CHAPTER 2
TIME RESPONSE ANALYSIS

21 TIME RESPONSE

The time response of the system is the output of the closed loop system as a function of time. It is
denoted by c(t). The time response can be obtained by solving the differential equation governing the
system. Alternatively, the response c(t) can be obtained from the transfer function of the system and the
input to the system,
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The closed loop transfer function,

The Output or Response in s-domain, C(s) is given by the product of the transfer function and the
input, R(s). On taking inverse Laplace transform of this product the t1me domain response, ¢(t) can be
obtained.

Response in s-domain, C(s) = R(s) M(s) ' : o 22)

Response in time domain, c(t)= £{C(s)}=L{R(exM(s)} . (2.3
where, M(s) = _ 66
1+G(s)H(s)

The time response of a control system consists of two parts : the transient and the steady state
response. The transient response is the response of the system when the input changes from one state to
another. The steady state response is the response as tlme t approaches infinity.

C(s) R(s) C(s)
_R’csponse (MG}t Gl
(or Output) - = M(s) = _ G
1+G(s)H(s)

Fig 2.1 : Closed loop system,

22 TESTSIGNALS

The knowledge of input signal is required to predict the response of a system. In most of the
systems the input signals are not known ahead of time and also it is difficult to express the input signals
mathematically by simple equations. The characteristics of actual input: signals are a sudden shock, a
sudden change, a constant velocity and a constant acceleration. Hence test signals which resembles these
characteristics are used as input signals to predict the performance of the system. The commonly used
. test input signals are impulse, step, ramp, acceleration and sinusoidal signals.

The standard test signals are,

1. a) Step signal : 2. a) Ramp signal 3. a) Parabolic signal
b) Unit step signal - b) Unit ramp signal b) Unit parabolic signal
4. Impulse signal 5. Sinusoidal signal.
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Since the test signals are simple functions for time, they can be easily generated in laboratories. The
mathematical and experimental analysis of control systems using these signals can be carried out easily.
The use of the test signals can be justified because of a correlation existing between the response
characteristics of a system to a test input signal and capability of the system to cope with actual input
signals. ' :
STEP SIGNAL

r(f)A
The step signal is a signal whose value changes from zeroto Aatt=10
and remains constant at A for t > 0. The step signal resembles an actual steady
input to a system. A special case of step signal is unit step in which A is unity. A .
The mathematical representation of the step signal is, _
t)=1;t=0 »
C mtiie e 1
RAMP SIGNAL Fig 2.2 : Step signal.

The ramp signal is a signal whose value increases linearly with time A

from an initial value of zero at t = 0. The ramp signal resembles a constant
velocity input to the system. A special case of ramp signal is unit ramp signal in 2Apesmeeeeeg ‘
which the value of A is unity. _ '
The mathematical representation of the ramp signal is, :
r)=At ; t=0 :

=0 ;t<0 .. (2.5) 0 1 27 ¢
Fig 2.3 : Ramp signal.

A J

PARABOLIC SIGNAL

In parabolic signal, the instantaneous value varies as square of the tt) 4
time from an initial value of zero at t = 0. The sketch of the signal with _
respect to time resembles a parabola. The parabolic signal resembles @  45AF--vee-un--
constant acceleration input to the system. A special case of parabolic signal

is unit parabolic signal in which A is unity. 2Aba--ac-- /
The mathematical representation of the parabolic signal is, 05AL--2 .
0= 2t Fig 2.4 : Parabolic signal.
=0 ;t<0 e (2.6)

!_Note : Integral of step signal is ramp signal. Integral of ramp signal is parabolic sfgndJ
IMPULSE SIGNAL

A signal of very large magnitude which-is : (=304
available for very short duration is called impulse T(t) = () A
signal. 1deal impulse signal is a signal ‘with infinite A
magnitude and zero duration but with an area of A. = —
The unit impulse signal is a special case, in which A
isunity.
The impulse signal is denoted by o(t) and 0 ’ /A >

mathematically it is expressed as,

Fig 2.5 : Impulse signal.
8(t)=c0; t=0 and ja(t)dt=A .

—0; 20 r(27)
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Since a perfect impulse cannot be achieved in practice it is usually approxixﬁated by a pulse of small

width but with area, A. Mathematically an impulse signal is the derivative of a step signal. Laplace transform
of the impulse function is unity. '

2.3

TABLE 2-1 : Standard Test Signals

Name of the signal Time domain equation Laplace transform of—‘
: of signal, r(t) the signal, R(s)

: A

Step A -

S
. 1
Unit step l -
S

A

Ramp At Z
' 1

Unit ramp t e
A

i £ £
Parabolic %— 3

2 L

Unit parabolic By S
Impulse a(t) l

23 IMPULSE RESPONSE

The response of the system, with input as impulse signal is called weighing function
or impulse response of the system. It is also given by the inverse Laplace transform of the system
transfer function, and denoted by mt). '

Impulse response, m(t) = £ {R(s) M(s)} = £ M (2.8)
___G(sy -
where, M(S}_T@% ’R(s) =1, for 1mpuise1

Since impulse response (or weighing function) is obtained from the transfer function of the system,
it shows the characteristics of the system. Also the response for any input can be obtained by convolution
of input with impulse response. '

24 ORDEROF A SYSTEM

The input and output relationship of a control system can be expressed by n® order differential
equation shown in equation (2.9).

n n-1 dn—Z d b d=
a D+a,——=p(t)+a,——p(t) +.ota_,—p(t)+a. p(t) = b, —a(t
e p(t)+a, G p(t)+a, = p(t) _n_l dtp() a P(D) 0 5m q(t)
ml dm2 d (2:9)
+b, Eﬂ:-l-q(t)+b2-dt—m_—2q(t)+......+bm_raq(t}+ b, q(t) seerl 2

where, p(t) = Output / Response ; q(t)=Input / Excitation.

The order of the system is given by the order of the differential equation governing the system. If .
the system is governed by n® order differential equation, then the system is called n* order system,
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Alternatively, the order can be determined from the transfer function of the system. The'tran.sfer
function of the system can be obtained by taking Laplace transform of the differential equation governing
the system and rearranging them as a ratio of two polynomials in s, as shown in equation (2.10).

P(s) _ bys™+b;s™ +b,s™ 24, .4b,_ 5+b

Transfer function, T(s)= = - e —
(8)  aps"+a;s" +a,s" M, +a, (s+a,

m L (2.10)

where, P(s) = Numerator polynomial
Q(s) = Denominator polynomial
The order of the system is given by the maximum power of s in the denominator polynomial, Q(s).
Here, Q(s)=a,s" + a s +a, 8" o, +a s+a.
Now, n is the order of the system
When n = 0, the system is zero order system.
When n = 1, the system is first order system.

When n = 2, the system is second order system and so on.

Note : The order can be specified for both open loop system and closed loop system.

The numerator and denominator polynomial of equation (2.10) can be expressed in the factorized
form as shown in equation (2.11).

T=o) (26t 2)lstzy) @.11)
Q(s)  (s+p)(s+py)eee{s+D,)
where,  z, z, ......z_ are zeros of the system.

Pi» Pys P, are poles of the system.

Now, the value of n gives the number of poles in the transfer function. Hence the order is also
given by the number of poles of the transfer function.

Note : The zeros and poles are critical value, of s, at which the function T(s) attains extreme
values 0 or . When s takes the value of a zero, the function T(s) will be zero. When s takes the value of]
a pole, the function T(s) will be infinite.

25 REVIEW OF PARTIAL FRACTION EXPANSION

The time response of the system is obtained by taking the inverse Laplace transform of the product
of input signal and transfer function of the system. Taking inverse Laplace transform requires the knowledge
of partial fraction expansion. In control systems three different types of transfer function are encountered.
They are,

Case 1 : Functions with separate poles.
Case2 : Functions with multiple poles.
Case3 : Functions with complex conjugate poles.

The partial fraction of all the three cases are explained with an example.

Case 1 : When the transfer function has distinct poles

K

Let, T(s)=—————
s(s+py) (s+py)
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By partial fraction expansion, T(s) can be expressed as,

K A B C
=+ +

s(s+py)(stpy) s s¥pp S+P;

T(s)

' The residues A, B.and C are given by,

A=T(s) x s _, B=T(s) x(s+ pl)L:_p] C=T(s) x (s+p, )|s=_p2
- Example '
Let, T(s) = ————
s(s+1)(s+2)
By partial fraction expansion, T(s) can be expressed as,
e 2 A, B, C
s(s+1)(s+2) s s+1 s+2
A is obtained by multiplying T(s) by s and lettings =0.
2 2 | 2

A=T(s) x s[‘FOI

TG rD(+2) k=0 (4D (12, 1x2

B is obtained by multiplying T(s) by (s +1) and letting s = —1.

S 2 -2 S S
T E (s+1)L,_} -;(s—ﬂgi ey 2

C is obtained by multiplying T(s) by (s +2) and letting 5 = -2.

2
C:T(S) X (S+2)L:_2—5(—s'mx (3'1'2)1

. 2
N TS S S

- s(s+1)(s+2) s os+l s+2

B=T(s)x (s+1)

' 2| 2
= = =+i
=2 s(s+D)_, -2(=2+1)

Case 2 : When the transfer function has multiple poles

K
s(s+p;) (s+p,)

By partial fraction expansion, T(s) can be-expressed as,

Let, T(s)=

Ty~ K _A, B C D

= — = et
s(s+py) (s+p3) s s+p; (s+py) (s+p2)

The residues A, B, C and D are given by,
A=TG) x9 _, B="T(s) x (s+py)|

5=—-PpP1

C=T(s) x (s+p,)°

4
s=-p, ds

[16) = (s+p2)?].

=-p,

Example
2

_ s(s+1) (s+2)
By partial fraction expansion, T(s) can be expressed as,
B C D
T(s)= K 5 =ﬁ+ + 5+
s(s+1)(s+2) s (s+1) (s+2)°  (s+2)

Let, T(s)=
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A is obtained by multiplying T(s)} by s and letting s = (.

_ _ 2 2 2
A——T(s)xs‘s=0——-_\2x5’= Ty 2[ =205
ss+1)(s+2)7 50 (s+1)(s+2)% _, 1x2

B is obtained by multiplying T(s) by (s +1) and letting s = ~1,

2!_I2

2
B=T(s)x(s+1)]  =————x(s+1)| . = = =
. L 1 s(s+1) (s+2) ) ., S(s+2y L=_] ~I(-1+2)
C is obtained by multiplying T(s) by (s +2)* and letting s = =2.
2 2 | . 2

C="T(s) x (s+2)*

- +2)2
=2 g(s+1) (s+2)2x(S )

e 5{s+1){s=_2 —2(-2+1)

D is obtained by differentiating the product T(s) (s +2)* with respect to s and then letting s = 2.

a2 ] 205+ _ 209+ _

e ds[sG+D ] 52(s+1}2|__2 (<22 (=2+1y
2 05 2 1 1.5

—_— - ———t— —

s+1)(s+2° s s+l (s+2) s+2

Dz%[j(s)x(s+2}2]

T(s) =

Case 3 : When the transfer function has complex conjugate poles

K

Let, T(s) = =
(s+p){s" +bs+¢)

By partial fraction expansion, T(s) can be expressed as,

T(s) = K oA BerC T T @.12)

(s+p)) (s +bs+c) s+p, s +bs+c

-The residue A is given by, A=T(s) x (s+ p1)| Y

The residues B and C are solved by cross mult;plylng the equation (2. 1‘?) and then equatmg the
coefficient of like power of s,
Fma]!y express T(s) as shown below,
A Bs+C

T(s)= e ' {(x+y)2='x2+2xy+y_2]
S+p; s"+bs+c

. Let us express, s* + bs, in the form of (x + y)*. This will require addition and subt[actlon of an extra
term (b/2)% '
- Bs+C _ A Bs+C
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~ Example

1
(s+2) (s +s+1)
By partial fraction expansion,
T(s) = 12 _ A . ]23S+C
(s+2)(s“ +s+1) s+2 s +s+1

Let, T(s)=

A is obtained by multiplying T(s) by (s +2) and letting s = 2.
: 1

1 s ! 1
=2 (s+2)(s" +s+1)

LA=T(s)x(s+2) (2" -2+1 :3

(s+2)

s=—2

To solve B and C, cross multiply the following equation and substitute the value of A. Then equate the
like power of s. )

1 _ A  Bs:C s +s+1 , ,
(s+2) (s +s+1) s+2 $+s+1 =52+2Xi+[lJ +1_[_1.J
1=AE +5+1)+(Bs+C) (s+2) 122 21 2
1=é(sz+s+1}+Bsg+2Bs+Cs+2C [S 2) +[ 4]
g ] =(s+0.5)> +075
1=2 4 24— 4B +2Bs+Cs+2C
3 3 3

1
On equating the coefficient of s* terms, 0= §+ B : ..B '—'—%

On equating the coefficient of s terms, 0:14.254.@ s =*_I__2]3=_l+_2,=l
' - 3 ' 3 3 3
T9-3+3 3L 18 0]
s s +s+1 38 3(s"+s+1) 3(s"+s+1)

i 1 s N I 1
35 3(s+05)2+0.75  3(s+0.5)7+0.75

26 RESPONSE OF FIRST ORDER SYSTEM FOR UNIT STEP INPUT
~ The closed loop order system with unity feedback is shown in fig 2.6.

RE) ) € R J 1] CQ
Ts 1+ Ts
T =
Fig 2.6 : Closed loop for first order system.
The closed loop transfer function of first order system, Cs) -1
R(s) 1+Ts
If the iﬁput is unit step then, r(t)=1and R(s)= é
1
o : 1 11 1 T
.. The response’in s- domain, C(s) =R(s) =

(1+Ts)=s(l+Ts)=sT[_}__+5} {Hl)
' T . T



By partial fraction expansion,
1
c)=—rT -2, B

C9E

A is obtained by multiplying C(s) by s and letting s = 0.

1 1 1
B O(s)x| s+~ T fsel =T =L -
T/t o 1 T s -1
T T 1 T
=7 1
T =
T
1 1
nC(s) == - T
s 1 . I e—at = —
- SFT { } s+a
The response in time domain is given by,
] 11 -t
o) = LHCE)}=LHR-- =1-e T ~(2.13)
s 1
S+ T

The equation (2.13) is the response of the closed loop first order system for unit step input. For
step input of step value, A, the equation (2.13) is multiplied by A.

t
.. For closed loop first order system, Unit step response =1—¢ T

t
Step response = ALI» e'TJ
When, t = 0, ¢(t) =1-¢e°=0
When, t = 1T, ¢(t) =1—-¢1=0.632
When, t = QT, c(t) =1-¢%=0.865
When, t = 3T, ¢(t) =1-¢e3=095
When, t = 4T, c(t) =1—e*=0.9817
When, t = ST, c(t) =1-e3=0993
When, t = o, c(t) =1-e==1

Here T is called Time constant of the system. In a time of 5T, the system is assumed to have attained
steady state. The input and output signal of the first order system is shown in fig 2.7.
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r(t) A c(t) 4
U | P O
1 0.95F------ciialll ; :
0.865 == ===~ ,
0.632}--- .
t=0 _ ‘ t 0T 2t 3T 4t t
Fig 2.7a : Unit step input. Fig 2.7b : Response for Unit step input.

Fig 2.7 : Response of first order system to Unit step input.
27 SECOND ORDER SYSTEM

The closed loop second order system is shown in fig 2.8

2 2 C(s)

R(s) . w©; Cfi) Ris) | - i
s?+2w,s N s%+ 20,5+ 0]

Fig 2.8 : Closed loop for second order system.

The standard form of closed loop transfer function of second order system is given by,

Cs) ©;

=% (2.14)
R(s) - & +2§mns+c0§

where, © = Undamped natural frequency, rad/sec.
€ = Damping ratio.

The damping ratio is defined as the ratio of the actual damping to the critical damping. The
response c(t) of second order system depends on the value of damping ratio. Depending on the value of
C, the system can be classified into the following four cases,

Casel : Undamped system, =0
Case2 : Under damped system, -~ 0<{<1
Case3 : Critiéaliy damped system, (=1
Cased : Over, damped system, £>1
The characteristics equation of the second order system is,
$+2os+ol! =0 _ | : R (2.15)

It is a quadratic equation and the roots of this equation is given by,

200, £ 4007 —do) _ 200, *40r(C*-1)

51, 5 =

=L, to, -1 el 2.16)



roots are purely imaginary

Whenl =0, s, 8, =%j0,: .
? S %2 =10 {and the system is undamped 2.17)

roots are real and equal and _
the system is critically damped (2.18)

roots are real and unequal and
Whens>1, s, s, =0, T0,~1; . :
C>1 8,8 =G0 20uE7 -1 {the system is overdamped wed2.19)

When 0<¢ <1, s, 5, =0, T,/ -1 =—Cmn.imﬂ/(—1) -
' = Lo, to -1 1-G =Lo, tjo 1~

' ) roots are complex conjugate
=—Lw,tjoy; h ]
e system is underdamped ef2.20)

where, a4 = o 1-C y e(2.21)

Here o, is called daﬁxped frequency of oscillation of the system and its unit is rad/sec.

Whent=1, s, 8, =—0; {

2.7.1

RESPONSE OF UNDAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

The standard form of closed loop transfef function of second order system_is,

CE)___ o
R(s) o +200,s5+05

For undamped system, z = 0.

o ol : . | .
“Re " Fas? {2.22)

1
- When the input is unit step, (t)=12andR(s)=-.

2

. The response in s-domain, C(S)=.R(s} zm“ Z -1 zm“ e (2.23)
. ' f+0l s 1o . -
"By partial fraction expansion,
)
mn _A B
C(s) =- —+=5

+
s{s +@ ) S .8 +@

A is obtained by multlplymg C(s) by s and letting s = 0.

2 - 2 2

W ® ®
A=c<s>xs1ﬁo=~7"—z—xs\ =gty = 3=l

s(s"+0y) |, S+, @

‘B is obtained by multiplying C(s) by (s> + ®>) and letting s* = —© ? or s = jo .

o> o;
B=C(s) x (s +03) ><(52+m§} =—1 =—=-jo, =-S5
s=jo s(s2 +02) » L Jog
s=jwo 5 = jiog
A B 1 ]
ki =2 - _ 1|
- O = T il s f+al L=~ | L{cos ot} == "
s | 5 + 0

Time domain response, c(t)= L {C(s)}=L" 18 loi_cos ot (2-24)
. : 3 32 + (ﬂi
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) c(t)h
1{t)a
(1)4 _ S
1 | S S A S
0 % 0
Fig 2.9.a ; Input.

1
Fig 2,9.b : Response.
Fig 2.9 : Response of undamped second order system for unit step input.

Using equation (2.24), the response of undamped second order system for unit step input is sketched
in fig 2.9, and observed that the response is completely oscillatory.

Note : Every practical system has some amount of damping. Hence undamped system does not
exist in practice. '

The equation (2.24) is the response of undamped closed loop second order system for unit step
input. For step input of step value A, the equation (2.24) should be multiplied by A.

. For closed loop undamped second order system,

Unit step response = 1— cos ot

Step response

=A(1 —cos o, t)

2.7.2  RESPONSE OF UNDERDAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

The standard form of closed loop transfer function of second order system is,
Cs) 0’

n
R(s) %+ 2Lw s+ mi

For underdamped system, 0 < { <1 and roots of the denominator (characteristic equation) are
complex conjugate.

The roots of the denominator are, s=-{o, o, -1

 Since{<1, ¢*isalsolessthen1, andso 1-¢2 is always positive,
L 5= =0, £ 0,y (-1)(1-87) = Lo, * jo,y1-C
The damped frequency of oscillation, @, =w_41-
ss=—Lo *joy
. CL)2
The response in s-domain, C(s)= R(s) -
o s +20o s+ 0,
For unit step input, r(t) = 1 and R(s) = 1/s.

2
n

0]
C(s) =
s (57 + 20,5+ 02)

2
. . . A Bs+C
By partial fraction expansion, C(s)= @ == St

n A, BstC (2.25)
s(sz+2§mns+mﬁ) s +2os+02
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C2.12
A is obtained by multiplying C(s) by s and letting s =0.
. 0)2 (1}2
A=sxC(s).  =sx n =n 1
|s‘0 s[sz+2Cmns+mﬁ] o’
To solve for B and C, cross multiply equation (2.25) and equate like power of s.
On cross mu]fiplication equation (2.25) after substituting A = 1, we get,
0l = +2%o s+ 0’ +(Bs+CO)s
0l =5"+2%o,s+02+Bs’ +Cs
Equating coefficients of s2we get, 0=1+B ~B=-1
Equating coefficient of s we get, 0=2(o_+C  -.C=-2Lo_
1 s+2Cm ' '
L Cg)=—m 55— : wed226)
_ ©) s & +2o s+’
Let us add and subtract (%o 2 to the denominator of second term in the equation (2.26).
. C(s)—-l-— : s+20m, _ 1 s+2Cm,
) s P42, s+02+002-Col s (8 +2Lo,5+0002) + (02 -Col)
1 s+ 2o, _1 s+20o, : )
s (s+lo,) +02(1-87) s (s+fo,) +o) wa“%\“"fi
1 s+ o Lo .
-2 n n (2.27)
s (s+lo,)’+0] (+4n,) +o] .
Let us multlpiy and divide by ©, in the third term of the equation (2. 2?).
_ stCo, G0, D4 £
e - | {1}=<
)= s (S+an)2 +0] 04 +8o,) +0]
I ~ 0]
The response in time domain is given by, L{e smmt} - (s+a) +@* |
1 s+&m to @ -at _ s+a
.t=£—lc 3-[._1_"" hi! _ n d Lie cosmt__..—._._._.-_—j
° = LHCO} {s (s+C0,) +0; o (s+c.:mn)2+m3} { } (s+a) +o?

=l-gont

i3]
d n

—Lopt ) —Gent
=]—ji2(1.l'lwgz cos@ gt + G sinmdt]=1—j_ = [s_inmdt x &+ cosmgt x M-f;z}
1-¢ . - 1-¢

Let us express ¢(t) in a standard form as shown below.
' —Lmpt

c(t) =1- \/— (sinw 4t x cosB + cosw 4t x sinb)
1-C

—Zogt.: -t ' o ) :
e 'sinw 4t = 1~ 70"} cosm 4t + o sinwgt| | —
P tg =018

[Note : On constructing right angle

triangle with £ and \1-¢* , we get
~Cawpt

— 2
Sin(Ogt+0) (2.28) sin=y1-¢
1 —§2 - cos B= r‘; Ji-
_ =3 | y
where, [B =tan™! —;J ' tan

g

=]-
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The equation (2.28) is the response of under damped closed loop second order system for unit step
input. For step input of step value, A, the equation (2.28) should be multiplied by A.
- |

{

~. For closed loop under damped second order system,
. . e—gmni‘ ) 4 1_C2
Unit step response =1— \/_2 sin (wyt+0); O=tan z

: _ 1-¢

J1-22
o

e—;mu[
sin (04t+8) ; 6=tan™

1-&

- [
Step response = AFLI -

Using equation (2.28) the response of underdamped second order system for unit step input is
sketched and observed that the response oscillates before settling to a final value. The oscillations depends
on the value of damping ratio. . :

OR oty 4

» .
> >
t

0 t 0
Fig 2.10.a : Input. ' Fig 2.10.b : Response.

Fig 2.10 : Response of under damped second order system for unit step input.
' 2.7.3  RESPONSE OF CRITICALLY DAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

The standard form of closed loop transfer function of second order system is,
) o
R(s) s*+2Lw,5+®2

For critical damping { = 1.
. 2 2. .
. Cs) Dy Dy : e(2.29)

TR §+20,5+0° - (s+0,)°

When input is unit step, r(t) = 1 and R(s) = 1/s.
.. The response in s-domain,

2 2 2

w 1 ® ®
C(s) = R(s n 1 R n (2.30)
®) ()(s+o)n)2 s (s+w,)?  s(s+o,)? .
By partial fraction expansion, we can write,
2
X A B C
C(9) = =" ;
s(s+w,) s (s+o,) s+o,
2 2
© o
A=sxC(s = L = —2=1
_ ©lo s+, _, o}
2 s
B=(s+0,)'xCE . ==4  =-0,
s=—on  §
s=—@py

d 2 LICH
c__g[(sm,,) xC(s)lF_w = ds( S]
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) A B C 1 @, 1
LO(g)=—t st == — - -
s (s+o,) st+to, s (s+o,) s+m,

The response in time domain,

@, 1 } ‘ L{tehm} 1 2

c(t) = .E_{C(s]} El{—~——-— (s+a)
s (s+o,) s+o, : e
—at| __
o(t)=1-w,te " —e™n L{ }-_ sva |
c()=1-e"(I+o,ty (231

The equation (2.31) is the response of éritically damped closed loop second order system for unit
step input., For step input of step value, A, the equation (2.31) should be multiplied by A.

*. For closed loop critically damped second order system,

Unit step response = 1-e “(1+,t)

Step response = A[l —e 1+ m“t)]

Using equation (2.31), the response of critically damped second order system is sketched as shown
‘n fig 2.11 and observed that the response has no oscillations.

r(t) & cot) &
1 _ ) R -

h >
t 0
Fig 2.11.a r Input. Fig 2.11.b : Response.

-+ ¥

Fig 2.11 : Response of critically damped second order system for unit step input.

2.7.4 RESPONSE OF OVER DAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

The standard form of closed loop transfer function of second order system is,
C(s) _ 03
R(s) s*+ 20w, s+ mi

For overdamped system € > 1. The roots of the denominator of transfer function are real and
distinct. Let the roots of the denominator be s, s, -

_sa,_s,,=—cmni_mnﬂ{g2— =_[gmnimn1/c}_—1] | {(2.32)

Let s;=-s,ands, =-s, .~ =Co,—0,-1 (2.33)

s, =Lm, +o,0 —1 (234)

The closed loop transfer function can be written in terms of s, and s, as shown below.

cw_ - ol _en (2.35)
R(s) s’+2{o,s+m2  (s+5)) (s+s,) -
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For unit.step input r(t) =1 and R(s) = 1/s.

- 2
LCe)=R ®f w2
{ +5)) (s+ Sz) s(s+5) (s+57)
By partial fraction expansmn we can write,
2
C(s)= Cu =£+ B + ¢
s(s+s))(s+s,) s s+5 S+s,
. 2 S 2
A =sx C(s)lg=8x% at =L
s(sts)(stsy)|_, 8%
o2 o’ .
1'I = n z—ll-:l
LC@ —o & - :H: @, +0,C I} C2mi—m§(¢2'—l) CH
' 2
B=(s+s,) x C(s)] @, =_°l§m
T 5(5"' 52} =8, (=8; +53)
s, !—{mn F 0,02 — 1400, + 0,8 -11 [2an¢2 4] s 2J@-1 S
2 2
C=C(s)x (s+5,)], __ D P —
_ smn " s(s+sy)|___ —S(=5+8)
~ - w2 ~ o2 _ o, 1
N — c2—1+Cmn—mn¢c2—l] 20,0c-1]s G- E
The response in time domain, ¢(t) is given by, '
0] 1 1 () 1 1
o)=L 2 z
{ s aJr-1 s (ts) 2Jg -1 t5+52)}
' @ 1
o) == e+ {—“ ¢
2 QZ_ 2
o '-S]K
c(t) - 2 ] ..... (2.36
2Jg2-1 L s
where, s; =§w, - ®, Qz—l

52=Cmn+0;)nvlcz_1

The equation (2.36) is the response of overdamped closed loop system for unit step input. For step
input of value, A, the equation (2.36) is multiplied by A.

. For closed loop over damped second order system,

. . 1 —s3t —sat
Unit step response = 1- o ML [e . ] where, s, =Clo, —m-nJCz -1
2J-1 s s
© 1 [e™t g2t 2
Step response = Ajl- A — - s, =L, +0,4E -1
2 s 5
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I‘(t) A . ) c(t) J.n

v

0 t . 0 T '
Fig 2.12.a : Input. Fig 2.12.b : Response.
Fig 2.12 : Response of over damped second order system for unit step input.

Using equation (2.36), the response of overdamped second order system is sketched as shown in
fig 2.12 and observed that the response has no oscillations but it takes longer time for the response to
reach the final steady value.

28 TIME DOMAIN SPECIFICATIONS

The desired performance characteristics of control systems are specified in terms of time domain
specifications. Systems with energy storage elements cannot respond instantaneously and will exhibit
wansient responses, whenever they are subjected to inputs or disturbances.

The desired performance characteristics of a system of any order may be specified in terms of the
transient response to a unit step input signal. The response of a second order system for unit-step input
with various values of damping ratio is shown in fig 2.13.

c(t) 4

f(t);;

~Y

Fig 2.13.a : Inpul. ' Fig 2.13.b : Response.
Fig 2.13 : Unit step response of second order system.

The transient response of a system  to a unit step input depends on the initial conditions. Therefore )
to compare the time response of various systems it is necessary to start with standard initial conditions.The
most practical standard is to start with the system at rest and so output and all time derivatives before
t= 0 will be zero. The transient response of a practical control system often exhibits damped oscillation
before reaching steady state. A typical damped oscillatory response of a system is shown in fig 2.14.

The transient response characteristics of a control system to a unit step input is specified in terms
of the following time domain specifications.
1. Delay time, t,
2. Rise time, t,
3. Peak time, t
4. Maximum overshoot, Mp
5. Settling time, t,
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c(Da
c(t)

0.5¢

Allowable error
2% or 5%

B

0t

t, Tt

»

Fig 2.14 : Damped oscillatory response of second order system for unit step inpu.

The time domain specifications are defined as follows.

1. DELAY TIME (t)

2. RISE TIME (t)

3. PEAK TIME (1)

4.PEAKOVERSHOOT (M)

5.SETTLING TIME (t)

It is the time taken for response to reach 50% of the final value, for
the very first time.

: Tt is the time taken for fesponsé to raise from 0 to 100% for the very

first time. For underdamped system, the rise time is calculated from
0 to 100%. But for overdamped system it is the time taken by the
response to raise from 10% to 90%. For critically damped system, i
is the time taken for response to raise from 5% to 95%.

: It is the time taken for the response to reach the peak value the very

first time. (or) It is the time taken for the response to reach the peak
overshoot, Mp.

: Itis defined as the ratio of the maximum peak value to the final value.

where the maximum peak value is measured from final value.
Let, c¢(e0)=Final value of c(t).
¢(tp) = Maximum value of e(t).

e .
Now, Peak overshoot, M, = w e (2.37
¢

t - \
% Peak overshoot, %M, = w x 100 S e (2338
. cl{oo

It is defined as the time taken by the response to reach and.sfay within
a specified error. It is usually expressed as % of final value. The usua
tolerable error is 2 % or 5% of the final value.

EXPRESSIONS FOR TIME DOMAIN SPECIFICATIONS

Rise time (t) -

The unit step response of second order system for underdamped case is given by,

—Loaty

e(t)=1-2—sin(w4+0)
J1-¢

Att=t, c(t) = c(t) =1 (Refer fig 2.14).
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3. Ifany coefficient a_is negative then atleast one root is in the right half of s- plane.

It can be concluded that the absence or negativeness of any of the coefficients of a characteristic
polynomial indicates that the system is either unstable or at most marginally stable. Thus the necessary
condition for stability of the system is that all the coefficients of its characteristic polynomial be
positive. If any coefficient is zero/negative, we can immediately say that the system is unstable.

In order for all the roots to have negative real parts, it is necessary that all of the coefficients of
characteristic equation be positive, but it is not sufficient, because there may be roots in the right half
plane and/or on the imaginary axis, even when coefficients are positive.( i.e., when roots have negative
real part, then all the coefficients of characteristic polynomial will be positive, but the reverse condition is
not true always).

always true

ST TN

Roots with negative real part. All coefficients positive.

\_/

not always true

Hence, when all the coefficients are positive, the system may or may not be stable, bzcause there
may be roots in the right half plane and/or on the imaginary axis.

For example, consider the characteristic polynomial with all positive coefficients,
s +s?+2s+8=0.

The characteristic polynomial can be written as,

1 vﬁg}[s_l v%}

3,2 : : B
+s5°+25+8)=(s+2)|s——— =0
(s s+8)=(s )[ 2 J 5

2 2

Now the roots are,

1 \?(E 1 -\)‘!E )

g g adia s g I a8
3 2 13 2 173

The coefficients of the polynomial are all positive, but two roots have positive real part and so will
lie on on right half of s-plane, therefore the system is unstable.

43 ROUTHHURWITZ CRITERION

The Routh-Hurwitz stability criterion is an analytical procedure for determining whether all the
roots of a polynomial have negative real part or not.

The first step in analysing the stability of a system is to examiine its characteristic equation. The
necessary condition for stability is that all the coefficients of the polynomial be positive. If some of the
coefficients are zero or negative it can be concluded that the system is not stable.

When all the coefficients are positive, the system is not necessarily stable. Eventhough the coefficient
are positive, some of the roots may lie on the right half of s-plane or on the imaginary axis. In order for all
the roots to have negative real parts, it is necessary but not sufficient that all coefficients of the characteristic
equation be positive. If all the coefficients of the characteristic equation are positive, then the system may
be stable and one should proceed further to examine the sufficient conditions of stability.
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A. Hurwitz and E.J. Routh independently published the method of investigating the sufficient
conditions of stability of a system. The Hurwitz criterion is in terms of determinants and Routh criterion
is in terms of array formulation. The Routh stability criterion is presented here.

The Routh stability criterion is based on ordering the coefficients of the characteristic equation,
into a schedule, called the Routh array as shown below. ;

a,s" +a,8" ! +2,8" 4.4, s+a, =0, where a, >0

s" : a, a, a, a By e
il a, a, a, 8, 8 e
g2 b, b, b, b, b,

g™ C, C, c, c, €, 7 - eerens
s! g,

;. h,

The Routh stability criterion can be stated as follows.

"The necessary and sufficient condition for stability is that all of the elements in the first
column of the Routh array be positive. If this condition is not met, the system is unstable and the
number of sign changes in the elements of the first column of the Routh array correspouds to the
number of roots of the characteristic equation in the nghr half of the s-plane”.

Note : If the order of sign of first column elemenr is +, +, — + and +. Then + to —is considered
as one sign change and —to + as another sign change.

CONSTRUCTION OF ROUTH ARRAY

Let the characteristic polynomial be,

n—1

s +a,8" 4" b as"  hua, S +a,S

The coefficients of the polynomial are arranged in two rows as shown below.

n
s Ay a3 as 8y ...

When n is even, the s" row is formed by coefficients of even order terms (i.e., coefficients of even
powers of s) and s™ row is formed by coefficients of odd order terms (i.e., coefficients of odd powers
of s).

When n is odd, the s” row is formed by coefficients of odd order terms (i.e., coefficients of odd
powers of s) and s™' row is formed by coefficients of even order terms(i.e., coefficients of even powers
of's) . -

| The other rows of routh array upto s° row can be formed by the following procedure. Each row of
Routh array is constructed by using the elements of previous two rows.
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Consider two consecutive rows of Routh array as shown below.

o—x

5 Xy X Xy Xy Xy Xgeew
n—x-1

S P Yo Yi Y2 Y3 Y& Yse

" Let the next row be,

2y 7 2 23 2y

The clements of s"*2 row are given by,

Xy Xy _
Yo ¥l _ YoX1—¥iXg
Yo Yo

S

Xg Xz .
Yo Y21_ YoX2—Y¥o%o
Yo Yo
Xy X
Yo Y3l _ YoXs—¥3%o
Yo Yo
Yo Ya — YoX4 ~¥4%o
Yo k Yo

X5
Yo ¥si ¥YoXs—¥sXp

Z; ™ == : and so on.
Yo Yo

The elements z, z,, Z,; Z,,.... are computed for ali possible computations as shown above.

In the process of constructing Routh array the missmg terms are considered as zeros. Also, all the
elements of any row can be multiplied or dmded by a posmve constant to simplify the computational
work.

In the construction of Routh array one may come across the following three cases.

~ Case-l Normal Routh array (Non-zero elements in the first column of routh array).
Case-Il  : A row of all zeros. T B
Case-IlI : First element of a row is zero but some or other elements are not zero.

Case-I : Normal routh array

In this case, there is no difficulty in forming routh array. The routh array can be constructed as
explained above. The sign changes are noted to find the number of roots lying on the right half of s-plane
and the stability of the system can be estimated.

In this case,

1. If there is no s:gn change in the first column of Routh array then all the roots are lymg on left
half of s-plane and the system is stable.



411 : (__ Gontrol Systems Engineering

2. If there is sign change in the first column of routh array, then the system is unstable and the
‘number of roots lying on the right half of s-plane is equal to number of sign changes. The
remaining roots are lying on the left half of s-plane.

Case-i : A row of all zeros

An all zero row indicates the existence of an even polynomial as a factor of the given characteristic
equation. In an even polynomial the exponents of s are even integers or zero only. This even polynomial
factor is also called auxiliary poiynomial. The coefficients of the auxiliary polynomial will always be the
elements of the row directly above the row of zeros in the array.

The roots of an even polynomial occur in pairs that are equal in magnitude and opposite in sign.
Hence, these roots can be purely imaginary, purely real or complex. The purely imaginary and purely real
roots occur in pairs. The complex roots occur in groups of four and the complex roots have quadrantal
symmetry, that is the roots are symmetrical with respect to both the real and imaginary axes. The fig 4.1
shows the roots of an even polynomial.

joa _ jmT jos4

‘ .x *

0]

Qv

ayv

T

The case-II pdlynomial can be analyzed by any one of the following two methods.

METHOD-1

Fig 4.1 : The roots of an even polynomial,

1. Determine the auxiliary polynomial, A(s)
2.. Differentiate the auxiliary polynomial with respect to s, to get d A(s)/ds
3.- The row of zeros is replaced with coefficients of dA(s)/ds.
4. Continue the construction of the array in the usual manner (as that of case-I ) and the array is
interpreted as follows.

a. If there are sign changes in the first column of routh array then the system is unstable,
The number of roots lying on right half of s-plane is equal to number of sign changes. The
number of roots on imaginary axis can be estimated from the roots of auxili ary polynomial.
The remaining roots are lying on the left half of s-plane.

b.  If there are no sign changes in the first column of routh array then the all zeros row
indicate the existence of purely imaginary roots and so the system is limitedly or marginally
stable. The roots of auxiliary equation lies on imaginary axis and the remaining roots lies
on left half of s-plane. :

METHOD-2

1. Determine the auxiliary polynomial, A(s).

2. Divide the characteristic equation by auxiliary polynomial.
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3. ' Construct Routh array using the coefficients of quotient polynomial.

4, The array is interpretted as follows.

a.

If there are sign changes in the first column of routh array of quotient polynomial then the
system is unstable. The number of roots of quotient polynomial lying on right half of s-
plane is given by number of sign changes in first column of routh array.

The roots of auxiliary polynomial are directly calculated to find whether they are purely
imaginary or purely real or complex, ;

The total number of roots on right half of s-plane is given by the sum of number of sign
changes and the number of roots of auxiliary polynomial with positive real part. The

" number of roots on imaginary axis can be estimated from the roots of auxiliary polynomial.

The remaining roots are lying on the left half of s-plane.

If there is no sign change in the first column of routh array of quotient polynomial then the
system is limitedly or marginally stable. Since there is no sign change all the roots of
quotient polynomial are lying on the left half of s-plane.

The roots of auxiliary polynomial are directly calculated to find whether they are purely
imaginary or purely real or complex. The number of roots lying on imaginary axis and on
the right half of s-plane can be estimated from the roots of auxiliary polynomial. The -
remaining roots are lying on the left half of s-plane. '

Case-I11 : First element of a row is zero

While constructing routh array, if a zero is encountered as first element of a row then all the
elements of the next row will be infinite. To overcome this problem let 0— € and complete the construction
.of array in the usual way (as that of case-I )

Finally let e—0 and determine the values of the elements of the array which are functions of €.
The resultant array is interpreted as follows.

Note : If all the elements of a row are zeros then the solution is attempted by considering the
polynomial as case-II polynomial. Even if there is a single element zero on s' row, it is considered as a
row of all zeros.

a.

[f there is no sign change in first column of routh array and if there is no row with all
zeros, then all the roots are lying on left half of s-plane and the system is stable.

If there are sign changes in first column-of routh array and there is no row with all zeros,
then some of the roots are lying on the right half of s-plane and the system is unstable. The
number of foots lying on the right half of s-plane is equal to number of sign changes and
the remaining roots are lying on the left half of s-plane. '

If there is a row of all zeros after letting €—0, then there is a possibility of roots on
imaginary axis. Determine the auxiliary polynomial and divide the characteristic equation
by auxiliary polynomial to eliminate the imaginary roots. The routh array is constructed
using the coefficients of quotient polynomial and the characteristic equation is interpreted
as explained in method-2 of case-II polynomial.
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EXAMPLE 4.1

Using Routh criterion, determine the stability of the system represented by the characteristic equation, s*+8s%+18s2
+16s +5=10. Comment on the location of the roots of characteristic equation.

- SOLUTION

The characteristic equation of the system s, s‘+8s*+1852+165+5=0.

The given characteristic equation is 4” order equation and so it has 4 roots. Since the highest power of s is even number,
- formthe first row of routh array using the coefficients of even powers of s and form the second row using the coefficients of odd
powers of s.

¥ ! 18 R (2. 1x18-2x1 1x5-0x1
$ - 8 16 ....Row-2 ' 1 1
* 5 2.
The elements of s° row can be divided by 8 to simplify the s°: 16 S
. Computations. s i 162 5x1
s y1 ., 18 5 Rowt | T
o T o Howd s': 1.6875~1.7
i i :
& : 16: 5 ... Row-3 o0 1.7x5-0x16
s’ i e ... Row-4 17
i 1 . 0.
s? t 5 1 ... Row-5 sl
L ‘ 4

L _Column-1 :
On examining the elements of first column of routh array itis observed that all the elements are positive and there is no

'~ signchange. Hence all the roots are lying on the lefi half of s-plane and the system is stable.

RESULT
1. Stable system

2. Allthe four roots are lying on the left half of s-plane.

EXAMPLE 4.2

Construct Routh amay and determine the stability of the system whose characierisitc equation is s5+255+8s%+1253+20s?
+165+16=0. Also determine the number of roots lying on right half of s-plane, left half of s-plane and on imaginary axis.

SOLUTION

The characteristic equation of the systemis, S5+255+8g +125%+ 205*+16s +16=0.

The given characteristic polynomial is 6" order equation and so it has 6 roots. Since the highest power of sis even
number, form the first row of routh array using the coefficients of even powers of s and form the second row using the coefficients
of odd powers of s, ' :

s 1 8 20 16 .... Row-1
s 2 12 16 ... Row-2

The elements of s% row can be divided by 2 io simplify the calculations.
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s 7 T 78 20 16 .. Row-1
& 1 6 8 ..Row-2
st §h1 1% "8 ...Row-4
2 5040, ~Row4
£ :, 1,3 ...Row-4
2.0 818 ..Row-5
s' 033, ....Row-6
g et g | ...Row-7

4

e Column-1

On examining the elements of 1% column of routh array itis observed
that there is no sign change. The row with all zeros indicate the possibility
of roots on imaginary axis. Hence the system is limitedly or marginally
stable. '

The auxiliary polynomial is,
s*+65?+8=0
Let, s?=x
SXEHEX+8 =0
6+62-4x8
The roots of quadraticare, * = >

L Esddls2or =4

The roots of auxiliary polynomial is,

s=+yx =+/-2 and i"{__‘{_
=+v2,~ }2,+j2 and - 2

4. 1x8-6x1 1x20-8x1 1x16-0x1

1 1 =
gt 2 12 16
divide by 2
gt F R 6 8
<3 1x6-6x1 1x8-8x1
1 1
s®: 0 o

The auxiliary equation is, A = s*+6s2+8. On
differentiating A with respect to s we get,

dA i
—— =45 +12s
ds

dA
The coefficients of S are used to form s? row.

s*: 4
divide by 4
g&: 1 3

12

Sé‘ Ix6-3x1 1x8-0x1
’ i i
g?: 3 8

1. 3x3-8x1
T 3
s'- 0.33

o, 0.33x8-0x3
0.33

s’: 8

The roots of auxiliary polynomial are also roots of characteristic equation. Hence 4 roots are lying on imaginary axis and the

remaining two roots are lying on the left half of s-plane.

RESULT
1. The systemis limitedly or marginally stable.

2. Fourroots are lying on irﬁaginary axis and remaining two roots are lying on left half of s-plane.

EXAMPLE 4.3

Construct Routh array and determine the stability of the system represented by the characteristic equation,
s%+5*+25%+25%+3s+5=0. Comment on the location of the roots of characteristic equation. ‘

SOLUTION

The characteristic equation ofthe systemis, s7+s*+283+252+35+5=0.

The given characteristic polynomial is 5" order equation and so it has 5 roots. Since the highest power of s is odd
number, form the first row of routh array using the coefficients of odd powers of s and form the second row using the coefficients

of even powers of 5.
gh i 1 2 3
8 o 1 2 ol

vers ROW-1

... Row-2



(a). The systemis unstable.

4. 15 s Engineering )
s e -2  ..Rows3
o 2e+2 5 o 2. 1x2-2x1 1x3-5x1
= . " 1 1
| ~(5& +4 e+4) st 0 =2
s .. Row-5 Replace 0 by
2e+2 & o 5
8 5 .. Row-6 _
On letting =0, we get SE‘EX2—[-—2X1} exo—0x1
$ ¢ 1 72 3 .. Rowl € €
i {5 2. 2e+2
s 1 ,2 5 .. Row2 S 3
' 1 I
| Ss : D : "'2 . T ROW"S 2 c +2 . (-"2) _ (5}( EJ
L 8 s ; ® o D .. Row-4 . st 533
El +~ 8 : 2 ... Row-5 EE
| : '
g 51 & ! ... Row-6 (5 14 e4)
b |— : Col ; ' 2e+2
Onobserving the elements of first column of routh array, itis found that (5244 csa
there are two sign changes. Hence two roots are lying on the right haif of s- (5 i )x 5-0x 2e+2
plane and the system s unstable. The remaining three roots are lying on the left s 2¢€+2 €
half of s-plane. *(5 & +4 E+4)
RESULT .
s s 5

(b). Two roots are lying on right half of s-plane and three roots are lying on left half of s-plane.

EXAMPLE 4.4

By routh stability criterion determine the stability of the system represénted by the characteristic equation,
9s5- 205*+10s— 52— G5 —10 = 0. Comment on the location of roots of characteristic equation.

SOLUTION

The characteristic polynomial of the systemis, 9s°~20s*+10s%-s2-95-10=0

On examining the coefficients of the characteristic polynomial, itis found that some of the coefficients are negative and
so some roots will lie on the right half of s-plane. Hence the system is unstable. The routh array can be constructed to find the

number of roots lying on right half of s-plane.

The given characteristic polynomial is 5* order equation and so it has 5 roots. Since the highest power of s is odd
number, form the first row of routh array using the coefficients of odd powers of s and form the second row using the coefficients

of even powers of s,

10 -9

S A T
E .
§l+ ¢ : ., 20 5 1 10
I i
' rlse. L1855 1 —135
2 | 1
s 1—29.3 1 —10
| ]
g’ 1-16.8 !
| 1
] |
s |'ﬂl{] 1
+ —i=AColumn-1

Row-1
... Row-2
RI;W-3
... Row-4
... Row-5
... Row-6

(2.220x10-(-1)x9 —20x(-9)-(~10)x9
—20 20
~135

s 955

&2 955 x {—1)—(-13.5 x(—20) 955 x (-10)
o 955 955
g _-293 _10
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_ By examining the elements of [¥ column of routh array it is
observed that there are three sign changes and so three roots are lying
on the right half of s-plane and the remaining two roots are lying on the
left half of s-plane.

RESULT

(a). The system is unstable.

-.~293 % (-135)—(-10)x 955
‘ 293

gk 6.8

5. 168 x (-10)
: -16.8
s% 10

(b). Three roots are lying on right half of s-plane and two roots are lying on left half of s-plane.

EXAMPLE 4.5

‘The characteristic polynomial of a system is, s7+9s%+245°+245*+245%+245°+23s+15=0, Determine the location of roots

on s-plane and hence the stability of the system.
SOLUTION
METHOD-I

The characteristic equation is, s"+9s%+24s°+245%+245%+2452+235+15=0.

The given cha racteristic polynomial is 7" order equation and so it has 7 roots. Since the highest power of s is odd
number, form the first row of array using the coefficients of odd powers of s and form the second row using the coefficients of

even powers of s as shown below.

s 1 24 24 23 .. Row-1
s 19 24 24 15 ..Row2
Divide s° row by 3 to simplify the computations.

r b | 2

§ . 1,24 24 23 .. Rowl
|
$ :, 3,8 8 5 .. Row2
& o, T A 1 ...Row-3
s 11,1 1 ....Row-4
53 : 0 : 0 S T -...Row-5
1 i ’
e 1. 21 1 .. Row-5
| 1
52 1 051 1 ... Row-6
3 i !
i %51 13 ... Row-7
o I I
N s? ot ... Row-8
v
i Column-1

On examining the first column elements of routh array itis
found that there are two sign changes. Hence two roots are lying on
the right half of s-plane and so the system is unstable.

The row of all zeros indicates the possibility of roots on imaginary
axis. This can be tested by evaluating the roots of auxiliary polynomial.

The auxiliary equationis, s* +s?+1=0
Put, s? =xin the auxiliary equation,

st+e2+ 1=+ x+1=0

"y Ix24-8x1 3x24-8x1 3x23-5x1

3 3 3
g% :21.33 21.33 21.33
Divide by 21.33
s°: 1 1 1

e 1% 8—=1x3 1%8_1x3 1x5=0x3

1 1 1
s*: 5 5 5
Divide by 5 -
g% 9 1 1 a¥ s

e

&, Toe1—Tx1 1x1-1:1 i%

1 Tt
s®: 0 0 -

The auxiliary polynomial is,

A=g'+52+]
Differentiate A with respecttos.
9A 4426
ds -
o Gl
Divide by 2
sin2
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1£1-4 JE

The roots of quadraticare, x= —————= ——+ j*—
2 2 2

=1-120% or 12 -120°
Buts? = x, ..§=+x = +/12120° or . +12-120°
=+ f12120°2  or  +1.2-120°12

=+1.60° or +12-60°
=+(05+j0866) or +(0.5-j0.865)

| 2. 2x1-1x1. 2x1-0x1
§°:
§ 2 2
| s?: 05 1
i .
L 05x1-1x2
s':
: 05
g -3
-3x1
0.
s
=3
s

Two roots of auxiliary polynomial are lying on the right half of s-plane and the remaining two on the left half of s-plane. The
roots of auxiliary equation are also the roots of characteristic polynomial. The two roots lying on the right half of s-plane are
indicated by two sign changes in the first column of routh array. The remaining five roots are lying on the left haif of s-plane No

roots are lying on imaginary axis.
RESULT L
1. -Thesystemis unstable.

2. Tworoots are lying on right half of s-plane and five roots are lying on left half of s-plane.

METHOD-II

Thecharacten3hcequatlon|s s’ +9s® + 24s° + 24s* +2453+24s +235+15=0

The given characteristic pol:,rnom:a is /" order equation and so
it has 7 roots. Since the highest power of s is odd number, form the first
row of amay using the coefficients of odd powers of s and form the
second row using the coefficients of even powers of s as shown

below.
g us 1 24 24 23 ... Row-1
sf 9 24 24 15 ... Row-2

Divide s® row by 3 to simplify the computations.

§ : 1 24 24 23 _..Rowl
st 3 8 8 5 ... Row-2
& . & T A ....Row-3
ge ¢ =f "1 A .... Row-4
s : 0 0 ... Row-5

g Ix24-8x1 Ix24-8x1 Ix23-5x1
' 3 3 3
s°:21.33 21.33 2133

Divide by 21.33 '
s 1 1 1
St - 1x8-1x3 1x8-1x3 1x5-0x3
1 1 1
s': 5 5 5
Divide by 5
st: 1 1 1
53_"1x1-1x1 Tx1=1x1
1 1
giz ) 0

Since we get a row of zeros, there exists an even polynomial, the even polynomiial is nothing but, the auxiliary polynomial.

The awxliary polynomial is,
s*+s?+1=10

Divide the characteristic equation by auxiliary polynomial to get the quotient polynomial.

‘The characteristic polynomial can be expressed as a product of quotient polynomial and auxiliary polynomial,
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587 +9s% + 24s% + 245* 1 245” + 2457 + 235 +15=0 I o b
U By ; i % 0 |
4, 2 3 2 g L2y s =
(s*+s%°+1)(s®+95?+235+15)=0 gl ™ I B p it *
_Even Quotient polynomial ng + el o
polynomial Of < % fe, +
X . Al = b T, o
The routh array is constructed for quotient polynomial as shown gl + 2 Sl B B
E o + ™ i
below. ZE 2o (@ T% e |t ot
Sl olm 8w = A
s 1 23 _ S+ F ‘_"r S I
e et = Ev + + |
£ : 9 15 g, 3x23-5x1 g M wi= Lhs
3 ol 1§ 8|8 Y18 8
i T I — —
Divide s?rowby 3, 1. i o TG >
E e o s': 2133 c% 3 @ oy Lo . X
s? o 1 123 | (‘: T + R ﬁ ﬁ
1 i ' T ~
& 3 '5 o, 21.33x5-0x3 A e
I i s®- : Sl & oW
g! - 1921331 ' 2133 +| + o mT
I | o o | 0 2
= wm| B~
g % B A _ $: 9 T
I '|‘ I : E
v === Column-1 o PO =
+= §~.
- D
n> =
5
-

The elements of column-1 of quotient polynomial are all positive and there is no sign change. Hence all the roots of
quotient polynomial are lying on the left half of s-plane. To determine the stability, the roots of auxiliary polynomial should be

evaluated.
| The auxiliary equation s, s*+s?+1=0.
Put, s2=xin the auxiliary equation. g*+s2+1=x2+x+1=0
Ax1-4 1 43

The roots of quadratic are, x = = —EJ_ro =1£120° or 1£-120°

2
Buts?=x .~S=tJx = +/1£120° or +1/-120°
L= xin2002 ‘or £412-120°2
= +1/60° or +12-60°
= +(0.5+ j0.866) or +(05-j0.866)

. The roots of auxiliary eqﬂaﬁnn are complexand has quadranta[ symmetry. Two roots of auxiliary equation are lying onthe
right half of s-plane and the other two on the left haif of s-plane. »

The roots of characteristic equation are given by the roots of auxiliary polynomial and the roots of quotient polynomial.
Hence we can conclude that two roots of characteristic equation are lying on the right haif of s-piane and so system is
unstable. The remaining five roots are lying on left half of s-plane. .

EXAMPLE 4.6

The characteristic polynomial of asystemis s7 + 5s° + 98° + 95 + 4s% + 20s? + 365 + 36 = 0. Determine the location
of roots on the s-plane and hence the stability of the system. ' '

SOLUTION

The characteristic equation is, s7 +5s° « 3s° +9s* + 4s® +20s% + 365 +36=0.

The given characteristic polynomial is 7 ° order equation and so it has 7 roots. Since the highest power of s is odd
number, form the first row of array using the coefficients of odd powers of s and-form the second row of array using the
coefficients of even powers of s as shown below. '




419 ( Conmirol Systems Engineering )
_ 5. 1x9-18x1 1x4-4x1 1x36-7.2x1
ST » 1 g 4 35 [ ROW‘1 i -I 1 .-i
£ : 5 9 20 36 .. Row2 'r $5:7.2 0 288
Divide s® row by 5 to simplify the computations. Divide by 7.2
g 1 9 4 36 -.. Row-1 s 1 0 4
s : 1 18 4 72 .. Row?2
g, 1x18-0x1 1x4-4x1 1x72-0x1
5 e | 0 4 . ROW-3 il 1 1 . 1
gy 1~ 0 4 ... Row-4 s¥iq8 * o g
£ @ 00 ... Row-5 Divide by 1.8
s*: 1 0 4

The row of all zeros ipdicate the existence of even polynomial,
which is also the auxiliary polynomial. The auxiliary polynomialis, st +4=
0. Divide the characteristic equation by auxiliary equation to get the quau:ani

polynomial.

The characteristic equation can be expressed as a product of
quotient polynomial and auxiliary equation.

o8 +558 498 1 96" 1 45° £ 205° +365+36=0

*+4) (S +555+95+9)=0
Even Quotient polynomial
polynomial -

The routh array is constructed for quotient polynomial as shown

bl | B o, 5x9-9x1

53 11 19 : 5

! ' 52 12

i |
= (2 0. 72x9-0x5
g! :7_2 : ) 72

0

I i s: 9
s W

“ T2 Column-1

3. 1x0-0x1 1x4-4x1
S5t

1 1
=¥ o) 0
g ;
| (s} ;
|+ I o
0 + [ap] e W
w 0 |+ MM
r]
2] o gt F
+ np] © 3
= G + o+
W
- oS 1
53 :+c: o
ﬁ'mm'
-¢+'ﬂ- i
w +‘¢m -
=] 73] = =
o, 4+ o (=] A (73]
4+ lw + + =
[T+
é‘?}g v mm Lnu:- |
+] F :m =2 =] !
{ @ ok
Nb‘.'lrl?.g mm‘gm
L o W
rf>+r"‘ s
wmlw W
=¥
_]_
-
w

There is no sign change in the elements of first column of routh array of quotient polynomial. Hence all the roots of

quotient polynomial are lying on the left half of s-plane.

To determine the stability, the roots of auxiliary polynomial should be evaluated.

The awxliary polynomial is, s* +4 =0,
Put s?=xin the auxiliary equation, .. s'+4=x2+4 =0
axt=4 =

But, s=£& = +42290° or +427-90°

=+J2/45° o +2.,-45 =

X =+y-4 = 1j2=2./90° or 2. - 90°

+J2,90°2 or +42 £ -90°/2
+(1+j) or £(1-j1

The roots of auxiliary equation are complex and has quadrantal symmetry. Two roots of auxiliary equation are lying on the

right half of s-plare and the other two on the left half of s-plane.

The roots of characteristic equation are given by roots of guotient polynomial and auxiliary polynomial. Hence we can .
conclude that two roots of characteristic equation are lying on the right half of s-plane and so the system is unstable. The

remaining five roots are lying on the left half of s-plane.
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RESULT
(@) The sysiemis unstable.
(b) Two roots are lying on the right half of s-plane and five roots are lying on the left half of s-plane.

EXAMPLE 4.7

Use the routh stability criterion to determine the location of roots on the s-plane and hence the stab;hty for the system
represented by the characteristic equation 5 + 4s* + 853+ 8s? + 75 + 4 = (.

SOLUTION

The characteristic equation of the systemis, s°+4s*+8s*+8s%+7s+4=0.

The given characteristic polynomial is 5 order equation and so it has 5 roots. Since the highest power of s is odd
number, form the first row of routh an'ay using the coefficients of odd powers of s and form the second row using the coefficients
~ of even powers of s.

$ : 1 8 7 ... ROW-1 . oG 1x8-2x1 1x7-1x1
1 1
4
| st 8 4 .. Row-2 . 6
Divide s*row by4 to simplify the calculations. : : Divide by 6
$ 1118 7 ... Row-1 ' s 1 1
s : 1 :2 1 ... Row-2 SQ:TxZ—ix1 1x1-0x1
I
£ 1 1 ...Row-3 g o 1
| 1 g= 1
52 :1; 1 :1 .... Row-4 : ;o Ix1-1x1
g b E © ..:Row-5 1
' : ' 5:0
o : l : e Let0—e
' Column-1 o
When € — 0, there is no sign change in the first column of . s ex1-0x1
routh array. Butwe have a row of all zeros (s' row or row-5) and so $ -
there is a possibility of roots on imaginary axis. This can be found from . =
the roots of auxiliary polynomial. Here the auxliary polynomial is gwen : s 1
by s? row. |
The auxiliary polynomialis, s?+1=0; s 82=-1 or § =+-1=%j1

The roots of auxiliary polynomial are +j1and —j1, lying on imaginary axis. The roots of auxiliary polynnmml are alsoroots
of characteristic equation. Hence two roots of characteristic equation are lying on imaginaryaxis and so the systemis limitedly -
or marginally stable. The remaining three roots of characteristic equation are lying on the left half of s-plane.

RESULT

(8 Thesystemislimitedly or marginally stable.
(b) Two roots are lying on imaginary axis and three roots are lying on left half of s-plane.

EXAMPLE 4.8

Use the routh stability criterion to determine the location of roots on the s-plane and hence the stability for the system
represented by the characteristic equation, s®+ 8%+ 3%+ 383+ 3s?+25 +1=0. '

- SOLUTION

The characteristic polynomial of the system is, sf+8%+3s'+3s7+ 352 +25+1=0.
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- The given characteristic polynomial is 67 order equation and so it has
6 roots. Since the highest power of s is even number, form the first row of routh

array using the coefficients of even powers of s and form the second row using | s*: L 3_3_”‘1 1x3-2x1 1x1-0x1
the coefficients of odd powers of s as shown below. = 1 1 1
4.
$ i1 3 3 1 ..Rowt 550 ! 1
g let0 >e
s 1 % ooer ROW-2 BT o 1 1
g e 1 1 ....Row-3 g3 €x3-1x1 ex2-1x1
x " - = E & E
E: SE—T 2e-1 — 3. 3e-1 2e-1
: € = | i € € :
3e-1 2¢-1 3e-1
8T o ﬂ—e—jl .... Row-5 2. e . e XE_ € bl
3e-1, ' il T 3e
et = - - : & g
s o SdErwE T _
s 22 A ea ... Row-6 ey 2 e .
: _ Je-1
® 1 ... Row-7,
‘Onletting € — 0, we get,
s : 1 3 3.1 __Rowi 2 He-1.2e-1 Fe
$ : 1 ¥ .2 gl desd S £
_ Row-2 22 e
st 0 1 1 ... Row-3 ' 3 e-1
0E sl A o1 (2 EHde-N2e-N-3e-)(Be-1
lez , o ? H' i ) e(-2 € +4 e-1)
g8 S g AE+SE 4l
y s 0 ... Row-6 “e(-28 e 2 4eH
5 & 1 oere ROW-7
. 2
Since there is a row of all zeros (s' row) there is a possibility of 4 -e 8 E | 2¢ +4e1
roots on imaginary axis. The auxiliary polynomial is s2 + 1 = 0. 0. A4+ 3e-1
(A4 -4 -de+l)
' 501
The roots of auxiliary polynomial are, s= e +ji

The roots of auxiliary polynomial are aiso roots of characteristic equation. Hence two roots are lying on imaginary axis.
Therefore divide the characteristic polynomial by auxiliary equation and construct the routh array for quotient polynomial to find
the roots lying on right half of s-plane.

The characteristic polynomial can be expressed as a product of auxiliary polynomial and quotient palynomial.

285+ +38' +35%+ 382+ 25+1=0 - = (s2+1) (s*+5°+252+254 =0 g2. 1¥2-2x1 1x1-0x1
Even Quotient polynomial : 1 1
polynomial s2-0 1
The routh array for quotient polynomial is constructed as shown below. let 0 —»e
' 2
$ : 1 2 1 ..Rowl s:¢c 1
' ; 1 ex2—-1x1
$ 1 2 - ... Row-2 s
s e 1 ....Row-3 gt 2 et
=
- 2 e—1 2 E_1 1-
s’ .. Row-4 G e Ox <
(2e-Ne
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On letting € — 0, we get (Quotient
Lt st +8° +25 + 25+ 1 polynomial)
s 10 2 1 ... Row-1
P 5 -.-1|5 +8° +35 +3s% + 382+ 2641
s ' o 2 ... Row-2 |6
L ' !5(-} T—) :
Ei: 52 : 0 : 1 ... Row-3 7+ 25" +3s%+ 98 +25+1
. 5 3
Iln" s’ ! oo ! ... Row-4 g L5 s
*1@ B . : ; : - ='§ 25 +26% + 352 +25L‘§
+V g i L +_ 2 g g- -2s* 3+ 25
- Golumn-1 =2 26% 4524 25 +1
On examining the first column of the routh array of quotient 028 (425
pciynomla! we found that there are two sign changes. Hence two 52' .1
roots are lying on the right half of s-plane and other two roots of X N
quotient polynomial are lying on the left half of s-plane. ' i ol
The roots of characteristic equation are given by roots of ¢

auxiliary polynomial and quotient polynomial. Hence two roots are lying
_ on imaginary axis, two roots are lying on right half of s-plane and the
remaining two roots are lying on left haif of s-piane. Hence the system

is unstable.

RESULT
(8) Thesystemis unstable.

{b) Two roots are lying on imaginary axis, two roots are lying on right half of s-plane and two roots are

lying on left half of s-plane.

EXAMPLE 4.9

Determine the range of K for stability of unity feedback system whose open loop transfer function is

K
e
SOLUTION
K
; Cis) _ Gs) _ .s{s+l)(s+2) E K
The closed loop ﬂ'ansfer funlctaon, Ris) oyt a0s) 1.+ i ST i TR
s(s+1)(s+2)

The characteristic equation is, s(s+1){s+2)+K=0
L5(s2+3s+2)+K=0 = s°+35%+25+K=0

The routh array is constructed as shown below.

The highest power of s in the characteristic polynomial is odd number. Hence form the first row using the coefficients of
odd powers of s and form the second row using the coefficients of even powers of s.

| et o e |

53 ] I 2
» : 5 : ” ait Ix2-Kx1
i P 3
] i 1 6-K
16—-K s B
o £ 6K
: : : L xK-0x3
& L 0 3
iy (6-K)/3
—Column-1 s K
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For the system to be stable there should not be any sign change in the elements of first column. Hence choose the value
- of Kso that thefirst column elements are positive. :

From s°row, for the system to be stable, K> 0

3

From s row, for the system to be stable, >0

3
.. The range of K for the system to be stable is 0<K<6.

For =0, the value of K should be less than 6.

RESULT

The value of Kiis in the range 0<K<6 for the system to be stable.
EXAMPLE 4.10

The open loop transfer function of a unity feedback control system is given by,

G() = — 1
(51‘2){5"’4){5 +651'25)

By applying the routh criterion, discuss the stability of the closed-loop system as a function of K. Determine the value of
* Kwhich will cause sustained oscillations inthe closed-loop system. What are the corresponding oscillating frequencies?

SOLUTION
; K
Theclosedloop | C(s) _ G(s) _ (s+2)(s+4)(s*+6s5+25) _ K
wransfer function | R(s) 1+G(s) 1, K C (s+2)(s+4) (5°+65+25)+K
(s+2) (s+4) (s® + 65+ 25)

The characteristic equatioﬁ is given by the denominator polynomial of closed loop transfer function.
The characteristic equatioﬁ is, (5+2)(s+4)(s?+65+25)+K=0. _
(52 +6s5+8) (s2+65+25)+K=0 =  §*+128°+69s%7 +198s+200+K=0

The routh array is constructed as shown below. The highest power of s in the characteristic equation is even number.
Hence form the firstrow using the coefficients of even powers of s and form the second row using the coefficients of odd powers
of s. '

s 69 2004K..... Row-1 g2. 1x69-16.5x1 1x{200+K)
| ' 1 T -
Divide s row by 12 to simplify the calculations : -
st . rTTLT T e 200K Row-1 | s': 52'5“6'55;{:09”()“
§? R U8R xR Tk Row-2 5'1' 666.25- K
§? ' 525 204K .. Row-3 52.5
! 1
! B66.25-K 1 666.25 -K :
1 e ow-4 —x {200+ K
8 T i o hae T e )
: 1 ] (666.25 -K)/52.5
s 200G e - T O RT al Row-5 5 -
L el i s':200+K
L Column-1
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For the system to be stable there should nothe any sign change in the elements of first column. Hence choose the value
of Kso that the first column elements are positive.

From s’ row, for the system to be siable, (666.25-K) > 0.
Since (666.25-K) > 0, should be less than 666.25.
From s° row, for the system to be stable, (200+K) > 0

Since (200+K) > 0, K should be greater than -200, but practical values of K staris from 0. Hence K shouid be greater than
zer.

- The range of K for the system to be stable is 0<K<666.25.

" When K= 666.25 the s row becomes zero, which indicates the possibility of roots on imaginary axis. A system will
oscillate if it has roots on imaginary axis and no roots on right half of s-plane. - '

When K=666.25, the coefficients of auxiliary equation are given by the s? row.
.. The auxiliary equation is, 52.55%200+K=0

52.55% + 200+ 666.25 = 0
, —200-666.25

ol TS
S 525

§=14-165 = 2 j4/165 = +j4.06

When K = 668.25, the system has roots onimaginary axis and so itoscillates. The frequency of oscillation is given by the
value of root on imaginary axis. )

.. The frequency of oscillation, « = 4.06 rad/sec.
RESULT

(8) Therange of K for stability is 0<K<666.25
(b) The system oscillates when K=666.25
{¢) Thefrequency of oscillation, o = 4.06 rad/sec. (When K = 666.25).

EXAMPLE 4.11

K(s+1)

The open loop transfer function of a unity feedback system isigiven by, G(s)=
s®+as” +25+1

. Determine the value

of Kand a so that the system oscillates at a frequency of 2 rad/sec.

SOLUTION
Kis +1)
The closed !Ot}p} Cis) G(s) _ s®ias?i2s:1 @ K{s+1)
transfer function| R(s) 1+ G(s) jo K+1) sPras®+25+1+K(s+1)

s® +as’+2s+1
The characteristic equationis, s°+as®+2s+1+K(s+1)=0.

s*+as’+2s +1+Ks+K=0 = . s'+as?+{2+K)s+1+K=0

The routh array of characteristic polynomial is constructed as shown below. The maximum power of sis odd, hence the
first row of routh array is formed using coefficients of odd powers of s and the second row of routh array is formed using
coefficients of even powers of 5. ' R :

Ifthe elements of s* row are ali zeros then there éxists an even polynomial (or awdliary polynomial). if the roots of the

auxiliary polynomial are purely imaginary then the roots are lying on imaginary axis and the system oscillates. The frequency of"
oscillation is the root of auxiliary polynomial. '
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s 1 2+K
g2 a . T+K

o . 82rK)-(1+K)

a .
s 1K
From s? row, the auxiliary polynomialis,
asz+(1+?{)=ﬂ = as? = (1+K) =  s=xj il
LY
Given that, s=1§2, .-.J%:z = 1_25:4 =5 K=4a-1

From s' row, a(2+K)aﬁﬁ+K}:U = a2+K)-(1+K)=0 = 2a+Ka-1-K=0

2a—1+ K(a-1)=0
Put, K = 4a -1
L 2a-1+{da-1){a-1)=0 = 2a-1+42°-4a-a+i=0 = 432—-3a=0 (or) a{4a-3)=0
Since a=0, 4a-3=0, s.a=3/4
~ Whena=(3/4}, K=4a-1=4x(3/4)-1=2
RESULT

When thé system _osciliates atafrequency of 2rad/sec, K=2 and a=3/4.

EXAMPLE 4.12

Ke™

~—s———— . Determine the maximum value of Kfor
s(s® +5s+9)

Afeedback system has open loop ransfer function of G(s) =
stability of closed loop system.

SOLUTION

Generally control systems have very low bandwidth which implies that it has very low frequency range of operation.
Hence for low frequency ranges the term escan be replaced by, 1-s, (ie., es 1 _1-sT).

Ke™ K{1-3)
s Gis) = =
() s(s?+55+9) s{s’+55+9)
K(1-s)
Theclosedloop] C(s)  Gfs)  s(s®+5s+9) _ K(1-s)
transfer function}- R(s) 1+G(s) ¢, KO- s) s(s? + 55+ 9) +K(1-8)

s{s® +55+9)
The characteristic equation is given by the denominator polynomial of closed loop transfer function.
- The characteristic equationis, s (s?+5s+9) + K(1-s)=0
-, s(s*+ 555 + K(1-8) =8+ 557+ 95 +K-Ks =0 = ¥+ 552+ (9-K)s +K=0

The routh array of characteristic polynomial is constructed as shown below.
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The maximum power of s in the characteristic polynomialis odd, hence form the first row of routh amay using coefficients
f odd powers of s and second row of routh array using coefficients of even powers of s.

s 1 9-K
. 5x(9-K)-Kx1
g2 5 K f = 5
s' : 9-1.2K : : 31: m
5
gl K . ' i
" : g1. 298K g oK
From s’ row, for stability of the system, (8-1.2K)>0
If (9-1.2K)>0 then 1.2K<9 ; .'.K<—?—=?.5 s 0 LRIk
12 (9-12K)
From s° row, for stability of the system, K>0 s K

Finally we can conclude that for stability of the system K should be in the range of 0<K<7.5
RESULT
For stability of the system K should be in the range of, 0<K<7.5.

4.4 MATHEMATICAL PRELIMINARIES FOR NYQUIST STABILITY CRITERION

Let F(s) be a function of s, which is expressed as a ratio of two polynomials in s, as shown in
equation (4.14), (the polynomials are expressed in the factored form ).

(s—2;,) (8—23) weee (s=—2z,

_F ==
(s) (s—py) (s—p,) (s= pn}

il(414)

The roots of numerator polynomial are zeros and the roots of denominator polynomial are poles.
The function has m number of zeros and n number of poles. .

. Here, s is a complex variable expressed as, s =o + jo, where s is real part of ¢ and o is imaginary
part of s. (The s is also called complex frequency). For a particular value of o and @, the s will represent
a point in the s-plane.

* Since s is a complex variable, the function F(s) will also be a complex quantity for any value of s.
Hence, F(s) can also be expressed as, F(s) = utjv, whereu is real part of F(s) and v is imaginary part of
F(s). Let us define another complex plane called F(s)-plane, with coordinates u and v. For a particular
value of s, the F(s) will represent a point in F(s)-plane.

Therefore, for every point s in the s-plane at which F(s) is analytic, there exists a corresponding
point E(s) in the F(s)-plane. Hence it can be concluded that the function F(s) maps the points in the
s-plane into the F(s)-plane. :

Note : A function is analytic in the s-plane provided the Sfunction and all its derivatives exist.
The points in the s-plane where the function (or it derivatives) does not exist are called singular points.

Since any number of points of analycity in the s-plane can be mapped into the F(s)- plane it can be
concluded that for a contour in the s-plane which does not go through any singular point, there exists a -
corresponding contour in the F(s)-plane as shown in fig 4.2,

| The table 4.2 shows examples of arbitrary s-plane contours and their corresponding F(s)-plane
contours (exact shape is not shown).



