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Module -3 

Engineering Mechanics for

Microsystems Design

Structural integrity is a primary requirement for any device or engineering

system regardless of its size.

The theories and principles of engineering mechanics are used to assess:

(1) Induced stresses in the microstructure by the intended loading, and

(2) Associated strains ( or deformations) for the dimensional stability, and  

the deformation affecting the desired performance by this  

microstructural component.

Accurate assessment of stresses and strains are critical in microsystems design not only

for the above two specific purposes, but also is required in the design for signal transduction,

as many signals generated by sensors are related to the stresses and strains Induced by the

input signals.

Mr. Hemanth Kumar G  



Chapter Outline

Static bending of thin plates

Mechanical vibration analysis  

Thermomechanical analysis

Fracture mechanics analysis  

Thin film mechanics

Overview of finite element analysis



Mechanical Design of Microstructures

Theoretical Bases:

● Linear theory of elasticity for stress analysis

● Newton’s law for dynamic and vibration analysis

● Fourier law for heat conduction analysis

● Fick’s law for diffusion analysis

● Navier-Stokes equations for fluid dynamics analysis

Mathematical models derived from these physical laws are valid for micro-

components > 1 m.



Mechanical Design of Microsystems

Common Geometry of MEMS Components

Beams:
Microrelays, gripping arms in a micro tong, beam spring in micro accelerometers

Plates:

● Diaphragms in pressure sensors, plate-spring in microaccelerometers, etc

● Bending induced deformation generates signals for sensors and relays using  

beams and plates

Tubes:

Capillary tubes in microfluidic network systems with electro-kinetic pumping  

(e.g. electro-osmosis and electrophoresis)

Channels:

Channels of square, rectangular, trapezoidal cross-sections in microfluidic network.

• Component geometry unique to MEMS and microsystems:

Multi-layers with thin films of dissimilar materials



Recommended Units (SI) and Common Conversion  

Between SI and Imperial Units in Computation

Units of physical quantities:

Length:  

Area:  

Volume:

m  
m2

m3

Force:  

Weight:

N  

N

Velocity: m/s

Mass: g

Mass density: g/cm3

Pressure: Pa

Common conversion formulas:

1 kg = 9.81 m/s2  

1kgf = 9.81 N

1 µm = 10-6 m

1 Pa = 1 N/m2

1 MPa = 106 Pa = 106N/m2

1 m = 39.37 in = 3.28 ft

1 N = 0.2252 lbf (force)

1 kgf  = 2.2 lbf (weight)

1 MPa = 145.05 psi



Static Bending of Thin Plates

P
x

y

Mx

My

a

We will deal with a situation with thin plates with fixed edges subjected  

to laterally applied pressure:
b

z

Mx

My

h

in which, P = applied pressure (MPa)

Mx, My = bending moments about respective y and x-axis (N-m/m)  

h = thickness of the plate (m)

The governing differential equation for the induced deflection, w(x,y) of the plate is:
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with D = flexural rigidity,D 
12(1 2)

in which E = Young’s modulus (MPa), and = Poisson’s ratio

(4.1)

(4.2)



Static Bending of Thin Plates-Cont’d

Once the induced deflection of the plate w(x,y) is obtained from the solution of  

the governing differential equation (4.1) with appropriate boundary conditions,  

the bending moments and the maximum associated stresses can be computed  

by the following expressions:
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Bending moments (4.3a,b,c): Bending stresses (4.4a,b,c):



Special cases of bending of thin plates

Bending of circular plates

ar

p

h
2

3W
( rr)max


4 4 h2

( ) max


3W

3W
  

8 h2

wmax
16E m2h3

 
3W(m2 1)a2

Let W = total force acting on the plate, W = (πa)p and m=1/

The maximum stresses in the r and θ-directions are:

and

Both these stresses at the center of the plate is:  rr

The maximum deflection of the plate occurs at the center of the plate:

(4.5a,b)

(4.6)

(4.7)



Diaphragm

thickness, h

Pressure loading, p

Diaphragm

Constraint base

Silicon die

Diameter d = 600 µm; Applied pressure p = 20 MPa  

Yield strength of silicon σy = 7000 MPa

E = 190,000 MPa and = 0.25.

Solution:

 )max4(

3W
h 

3W

4 ( rr) max

h 
3W

4 h2
(


rr )max 

4 h2
( ) max


3W

Use the condition that σrr < σy = 7000 MPa and σθθ < σy = 7000 MPa, and

W = (a2)p = 3.14 x (300 x 10-6)2x (20 x 106) = 5.652 N, we get the minimum thickness  

of the “plate” to be:

4x3.14x(7000x106)

3x5.652
 13.887x106 mh 

Example 4.1 (p.113)

Determine the minimum thickness of the circular  

diaphragm of a micro pressure sensor made of  

Silicon as shown in the figure with conditions:

or 13.887 µm



Special cases of bending of thin plates-Cont’d

Bending of rectangular plates

a

h2

pb2

( yy )max  
pb4

wmax


E h3

a/b 1 1.2 1.4 1.6 1.8 2.0 

 0.0138 0.0188 0.0226 0.0251 0.0267 0.0277 0.0284

 0.3078 0.3834 0.4356 0.4680 0.4872 0.4974 0.5000

x

b

y
The maximum stress and deflection in the plate are:

and

in which coefficients α and β can be obtained from Table 4.1:

(4.8 and 4.9)



a = 752 µm

b
 =

 3
7
6

µ
m

Solution:

We will first determine α = 0.0277 and β = 0.4974 with a/b = 752/376 = 2.0 from the  

Given Table. Thus, from available formulas, we get the maximum stress:

h2
 0.4974  7292.8x106 Pa

(13.887x106)2

p b2 (20x106 )(376x106)2

( yy) max 

x

y

and the maximum deflection:

pb bp

E h
w 6

3

3

4

max
190000x10

0.0277x(20x
6
)x376x 376x

6

 21.76x10
6

m
6



3


13.887x10

6
  10 10  10  

E h

 
 b  

at the center (centroid) of the plate

Example 4.2 (p.115)

A rectangular diaphragm, 13.887 µm thick has the plane  

dimensions as shown in the figure. The diaphragm is  

made of silicon. Determine the maximum stress and  

deflection when it is subjected to a normal pressure,

P = 20 MPa. All 4 edges of the diaphragm are fixed.



Special cases of bending of thin plates-Cont’d

Bending of square plates:

a

a

h
2

0.308 p a2

E h3

0.0138p a4

 

47mh2

6 p(m 1)a2

  
E

 
1

The maximum stress occurs at the middle of each edge:  max 

The maximum deflection occurs at the center of the plate: wmax

The stress and strain at the center of the plate are:

and

Square diaphragm (idealized as a square plate) is the sensing element in  

many micro pressure sensors

(4.10)

(4.11)

(4.12 and 4.13)



a = 532 µm

5
3
2

µ
m

Solution:

From the given formulas, we have the maximum stress to be:

h2max
 9040x106 Pa

(13.887x106 )2

2 6 6 2


0.308pa


0.308x(20x10 )(532x10 )



and the maximum deflection:

Eh3 E

13.887x10190000x106 6   43x106 m



3




0.0138(20x106 )x532x106 



h
 

 

532x106

0.0138pa4 0.0138pa a
3

 wmax
 

Example 4.3 (p.116)

Determine the maximum stress and deflection in  

a square plate made of silicon when is subjected  

to a pressure loading, p = 20 MPa. The plate has  

edge length, a = 532 µm and a thickness,

h = 13.887 µm.

or wmax = 43 µm



Geometric effect on plate bending

Comparison of results obtained from Example 4.1, 4.2 and 4.3 for plates made of  

silicon having same surface area and thickness, subjecting to the same applied  

pressure indicate saignificant difference in the induced maximum stresses and  

deflections:

Geometry Maximum Stress (MPa) Maximum Deflection

(µm)

7000 55.97

7293 21.76

9040

highest stress output
43.00

The circular diaphragm is most favored from design engineering point of view.  

The square diaphragm has the highest induced stress of all three cases. It is  

favored geometry for pressure sensors because the high stresses generated by  

applied pressure loading – result in high sensitivity..



Example 4.4 Determine the maximum stress and deflection in a square diaphragm  

used in a micro pressure sensor as shown in the figure. The maximum  

applied pressure is p = 70 MPa.

Silicon  

Wafer

Pyrex Glass  

Constraining  

Base

Metal  

Casing

A A

Passage for  

Pressurized  

Medium

View on Section“A-A”

Adhesive

Thin Silicon Membrane  

with signal generators  

and interconnect

(Pressurized Medium)

Uniform pressure loading

783 m 266 m

480 m54.74o

1085 m 

2500 m

Uniform pressure  

loading: 70 MPa

7
8
3

µ
m

Thickness h = 266 µm

By using the formulas for square plates, we get:

186.81MPa
0.308x70x106 x(783x106 )2

(266x106 )2
 max

and the maximum deflection:

110.0138x70(783x106)4

190000(266x106)3
 10153x10 mwmax  

(p. 118)

Detail of the Silicon die and diaphragm:

Silicon die

783 µm

Diaphragm

or 0.1015 µm (downward)



Mechanical Vibration Analysis

Mechanical vibration principle is used in the design of micro-

accelerometer, which is a common MEMS device for measuring  

forces induced by moving devices.

Microaccelerometers are used as the sensors in automobile air bag  

deployment systems.

We will outline some key equations involved in mechanical vibration  

analysis and show how they can be used in microaccelerometer  

design.



Overview of Simple Mechanical Vibration Systems

Mass  

m

Spring  

k

x

k

m

Damping  

Coefficient  

c

Force on Mass:  

F(t) =FoSint

X(t)

X(t) = instantaneous position of the mass, or the displacement of the mass at time t.  
X(t) is the solution of the following differential equation with C1 and C2 beingconstants:

 kX (t) 0
d t2

d 2 X(t)
m Eq. (4.14) for Case (a)

2 dt

dX (t)
 c

d t

d 2 X(t)
m kX (t)  0 Eq. (4.19) for Case (b)

d t2

d 2 X(t)
m kX (t)  Fo  Sin(t) Eq (4.21) for Case(c)

X(t) = C1 cos (t) + C2 sin (t)

1 2(e C e
t ett 2

2

C 2
2

)X (t) for λ2 - ω2 > 0

X (t)  et (C1C 2 t)

X (t)  etC1cos 2  2t C 2sin 2 2t
for λ2 - ω2 = 0  

for λ2 - ω2 < 0

222

k  

m
 

(a) Free vibration: (b) Damped vibration: (c) Forced vibration:

Circular frequency:

Natural frequency:

2
f 



λ = c/(2m)

2 2
X (t) Fo Sint Sint

In a special case of which α = ω Resonant vibration: X (t)  Fo Sint  Fo tCost



Example 4.6

Determine the amplitude and frequency of vibration  

of a 10-mg mass attached to two springs as shown  

in the figure. The mass can vibrate freely without  

friction between the rollers and the supporting floor.  

Assume that the springs have same spring constant  

k1 = k2=k = 6 x 10-5 N/m in both tension and  

compression. The vibration begins with the mass

st = 5 µm.
Mass, m

Spring constant, k1
Spring constant, k2

x

being pulled to the right with an amount of δ

(as induced by acceleration or deceleration)

Solution:

Mass, m

We envisage that the mass in motion is subjected to two spring forces:

One force by stretching the spring (F1 =k1x) + the other by compressing (F2 = k2x).

Also If the spring constants of the two springs are equal, (k1 = k2).

And also each spring has equal magnitudes of its spring constants in tension and  

Compression. We will have a situation:

Dynamic force, F

F1 = Spring force, k1X Spring force, k2X = F2

In which F1 = F2 , This is the situation that is called “Vibration with balanced force”

(p.121)
Proof  

Mass

Spring

A typical µ-accelerometer:

Math Model:



Example 4.6-Cont’d

Since the term kX(t) in the differential equation in Eq. (4.14) represent the “spring force”  

acting on the vibrating mass, and the spring force in this case is twice the value.

We may replace the term kX(t) in that equation with (k+k)X(t) or 2kX(t) as:

 2k X (t)  0
dt2

d 2 X (t)
m

with the conditions: X(0) = δst = 5 µm, and  0
t0

dt

dX (t)

The general solution of the differential equation is: X(t) = C1 cos (ωt) + C2 sin(ωt),  

in which C1 = δst = 5 x 10-6 m and C2 = 0 as determined by the two conditions.

Thus, the instantaneous position of the mass is: X(t) = 5x10-6 cos (ωt) meter  

The corresponding maximum displacement is Xmax = 5x10-6 m

The circular frequency, ω in this case is:

m
 3.464 rad /s

2k


(6 6)x105

105
 

(zero initial velocity)



Microaccelerometers

Micro accelerometers are used to measure the acceleration (or deceleration)

of a moving solid (e.g. a device or a vehicle), and thereby relate the acceleration  

to the associated dynamic force using Newton’s 2nd law: F(t) = M a(t), in which  

M = mass of the moving solid and a(t) = the acceleration at time t.

An accelerator requires: a proof mass (m), a spring (k), and damping medium (c),  

in which k = spring constant and c = damping coefficient.

Early design of microaccelerators have the following configurations:

k

M
M

k C

Mk

Casing Casing

Fluid:

C
Casing Casing

Silicon beam  

Piezoresistor

M
Fluid: C

Constraint  

base

(a) Spring-mass (b) Spring-mass-dashpot

(c)Beam-Mass (d) Beam-attached mass

Conventional  

accelerometers

Microaccelerometers



Design Theory of Accelerometers

m y

xk c

Moving (vibrating) Base

In a real-world application, the accelerometer is attached to a moving solid. We realize  

that the amplitude of the vibrating proof mass in the accelerometer may not necessarily  

be in phase with the amplitude of vibration of the moving solid (the base).

x(t) = the amplitude of vibration of the base

The governing differential equation for z(t) is:

m&z&(t)  cz&(t)  kz(t)  mX 2 Sint

Once z(t) is obtained from solving the above equation with appropriate initial conditions,  

we may obtain the acceleration of the proof mass in a relative movement as:

dt2

d2 z(t)
&z&(t)

Assume x(t) = X sin(ωt) – a harmonic motion

y(t) = the amplitude of vibration of proof mass

in the accelerometer from its initial static

equilibrium position.

z(t) = the relative (or net) motion of the

proof mass, m

Hence z(t) = y(t) – x(t) (4.26)

(4.29)



Design Theory of Accelerometers-Cont’d

The solution of z(t) with initial conditions: z(0) = 0 and  0
t0dt

dz(t)
is:

z(t) = Z sin(ωt – Φ)



2

 m m

k

Z 

c
2

 2

in which the maximum magnitude, Z of z(t) is:

2 X

m

k 
  2

  tan1 m

where X = maximum amplitude of vibration of the base. The phase angle difference, Φ

between the input motion of x(t) and the relative motion, z(t) is:

c

(4.30)

(4.31a)

(4.31b)



Design Theory of Accelerometers-Cont’d







1   

 
2

2

 
2

 n   n
  2h

An alternative form for the maximum amplitude of the relative vibration of the proof mass in  

the accelerometer, Z is:

Z   2X

n
2

m

where ω = frequency of the vibrating base; ωn is the circular natural frequency of  

the accelerometer with:

k
n 

The parameter, h = c/cc = the ratio of the damping coefficients of the damping medium  

in the micro accelerometer to its critical damping with cc = 2mn

For the case of which the frequency of the vibrating base, ω is much smaller than the  

natural frequency of the accelerometer, ωn, i.e. ω << ωn:

2
n

Z &
abase,max

(4.32a)

(4.33)



Design of Accelerometers

The engineer may follow the following procedure in the design of appropriate  

microaccelerometer for a specific application:

(1) Set the target maximum amplitude of vibration, X of the base (e.g., a  

vehicle or a machine) and the anticipated frequency of vibration, i.e. ω.

(2) Select the parameters: m, k, c and calculate ωn and h.

(3) Compute the maximum relative amplitude of vibration of the proof mass, 

Z using the available formulas.

(4) Check if the computed Z is within the range of measurement of 

the intended transducer, e.g. piezoresistors, piezoelectric, etc.

(5) Adjust the parameters in Step (2) if the computed Z is too small to  

be measured by the intended transducer.



Design of Accelerometers-Cont’d

Spring constant of simple beams

Simple beams are commonly used to substitute the coil springs in microaccelerometers.  

It is thus necessary to calculate the “equivalent spring constant” of these beam springs.

Since the spring constant of an elastic solid, whether it is a coil spring or other geometry,  is 

define as k = Force/Deflection (at which the force is applied), we may derive the spring  

constant for the three simple beam configurations to be:

F

L

F

L

F

L

FL
k 

Appliedforce, F


3EI  

Induceddeflection,  L3

L3
k 

48EI

L3
k 

192EI

in which E = Young’s modulus; I = section moment of inertia of beam cross-section.



Design of Accelerometers-Cont’d

Damping coefficients

In microaccelerometers, the friction between the immersed fluid and the contacting  

surfaces of the moving proof mass provides damping effect.

There are two types of “damping” induced by this affect:

Numerical values of damping coefficients depend on the geometry of the vibrating  

solid components and the fluid that surround them.

k

M
M

k C

Mk

Casing Casing

Fluid:

C
Casing Casing

Silicon beam  

Piezoresistor

M
Fluid: C

Constraint  

base

(a) Spring-mass (b) Spring-mass-dashpot

(c)Beam-Mass (d) Beam-attached mass

(a) Squeeze film damping:
(b) Micro damping in shear:



Example 4.10 (p.133)

Beam mass, m

Beam springs

Anchors

Beam springs

m

Rigid bars

Beam mass

Anchors

Determine the displacement of the proof mass from its neutral equilibrium  

Position of a balanced-force microaccelerometer illustrated below:

The structure of this accelerometer  

can be graphically represented below:

Beam springs

m
Beam mass

“A” “A”
600 m

700 m

1 m

5m

View “A-A”



With: b = 10-6 m, B = 100x10-6 m, L = 600x10-6 m and Lb = 700x10-6 m, we have  

from Example 4.9 the moment of inertia of beam spring cross-section to be:

I = 10.42x10-24 m4

For simply-support beam spring: k = 0.44 N/m, ωn = 23,380 rad/s  

For rigidly fixed beam spring: k = 1.76 N/m and ωn = 147,860rad/s

Assume the “rigidly held beam spring case is adopted, the equation of motion of  

the proof mass is:

X t  0
dt 2

d 2 X t
 2

t0
Xt with initial conditions:

, and dXt 
dt

t0

 0 initial position

 50 km / h   13.8888 m / s initial velocity

The solution of the equation of motion with the given initial conditions is:

X t  9.3932x105 Sin147.86t

leading to X(1 ms) = -2.597x10-5 m or 26 µm opposite to the direction of  

deceleration.



(a) Damping coefficient in a squeeze film:

Damping Velocity

y H(t) fluid profile

2L Moving strip with

width 2W

The damping coefficient can be found to be: c  16 f 
W 

W 3 L H3


L
 o

where Ho  = nominal thickness of the thin film.  

The function, f
W  can be obtained by the following Table 4.2:


L


 

W  

L
f 

W 


L


 

W  

L
f 

W 
 
L 

0 1.00 0.6 0.60

0.1 0.92 0.7 0.55

0.2 0.85 0.8 0.50

0.3 0.78 0.9 0.45

0.4 0.72 1.0 0.41

0.5 0.60



Ho=20 m

Ho=20 m

1000 m  

Damping fluid:

Silicone oil 

m

Mass, m = 10 mg

Frequency,

10 m

50 m

Beam cross-section

Vibrating Base

We have the beam dimensions as: 2L = 1000x10-6 m and 2W = 10x10-6 m

W/L = 0.01 F(W/L) = 0.992 from Table 4.2.

The nominal film thickness, Ho = 20x10-6 m. From Eq. (4.38) we get: c = 8x10-33 N-s/m.

Example 4.11 (p.136)

Estimate the damping coefficient of a micro accelerometer using  

a cantilever beam spring as illustrated.



(b) Micro damping in shear:

Velocity, V

Gap, H

Gap, H
y

Velocity profile  

u(y)

Velocity profile

u(y)

Moving mass, m

Damping

Fluid

V

V

The damping coefficient, c may be computed from the following expression:

FD

V H

2Lb
c  N-s/m

where L = length of the beam (m); b = the width of the beam (m); H = gaps (m)

µ = dynamic viscosity of the damping fluid (N-s/m2), see Table below.

(4.43)



A.Compressible fluids:

0oC 20oC 60oC 100oC 200oC

Air 17.08 18.75 20.00 22.00 25.45

Helium 18.60 19.41 21.18 22.81 26.72

Nitrogen 16.60 17.48 19.22 20.85 24.64

B. Non-compressible fluids:

0oC 20oC 40oC 60oC 80oC

Alcohol 1772.52 1199.87 834.07 591.80 432.26

Kerosene 2959.00 1824.23 1283.18 971.96 780.44

Fresh water 1752.89 1001.65 651.65 463.10 351.00

Silicone  

oil*

740

Dynamic Viscosity for Selected Fluids (in 10-6 N-s/m2)



Beam Mass, m

L = 700m

A

Velocity,v  
A

1m

B =100 µm

View “A-A”

Top View

Gap, H = 20m

H
(Damping fluid)

Elevation

Eq. (4.43) is used for the solutions.

We have L = 700x10-6 m and b = 5x10-6 m  

and the gap, H = 10x10-6 m.

The dynamic viscosities for air and silicone oil  

at 20oC may be found from Table 4.3 to be:

µair = 18.75x10-6 N-s/m2, and

µsi = 740x10-6 N-s/m2  

Thus, the damping coefficient with air is:

12  2.625x10
2(18.75x106 )(700x106 )(100x106)

H 20x106
c  air

2 Lb
N-s/m

and the damping coefficient with silicone oil is:

10
 1.036x10

2(740x106 )(700x106)(100x106 )

20x106H
c 

2 Lb
si N-s/m

Example 4.12 (p.139)

Estimate the damping coefficient in a balanced-force microaccelerometer as illustrated,  

with (a) air, and (b) silicone oil as damping media. The sensor operates at 20oC.



Example 4.14

m1 m2

Two vehicles with respective masses, m1 and m2 traveling in opposite directions at velocities  

V1 and V2 as illustrated. Each vehicle is equipped with an inertia sensor (or micro  

accelerometer) built with cantilever beam as configured in Example 4.8.

Estimate the deflection of the proof mass in the sensor in vehicle 1 with mass m1,

and also the strain in the two piezoresistors embedded underneath the top and bottom  

surfaces of the beam near the support after the two vehicles collide.

V1
V2

m

L = 1000 m m = 10 mg
50 m

10 m

Cross-section  

of the beam

12

18(10x106)(50x106)3

I   0.1042x10 m4

(1000x106)3
k 

3(190000x106)(0.1042x1018) 
 59.39 N/m

59.39
 2437

105

k  

m
 n Rad/s

m1 = 12,000 Kg, m2 = 8000 Kg; V1 = V2 = 50 Km/h

Solution:

Let us first look into the property of the “beam spring” used in Example 4.8, and have:

Design of an inertia sensor for airbag deployment system in automobiles (p.142)



m1 m2

Postulation: The two vehicles will tangle together after the collision, and the entangled  

vehicles move at a velocity V as illustrated:

V

Thus, by law of conservation of momentum, we should have the velocity of the entangled  

vehicles to be:

12000 8000
V  m1V1 m2V 2 

12000x50  8000x50
 10 Km/h

m1  m2

The decelerations of the two vehicles are:

1for vehicle with m , and
t t

X&
V  V1 X&

V  V2 for vehicle with m2

in which ∆t = time required for deceleration.

Let us assume that it takes 0.5 second for vehicle 1 to decelerate from 50 Km/hr to  

10 Km/hr after the collision. Thus the time for deceleration of the vehicle m1 is

t = 0.5 second, in the above expressions.



We may thus compute the deceleration of vehicle m1 to be:

0.5
 22.22

(10  50)x103 /3600
X& abase  m/s2

Let ω = frequency of vibration of the vehicles.

Assume that ω<< ωn, (ωn =the natural frequency of the accelerometer = 2437 rad/s2).

Consequently, we may approximate the amplitude of vibration of the proof mass in the  

accelerometer using Eq. (4.33) as:

(2437)2
n2

Z &
abase  

 22.22
3.74x106 m, or 3.74 µm

We thus have the maximum deflection of the cantilever beam of 3.74 µm at the free end in  

the accelerometer. The equivalent force acting at the free-end is:

3

4

6 3(1000x10 )

3EIZ 3(1.9x1011)(0.1042x1018 )(3.74x106 )
F    2.2213x10

L

N

From which, we may compute the maximum bending moment at the support to be:

Mmax = FL in which L is the length of the beam. The numerical value of Mmax is:



M max  2.2213x104 x103  2.2213x107 N-m

The corresponding maximum stress,σmax is:

5

0.1042x10I

Mmax C
18

(2.2213x107 )(25x106)
 max    532.95x10 N/m2 or Pa

and the corresponding max. strain is obtained by using the Hooke’s law to be:

4  02.81x10 0.0281%
190x109E


 max 

53.30x105

max

Depending on the transducer used in the microaccelerometer, the maximum stress, σmax

can produce a resistance change in the case of “piezoresistors”. Alternatively, the maximum  

strain, εmax will produce a change of voltage if “piezoelectric crystal” is used as the transducer.  

(Detail descriptions available in Chapter 7)

Piezoresistor

Beam spring  

Piezoelectric

Proof mass



Overview of Finite Element Stress Analysis

Finite element method (FEM) is a powerful tool in stress analysis of MEMS and  

microsystems of complex geometry, loading and boundary conditions.

Commercial FEM codes include: ANSYS, ABAQUS, IntelliSuites, MEMCad, etc.

The essence of FEM is to discretize (divide) a structure made of continuum into a finite  

number of “elements” interconnected at “nodes.” Elements are of specific geometry.

One may envisage that smaller and more elements used in the discretized model  

produces better results because the model is closer to the original continuum.

Continuum mechanics theories and principles are applied on the individual elements,  

and the results from individual elements are “assembled” to give results of the overall  

Structure.

(p.173)



I/O in FEM for Stress Analysis

 Profile of the structure geometry.

 Establish the coordinates:

● Input information to FE analysis:

(1) General information:

x

z

x

y

zy

x-y for plane
r

r-z for axi-symmetrical x-y-z for 3-dimensional geometry

(2) Develop FE mesh (i.e. discretizing the structure):

Use automatic mesh generation by commercial codes.

User usually specifies desirable density of nodes and elements in specific regions.  

(Place denser and smaller elements in the parts of the structure with abrupt change of  

geometry where high stress/strain concentrations exist)



(3) Material property input:

In stress analysis: Young’s modulus, E; Poisson ratio, ; Shear modulus of elasticity, G;  

Yield strength, y; Ultimate strength, u.

In heat conduction analysis: Mass density, ; Thermal conductivity, k; Specific heat, c;  

Coefficient of linear thermal expansion coefficient, .

(4) Boundary and loading conditions:

In stress analysis: Nodes with constrained displacements (e.g. in x-, y- or z-direction);  

Concentrated forces at specified nodes, or pressure at specified element edge surfaces.

In heat conduction analysis: Given temperature at specified nodes, or heat flux at  

specified element edge surfaces, or convective or radiative conditions at specified  

element surfaces.



● Output from FE analysis

(1)Nodal and element information 

Displacements at nodes.

Stresses and strains in each element:

- Normal stress components in x, y and z directions;

- Shear stress components on the xy, xz and yz planes;

- Normal and shear strain components

- Max. and min. principal stress components.

- The von Mises stress defined as:

(4.71)

The von Mises stress is used to be the “representative” stress in a multi-axial stress  

situation.

It is used to compare with the yield strength, y for plastic yielding, and to u for the  

prediction of the rupture of the structure, often with an input safety factor.

22

2

1
xz

2

yz

2
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Application of FEM in stress analysis of silicon die in a pressure sensor:

Signal generators  

and interconnect

Silicon  

Diaphragm

Pyrex Glass  

Constraining  

Base

Metal  

Casing

A A

Passage for

Pressurized  

Medium

View on Section“A-A”

Adhesive

Pressurized Medium

Regionfor

FE Model

Silicon diaphragm

Silicon die

Pyrex Constraint

Die Attach

Note: Only quarter of the die structure was  

in the FE model due to symmetry in  

geometry, loading and boundary  

conditions.

by V. Schultz, MS thesis at the MAE Dept., SJSU, June 1999 for LucasNova Sensors  

In Fremont, CA. (Supervisor: T.R. Hsu)



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner


