
Module 2

RSA Operations

Three RSA operations:

Key Generation 

Encryption

Decryption
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Key Generation

Step 1
Selected two distinct prime numbers a and b. Prime 
numbers are selected randomly with same memory size
Step 2
Computing n = a * b
Step 3
Calculating Euler’s totient function, Ø(n) = (a-1) * (b-1)
Step 4
‘e’ is an integer, 1 < e < Ø(n) and greatest common 
divisor of e , Ø(n) is 1. Now e is released as Public-Key 
exponent
Step 5
d = e-1(mod Ø(n)) i.e., d is multiplying the inverse of e 
mod Ø(n)
Step 6
d is retained as a component of the private key, so that 
d * e = 1 mod Ø(n)
Step 7
The public key has modulus n and the public exponent e 
(e, n)
Step 8
The private key contains modulus n and the private 
exponent d, that is to be maintained as a secret (d, n)
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Encryption

Step 1
Transmitting the Public- Key (n, e), which one need to 
store
Step 2
Data of client are now mapped onto an integer by 
utilizing an accepted reversible protocol, labeled as a 
scheme of padding 
Step 3
Encryption of  data occurs and the resultant cipher 
text(data) C is 
Step 4
The stated text of cipher type rather data which got 
encrypted are then stored at the service provider of 
cloud 



Decryption

Step 1
Cloud server response based on the request
Step 2
Cloud service verifies the authenticity of the decrypted 
data 
Step 3
Computing the decryption process →
Step 4
‘m’ is original data









Performance

Time Complexity

Both encryption and decryption involve repeated 

multiplications (modulo n) of b-bit numbers. 

Unoptimized multiplication of two b-bit numbers and 

reduction modulo n (division), both take O(b2) time. 

Speeding Up RSA

Decryption of cipher text c can be speeded up by 

computing c, c2, c4, c8, etc., up to a maximum of b 

terms. Elements are multiplied in this series whose 

positions correspond to 1’s in the binary representation of 

the decryption key d. Also referred to as “Square and 

Multiply.”

Software Performance

The Java programming language has a number of APIs 

of relevance to cryptography. These include APIs for key 

generation and encryption/decryption, message digests, 

and digital signatures.
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•Applications
Providing message confidentiality through encryption

is an application of public key cryptography.

The principal drawback of public key cryptography

is speed, while the principal drawback of secret key

cryptography is key management.

Several other uses of public key cryptography- used

to generate a digital signature that provides message

integrity and authentication together with non-

repudiation.

•Practical Issues

Generating Primes

Side Channel and Other Attacks 

Several ways in which RSA may be attacked:

Modulus Factorization 

Small Exponent Attack 

Side Channel Attacks 

•Public Key Cryptography Standard (PKCS) 

The Public Key Cryptography Standard (PKCS # 1)

specifies, among other things, the format of each block

to be encrypted by RSA.



CryptographicHash

INTRODUCTION

➢Definition: A hash function is a deterministic function that maps an

input element from a larger (possibly infinite) set to an output

element in a much smaller set.

➢ The input element is mapped to a hash value.

➢ For example, in a district-level database of residents of that district,

an individual's record

may be mapped to one of 26 hash buckets.

➢ Each hash bucket is labelled by a distinct alphabet corresponding to

the first alphabet of

a person's name.

➢Given a person's name (the input), the output or hash value is simply

the first letter of that name (Fig. 7.1).

➢Hashes are often used to speed up insertion, deletion, and que rying of

databases.

➢ In the example above, two names beginning with the same

alphabet map to the same hash bucket and result in a

collision.
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PROPERTIES
Basics

➢A cryptographic hash function, h(x), maps a binary string of 

arbitrary length to a fixed  length binary string.

➢ The properties of h are as follows:

1. One-way property. Given a hash value, y (belonging to the 

range of the hash  function), it is computationally infeasible to 

find an input x such that b(x) = y

2. Weak collision resistance. Given an input value x1, it is

computationally

infeasible to find another input value x2 such that h(x1) = 

h(x2)

3. Strong collision resistance. It is computationally infeasible to 

find two input values  x1 and no x2 such that h(x1)=h(x2)

4. Confusion + diffusion. If a single bit in the input string is 

flipped, then each bit

of the hash value is flipped with probability roughly equal to

0.5.
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Figure Properties of the cryptographic hash

➢ There is a subtle difference between the two collision resistance

properties.

➢ In the first, the hash designer chooses x1 and challenges anyone to find

an x2, which

maps to the same hash value as of x1. This is a more specific challenge

compared to the one in which the attacker tries to find and x2 such that

h(x1)= h(x2).

➢ In the second challenge, the attacker has the liberty to choose x1.

Attack Complexity Weak

Collision Resistance

➢How low long would it take to find an input, x, that hashes to a given

value y?

➢Assume that the hash value is w bits long. So, the total numb er of

possible hash values is 2w

➢ brute force attempt to obtain x would be to loop through the following

operations
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➢ assuming that any given string is equally likely to map to any

one of the 2 W hash values, it follows that the above loop would

have to run, on the average, 2w-1 times before finding an x'

such that h(x') = y.

➢A similar loop could be used to find a string, x2, that has the

same hash value as a given string x1.
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Strong Collision Resistance
➢A Brute-force attack on strong collision-resistance of a 

hash function involves  looping through the program in 

Figure.

➢Unlike the program that attacks weak collision

resistance, this program terminates

when the hash of a newly chosen random string collides 

with any of the previously  computed hash values.

Figure program to attack strong collision resistance.
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THE BIRTHDAY ANALOGY

➢Attacking strong collision resistance is analogous to answering

the following:

➢ "What is the minimum number of persons required so that the

probability of two or more in the, group having the same

birthday is greater than 1/2 ?"

➢ It is known that in a class of only 23 random individuals, there

is a greater than 50%

chance that: the birthdays of at least two persons coincide (a

"Birthday Collision").

➢ This statement is referred, to as the Birthday Paradox.

➢ The following idea, first proposed by Yuval illustrates the

danger in choosing hash lengths less than 128 bits.

➢A malicious individual, Malloc, wishes to forge the signature

of his victim, Alka, on a

fake document, F.

➢ F could, for example, assert that Alka owes Malloc several

million rupees.
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THE BIRTHDAY ATTACK

➢Malloc does the following:

1. He creates millions of documents, Fl, F2,………Fm, etc. that 

are, for all practical  purposes, "clones" of F.

2. This is accomplished by leaving an extra space between two 

words, etc.

3. If there are 300 words in F, there are 2300 ways in which 

extra spaces may be left  between words.

4. He computes the hashes, h(F1 ), h(F2), . . . h(Fm) of each of

these documents.

5. He creates an innocuous document, D — one that most

people would not hesitate to

sign. (For example, it could espouse an environmental cause 

relating to conservation  of forests.)

6. He creates millions of "clones" of D in the same way he

cloned F above.

7. Let D1, D2, ... be the cloned documents of D.

8. He computes the hashes, h(D1), h(D2), . . . h(Dm) of each of

the cloned documents.

9. Malloc asks Alka to sign the document D, and Alka obliges.

10.Later Malloc accuses Alka of signing the fraudulent

document

11.the digital signature is obtained by encrypting the hash 

value of the document using  the private key of the signer.

12.Thus, Alka's signature on Dj, is the same as that on Fi,.

13.Hence, at a later point in time, Malloc can use Alka's 

signature on Dj), to claim that  she signed the fraudulent 

document, F.,.
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CONSTRUCTION

Generic Cryptographic Hash

➢ The input to a cryptographic hash function is often a

message or document.

➢ To accommodate inputs of arbitrary length, most hash

functions (including the commonly used MD-5 and SHA-1)

use iterative construction as shown in Fig. 7.5.

➢C is a compression box.

➢ It accepts two binary strings of lengths b and w and

produces an output string of length w.

➢Here, b is the block size and w is the width of the digest.

➢During the first iteration, it accepts a pre-defined

initialization vector (IV), while the top input is the first

block of the message.

➢ In subsequent iterations, the "partial hash output" is fed

back as the second input to

the C-box.

➢ The top input is derived from successive blocks of the

message.

➢ This is repeated until all the blocks of the message have

been processed.

➢ The above operation is summarized below:

➢ h, = C (IV, m1) for first block of message

➢ hi = C (hi-1.mi) for all subsequent blocks of the message

\
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Figure Iterative construction of cryptographic hash
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➢ The above iterative construction of the cryptographic hash

function is a simplified version of that proposed by Merkle and

Damgard.

➢ It has the property that if the compression function is collision-

resultant, then the resulting hash function is also collision-

resultant.

➢MD-5 and SHA-1 are the best known examples. MD-5 is a 128-

bit hash, while SHA-1 is a 160-bit hash.



Case Study: SHA-1

➢ SHA-1 uses the iterative hash construction of Fig. 7.5.
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➢ The message is split into blocks of size 512 bits.

➢ The length of the message, expressed in binary as a 64 bit number, is

appended to the message.

➢ Between the end of the message and the length field, a pad is inserted

so that the length of the (message + pad + 64) is a multiple of 512,

the block size.

➢ The pad has the form: 1 followed by the required number of 0's.

Array Initialization

➢ Each block is split into 16 words, each 32 bits wide.

➢ These 16 words populate the first 16 positions, W1, W2 ……W16, of

an array of 80 words.



➢ The remaining 64 words are obtained from :

➢ This array of words is shown in Figure.

Hash Computation in SHA 1

➢A 160-bit shift register is used to compute the intermediate hash

values (Fig. 7.6).

➢ It is initialized to a fixed pre-determined value at the start of the hash

computation.

➢We use the notation S1, S2, S3, S4, and S5 to denote the five 32 -bit

words making up the shift register.

➢ The bits of the shift register are then mangled together with each of the

words of the

array in turn.

➢ The mangling is achieved using a combination of the following

Boolean operations: +, v, ~, ^, XOR ROTATE.

21



APPLICATIONS AND PERFORMANCE
Hash-based MAC

➢MAC is used as a message integrity check as well as to provide

message

authentication.

➢ It makes use of a common shared secret, k, between two

communicating parties.

➢ The hash-based MAC that we now introduce is an alternative to the

CBC -MAC.

➢ The cryptographic hash applied on a message creates a digest or

digital fingerprint of that message.

➢ Suppose that a sender and receiver share a secret, k.

➢ If the message and secret are concatenated and a hash taken on this

string, then the

hash value becomes a fingerprint of the combination of the message,

m and the secret, k.

➢MAC = h (m|| k)

➢ The MAC is much more than just a checksum on a message.

➢ It is computed by the sender, appended to the message, and sent

across to the receiver.
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➢ On receipt of the message + MAC, the receiver performs the computation using

the common secret and the received message.

➢ It checks to see whether the MAC computed by it matches the received MAC.

➢ A change of even a single bit in the message or MAC will result in a mismatch

between the computed MAC and the received MAC.

➢ In the event of a match, the receiver concludes the following:

➢ (a) The sender of the message is the same entity it shares the secret with — thus

the MAC provides source authentication.

➢ (b) The message has not been corrupted or tampered with in transit — thus the

MAC provides verification of message integrity.

➢ Drawbacks:

➢ An attacker might obtain one or more message—MAC pairs in an attempt to

determine the MAC secret.

➢ First, if the hash function is one-way, then it is not feasible for an attacker to

deduce

the input to the hash function that generated the MAC and thus recover the

secret.

➢ If the hash function is collision-resistant, then it is virtually impossible for an

attacker to suitably modify a message so that the modified message and the

original both map to the same MAC value.

HMAC

➢ There are other ways of computing the hash MAC other than this method using

HMAC .

➢ Another possibility is to use key itself as the Initialization Vector (IV) instead of

concatenating it with the message.

➢ Bellare, Canetti, and Krawczyk proposed the HMAC and showed that their

scheme is re against a number of subtle attacks on the simple hash-based MAC.

➢ Figure 7.7 shows how an HMAC is computed given a key and a message.
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➢ The key is padded with O's (if necessary) to form a 64-byte string

denoted K' and

XORed with a constant (denoted IPAD).

➢ It is then concatenated with the message and a hash is performed on

the result.

➢ K' is also XORed with another constant (denoted OPAD) after

which it is prepended to the output of the first hash.

➢Once again hash is then computed to yield the HMAC.

➢As shown in Fig. 7.7, HMAC performs an extra hash computation but

provides greatly enhanced security.
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Digital Signatures

The same secret that is used to generate a MAC on a message is the

one that is used to verify the MAC.

Thus the MAC secret should be known by both parties - the party that

generates the MAC and the party that verifies it.

A digital signature, on the other hand, uses a secret that only the

signer is privy to. An example of such a secret is the signer's private

key.

A crude example of an RSA signature by A on message, m, is

EA.pr(m)

where A.pr is A’s private key.

The use of the signer's private key is a fundamental aspect of

signature generation. Hence, a message sent together with the

sender's signature guarantees not just integrity and authentication

but also non-repudiation, i.e., the signer of a document cannot later

deny having signed it since she alone has knowledge or access to her

private key used for signing.

The verifier needs to perform only a public key operation on the digital 

signature  (using the signer's public key) and a hash on the message.

The verifier concludes that the signature is authentic if the results of these 

two  operations tally,   






























