 2 surfaces in contact.

* (Fr)max a N
* (Fr)max = usN

* Us = Coefficient of static friction



Kinetic friction:

* Force of kinetic friction opposes the relative
motion between 2 surfaces in contact

e The force of Kkinetic friction is directly
proportional to the normal reaction between 2
surfaces in contact

* Fka N
* Fk=H«k N

¢ p.k = Coefficient of kinetic friction



