Module - 4 Incompressible Flows over Finite Wings

Biot-Savart  law  and  Helmholtz’s  theorems, Vortex  filament: Infinite and
semi-infinite vortex filament, Induced velocity. Prandtl’s classical lifting line theory:
Downwash and induced drag. Elliptical and modified elliptical lift distribution.  Lift
distribution on wings. Limitations of Prandtl’'s lifting line theory. Extended lifting line
theory- lifting surface theory, vortex lattice method for wings. Lift, drag and moment

characteristics of complete airplane.

Downwash and Induced drag:
A finite wing is a three-dimensional body, and consequently the flow over the finite

wing is three-dimensional; that is, there is a component of flow in the spanwise direction. To
see this more clearly, examine Figure 2.1, which gives the top and front views of a finite
wing. The physical mechanism for generating lift on the wing is the existence of a high
pressure on the bottom surface and a low pressure on the top surface. The net imbalance of
the pressure distribution creates the lift. However, as a by-product of this pressure imbalance,
the flow near the wing tips tends to curl around the tips, being forced from the high-pressure
region just underneath the tips to the low-pressure region on top. This flow around the wing
tips is shown in the front view of the wing in Figure 2.1. As a result, on the top surface of the
wing, there is generally a spanwise component of flow from the tip toward the wing root,
causing the streamlines over the top surface to bend toward the root, as sketched on the top
view shown in Figure 2.1. Similarly, on the bottom surface of the wing, there is generally a
spanwise component of flow from the root toward the tip, causing the streamlines over the
bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-
dimensional.
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Figure 2.1 Finite wing. In this figure, the curvature of the streamlines over the top and bottom

of the wing is exaggerated for clarity.



Figure 2.2 Schematic of wing-tip vortices
The tendency for the flow to "leak"” around the wing tips has another important effect on the
aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream
of the wing; that is, a trailing vortex is created at each wing tip. These wing-tip vortices are
sketched in Figure 2.2. The tip vortices are essentially weak "tornadoes" that trail
downstream of the finite wing. These wing-tip vortices downstream of the wing induce a
small downward component of air velocity in the neighbourhood of the wing itself. The two
vortices tend to drag the surrounding air around with them, and this secondary movement
induces a small velocity component in the downward direction at the wing. This downward
component is called downwash, denoted by the symbol w. In turn, the downwash combines
with the freestream velocity V,, to produce a local relative wind which is canted downward in

the vicinity of each airfoil section of the wing, as sketched in Figure 2.3.
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Figure 2.3 Effect of downwash on the local flow over a local airfoil section of a finite wing.
Examine Figure 2.3 closely. The angle between the chord line and the direction of V., is the
angle of attack a. We now more precisely define a as the geometric angle of attack. In Figure
2.3, the local relative wind is inclined below the direction of V.. by the angle ¢; called the

induced angle of attack. The presence of downwash, and its effect on inclining the local



relative wind in the downward direction, has two important effects on the local airfoil
section, as follows:

1. The angle of attack actually seen by the local airfoil section is the angle between the
chord line and the local relative wind. This angle is given by a, in Figure 2.3 and is
defined as the effective angle of attack. Hence, although the wing is at a geometric
angle of attack a, the local airfoil section is seeing a smaller angle, namely, the

effective angle of attack a. From Figure 2.3,

b @.1)

2. The local lift vector is aligned perpendicular to the local relative wind, and hence is
inclined behind the vertical by the angle a;, as shown in Figure 2.3. Consequently,
there is a component of the local lift vector in the direction of V.. that is, there is a
drag created by the presence of downwash. This drag is defined as induced drag,
denoted by D; in Figure 2.3.

Hence, we see that the presence of downwash over a finite wing reduces the angle of attack
that each section effectively sees, and moreover, it creates a component of drag-the induced
drag D,

The tilting backward of the lift vector shown in Figure 2.3 is one way of visualizing the
physical generation of induced drag. Two alternate ways are as follows:

1. The three-dimensional flow induced by the wing-tip vortices shown in Figure 2.2
simply alters the pressure distribution on the finite wing in such a fashion that a net
pressure imbalance exists in the direction of V., (i.e., drag is created). In this sense,
induced drag is a type of "pressure drag."

2. The wing-tip vortices contain a large amount of translational and rotational kinetic
energy. This energy has to come from somewhere; indeed, it is ultimately provided by
the aircraft engine, which is the only source of power associated with the airplane.
Since the energy of the vortices serves no useful purpose, this power is essentially
lost. In effect, the extra power provided by the engine that goes into the vortices is the
extra power required from the engine to overcome the induced drag.

The vortex filament, The Biot-Savart Law, And Helmholtz’s Theorems:
The concept of a vortex filament first introduced in Unit 1. In general, a vortex filament can
be curved, as shown in Figure 2.4. Here, only a portion of the filament is illustrated.

The filament induces a flow field in the surrounding space. If the circulation is taken
about any path enclosing the filament, a constant value I is obtained. Hence, the strength of
the vortex filament is defined as I'. Consider a directed segment of the filament dl, as shown
in Figure 2.4. The radius vector from dl to an arbitrary point P in space is r. The segment dl

induces a velocity at P equal to

I"'dlxr
4r |Ir?

(2.2)



Equation (2.2) is called the Biot-Savart law and is one of the most fundamental relations in

the theory of inviscid, incompressible flow.
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Figure 2.4 Vortex filament and illustration of the Biot-Savart law.
Let us apply the Biot-Savart law to a straight vortex filament of infinite length, as sketched in
Figure 2.5. The strength of the filament isI". The velocity induced at point P by the directed
segment of the vortex filament dl is given by Equation (2.2). Hence, the velocity induced at P

by the entire vortex filament is

o0
r
V=[ dl xr
o 4 |rf?

(2.3)
From the definition of the vector cross product, the direction of V is downward in Figure 2.5.
The magnitude of the velocity, V = IVI, is given by
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Figure 2.5 velocity induced at point P by an infinite, straight vortex filament
In Figure 2.5, let h be the perpendicular distance from point P to the vortex filament. Then,

from the geometry shown in figure 2.5,
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(2.5)



Subsituting Equation (2.5) in Equation (2.4), we have

I ~ sinf r 0
V=— \lllj = —-— sinf df
4” -0 g 4’(1 R
r
V=—
2nh

(2.6)
Thus, the velocity induced at a given point P by an infinite, straight vortex filament at a

perpendicular distance A from P is simply [ /27h.

V= G

Figure 2.6 velocity induced at point P by an semi-infinite, straight vortex filament
Consider the semi-infinite vortex filament shown in Figure 2.6. The filament extends from
point A to «. Point A can be considered a boundary of the flow. Let P be a point in the plane
through A perpendicular to the filament. Then, by an integration similar to that above, the

velocity induced at P by the semi-infinite vortex filament is

I
= 4xh
2.7
Helmbholtz’s vortex theorems states:
1. The strength of a vortex filament is constant along its length.

2. A vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid

(which can be £w) or form a closed path.
Prandtl’s lifting line theory and its limitations:
The first practical theory for predicting the aerodynamic properties of a finite wing was
developed by Ludwig Prandtl and his colleagues at Gottingen, Germany, during the period
1911-1918, spanning World War I. The utility of Prandtl's theory is so great that it is still in
use today for preliminary calculations of finite-wing characteristics. The purpose of this
section is to describe Prandtl's theory and to lay the groundwork for the modem numerical
methods.

Prandtl reasoned as follows. A vortex filament of strength r that is somehow bound to
a fixed location in a flow so called bound vortex will experience a force L' = p,V..I" from
the Kutta-Joukowski theorem. This bound vortex is in contrast to a free vortex, which moves
with the same fluid elements throughout a flow. Therefore, let us replace a finite wing of
span b with a bound vortex, extending from y = -b /2 to y = b /2, as sketched in Figure 2.7.
However, due to Helmholtz's theorem, a vortex filament cannot end in the fluid. Therefore,

assume the vortex filament continues as two free vortices trailing downstream from the wing



tips to infinity, as also shown in Figure 2.7. This vortex (the bound plus the two free) is in the

shape of a horseshoe, and therefore is called a horseshoe vortex.
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Figure 2.8 Downwash distribution along the y axis for a single horseshoe vortex

A single horseshoe vortex is shown in Figure 2.8. Consider the downwash w induced
along the bound vortex from -b /2 to b /2 by the horseshoe vortex. Examining Figure 2.8, we
see that the bound vortex induces no velocity along itself; however, the two trailing vortices
both contribute to the induced velocity along the bound vortex, and both contributions are in
the downward direction. Consistent with the xyz coordinate system in Figure 2.8, such a
downward velocity is negative; that is, w (which is in the z direction) is a negative value
when directed downward and a positive value when directed upward. If the origin is taken at
the center of the bound vortex, then the velocity at any point y along the bound vortex
induced by the trailing semi-infinite vortices is, from Equation (2.7 ),

I I

T4nb/2+y) dnb/2-y)

w(y) =

(2.8)
In Equation (2.8), the first term on the right-hand side is the contribution from the left trailing
vortex (trailing from -b /2), and the second term is the contribution from the right trailing

vortex (trailing from b/2). Equation (2.8) reduces to



b

w(y) = _E—(b/ﬂ: —y

(2.9)
This variation of w(y) is sketched in Figure 2.8. Note that w approaches - as y
approaches -b/2 or b/2.

Limitations:

The downwash distribution due to the single horseshoe vortex shown in Figure 2.8
does not realistically simulate that of a finite wing; the downwash approaching an infinite
value at the tips is especially disconcerting
Fundamental Equation of Prandtl’s lifting-line theory:

Let us superimpose a large number of horseshoe vortices, each with a different length of the
bound vortex, but with all the bound vortices coincident along a single line, called the lifting
line. This concept is illustrated in Figure 2.9, where only three horseshoe vortices are shown
for the sake of clarity. In Figure 2.9, a horseshoe vortex of strength dI'; is shown, where the
bound vortex spans the entire wing from -b /2 to b /2 (from point A to point F).
Superimposed on this is a second horseshoe vortex of strength dI'; where its bound vortex
spans only part of the wing, from point B to point E. Finally, superimposed on this is a third
horseshoe vortex of strength dI's, where its bound vortex spans only the part of the wing from
point C to point D. As a result, the circulation varies along the line of bound vortices-the
lifting line defined above. Along AB and EF, where only one vortex is present, the circulation
is dI';, However, along BC and DE, where two vortices are superimposed, the circulation is
the sum of their strengths dI'; + dI">. Along ¢ D, three vortices are superimposed, and hence
the circulation is dI'y + dI'> + dI's. The series of trailing vortices in Figure 2.9 represents
pairs of vortices, each pair associated with a given horseshoe vortex. Note that the strength of

each trailing vortex is equal to the change in circulation along the lifting line.

Figure 2.9 Superposition of a finite number of horseshoe vortices along the lifting line.

Let us extrapolate Figure 2.9 to the case where an infinite number of horseshoe vortices are
superimposed along the lifting line, each with a vanishingly small strength dI’, This case is
illustrated in Figure 2.10. Note that the vertical bars in Figure 2.9 have now become a

continuous distribution of I'(y) along the lifting line in Figure 2.10. The value of the



circulation at the origin is I'y. Also, note that the finite number of trailing vortices in Figure
2.9 have become a continuous vortex sheet trailing downstream of the lifting line in Figure
2.10. This vortex sheet is parallel to the direction of V.. The total strength of the sheet
integrated across the span of the wing is zero, because it consists of pairs of trailing vortices

of equal strength but in opposite directions.
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Figure 2.10 Superposition of a infinite number of horseshoe vortices along the lifting line.
Let us single out an infinitesimally small segment of the lifting line dy located at the
coordinate y as shown in Figure 2.10. The circulation at y is I'(y), and the change in
circulation over the segment dy is dI” = (dI" /dy) dy. Consider more closely the trailing vortex
of strength d/ which intersects the lifting line at coordinate y, as shown in Figure 2.10. Also
consider the arbitrary location y, along the lifting line. Any segment of the trailing vortex dx
will induce a velocity at y, with a magnitude and direction given by the Biot-Savart law,
Equation (2.2). In tum, the velocity dw at yp induced by the entire semi-infinite trailing vortex
located at y is given by Equation (2.7), which in terms of the picture given in Figure 2.10
yields

B (dl'/dy)dy

dw =
v 4 (vo = ¥)

(2.10)

[The minus sign in Equation (2.10) is needed for consistency with the picture shown in
Figure 2.10; for the trailing vortex shown, the direction of d w at yg is upward and hence is a
positive value, whereas I" is decreasing in the y direction, making dI" /dy a negative quantity.
The minus sign in Equation (2.10) makes the positive dw consistent with the negative dI’
zdy.]

The total velocity w induced at y, by the entire trailing vortex sheet is the summation
of Equation (2.10) over all the vortex filaments, that is, the integral of Equation (2.10) from
-b /210 b/2:

1 [*? (T /dy)dy
w(yo) = - i —yo .

(2.11)




Equation (2.11) is important in that it gives the value of the downwash at y, due to all the
trailing vortices,
From Figure 2.3, the induced angle of attack o; is given by
—w(
ai(yo) = tan™" (J)

Vo
(2.12)

Generally, w is much smaller than V,, and hence ¢;; is a small angle, on the order of a few

degrees at most. For small angles, Equation (2.12) yields

w(yy)
ai(w) = — v
- (2.13)
Substituting Equation (2.11) into (2.12), we obtain
o) 1 f"ﬂ (dT/dy)dy
o dnVy -b2 Yo— ¥
(2.14)

that is, an expression for the induced angle of attack in terms of the circulation distribution
['(y) along the wing.

Consider again the effective angle of attack .y, as shown in Figure 2.3. Since the
downwash varies across the span, then a. is also variable; terr = esr (Vo). The lift coefficient

for the airfoil section located at y = yy is

v = dplaew(vo) — ap—o] = 2m|aemg (Vo) — oy -
¢ = aglagg (yo L=0] [aremy (vo L=0] 2.15)

In Equation (2.15), the local section lift slope ay has been replaced by the thin airfoil
theoretical value of 2. Also, for a wing with aerodynamic twist, the angle of zero lift a; - in
Equation (2.15) varies with yg. If there is no aerodynamic twist, a;-o is constant across the
span. In any event, a;_, is a known property of the local airfoil sections. From the definition
of lift coefficient and from the Kutta-Joukowski theorem, we have, for the local airfoil

section located at yy,

L' = %Px VaieOoler = px VaI'(yo)

(2.16)
From Equation (2.16), we obtain
2I' (o)
€ = ————
Vacc(yo)
(2.17)
Substituting equation (2.17) into (2.15) and solving for a.s, we have
& r(}‘u) p.
Ol e —— L=0
V .
aVae(yp) (2.18)
We know

Substituting Equations 2.14, 2.18 into 2.1, we obtain




a(yo) = ———— + ar=o(yo) +

[ (yo) I j"” (dI'/dy)dy
7 Voo (o) dn Ve J_

b2 Yo—Y¥

(2.19)

the fundamental equation of Prandtl 's lifting-line theory; it simply states that the geometric
angle of attack is equal to the sum of the effective angle plus the induced angle of attack. In
Equation (2.19), o, is expressed in terms of I', and a;,; is expressed in terms of an integral
containing dI" /dy. Hence, Equation (2.19) is an integro-differential equation, in which the
only unknown is I'; all the other quantities, «, ¢,V,, and a;_,- are known for a finite wing of
given design at a given geometric angle of attack in a freestream with given velocity. Thus, a
solution of Equation (2.19), yvields I" =/7y,), where y, ranges along the span from -b/2 to b/2.
The solution I = /7yy) obtained from Equation (2.19) gives us the three main aerodynamic
characteristics of a finite wing, as follows:

1. The lift distribution is obtained from the Kutta-Joukowski theorem:

L' (y0) = P Voo ' (30)

(2.20)
2. The total lift is obtained by integrating equation 2.20 over the span:
b2
L= f L'(y)dy
-b/2
b2
L= vamf F(y)dy
~b/2 (2.21)
L 2 e
CrL= 7S = Vs F(y)dy
o WS (2.22)

3. The induced drag is obtained by inspection of figure 2.3. The induced drag per unit
span is
D) = L,sinq;

Since «; is small, this relation becomes

D; = Lo,
(2.23)
Integrating,
b/2
D; = f L'(y)ai(y)dy
-b/2
b/2
D; = Pocvccj C(y)ai(y)dy
-b/2
(2.24)

The induced drag coefficient is

D, 2 [
CD,.' = —_

- F(yv)a;(v)dy
aoS ~ Vs )un (v)ai(v)dy

(2.25)




Therefore, in Prandtl's lifting-line theory the solution of Equation (2.25) for I'(y) is clearly
the key to obtaining the aerodynamic characteristics of a finite wing.
Elliptic lift distribution:

Consider a circulation distribution given by

I'(y) = o,/ 1 -

A
-|¥
—

(2.26)
In Equation (2.26), note the following:
1. Ty is the circulation at the origin, as shown in Figure 2.10.
2. The circulation varies elliptically with distance y along the span; hence, it is
designated as an elliptical circulation distribution. Since L' (y) = p.V.ITy), we also
have

—_——

, 2v\°
L'(y) = poo Vxl’u‘/l - (?)

Hence, we are dealing with an elliptical lift distribution.

(2.27)

3. I'(b/2) = I'(-b/2) = 0. Thus, the circulation, hence lift, properly goes to zero at the
wing tips, as shown in Figure 2.10.

First, let us calculate the downwash. Differentiating Equation (2.26), we obtain

dr 4l y
dv b2 (1 —4v2/ )2
: ( y</b%) (228)
Substituting equation 2.28 into 2.11, we have
r(]. '/‘h,.’l V
w(y ) = 2 2 s 3 dy
s ab? J (1 —4y2/02)\ 2(yg—y)
(2.29)
Substitute
- 6 d X 6 do
'\_ELOS _\—-‘i.‘)lﬂ
Hence, equation 2.29 becomes
o [° cosf
w =— de
©) 2xh _[, cosfy — cos b
I . cosf
w =0 [ 0o
o COsf — coséy (2.30)

Using standard integration formula as

/’"‘ cosnbdt  msinnty
0 COSO — cosfy sin by

Then by n= 1, we get



Co
w(by) = T

(2.31)
Which gives downwash is constant over the span for an elliptical lift distribution. For the

induced angle of attack,

w ro
O = ——

Vo | 2bVa

(2.32)

For an elliptic lift distribution, the induced angle of attack is also constant along the span.
Note from Equations (2.31) and (2.32) that both the downwash and induced angle of attack
go to zero as the wing span becomes infinite. A more useful expression for «; can be

obtained as follows. Substituting Equation (2.26) into (2.21), we have

bj2 4y2 lﬂd
L= pV, ]‘of (1 - = ) y

(2.33)
Again, using the transformation y = (b/2) cos 6, equation 2.33 becomes
b * ., b
L = pocVocT0= sin“0d0 = poc Voo lo—1
2Jo o (2.34)
Solving equation 2.34 for 'y,
4L
= ———
Poc Vb (2.35)
2V, SC,
_1 2 e —
However, L = zpmeSCL.' b (2.36)
Substituting equation 2.36 into 2.32, we obtain
2V SC. 1
o; =
' br  2bVy
SC,
o = -—?
o (2.37)
An important geometric property of a finite wing is the aspect ratio, denoted by AR and
defined as
bl
AR = —
S
Hence, Equation (2.37) becomes
Cp
a =
"7 nAR

T (2.38)
Equation (2.38) is a useful expression for the induced angle of attack, as shown below.

The induced drag coefficient is obtained from Equation (2.25), noting that ¢; is constant:



I

20" s i " b ]
Co.i —'f F(y)dy = - r"ff sin® 6 df — — r“f’
- 0

Ve S 2 VoS 2 2V S
s = *7 (2.38a)
Substituting equations 2.36 and 2.38 into 2.38a, we obtain
ab ( Ce ) 2V, .SC,
Cpi=
2V, S \7AR bx
C?
I C ] = £
i - 7TAR
(2.39)

Equation (2.39) is an important result. It states that the induced drag coefficient is directly
proportional to the square of the lift coefficient. The dependence of induced drag on the lift is
not surprising, for the following reason. The induced drag is a consequence of the presence of
the wing-tip vortices, which in turn are produced by the difference in pressure between the
lower and upper wing surfaces. The lift is produced by this same pressure difference. Hence,
induced drag is intimately related to the production of lift on a finite wing: indeed, induced
drag is frequently called the drag due to lift. Equation (2.39) dramatically illustrates this
point. Clearly, an airplane cannot generate lift for free; the induced drag is the price for the
generation of lift. The power required from an aircraft engine to overcome the induced drag
is simply the power required to generate the lift of the aircraft. Also, note that because Cp,; e
C/’, the induced drag coefficient increases rapidly as C; increases and becomes a substantial
part of the total drag coefficient when C; is high (e.g., when the airplane is flying slowly
such as on takeoff or landing). Even at relatively high cruising speeds, induced drag is
typically 25 percent of the total drag.

Another important aspect of induced drag is evident in Equation (2.39); that is, C p;is
inversely proportional to aspect ratio. Hence, to reduce the induced drag, we want a finite
wing with the highest possible aspect ratio. Wings with high and low aspect ratios are
sketched in Figure 2.11. Unfortunately, the design of very high aspect ratio wings with
sufficient structural strength is difficult. Therefore, the aspect ratio of a conventional aircraft
is a compromise between conflicting aerodynamic and structural requirements. [It is
interesting to note that the aspect ratio of the 1903 Wright Flyer was 6 and that today the
aspect ratios of conventional subsonic aircraft range typically from 6 to 8. (Exceptions are the
Lockheed U-2 high-altitude reconnaissance aircraft with AR= 14.3 and sailplanes with aspect

ratios in the 10 to 22 range.)]
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L—“—‘I Figure 2.11 High and low aspect ratio wing




Another property of the elliptical lift distribution is as follows. Consider a wing with no
geometric twist (i.e., « is constant along the span) and no aerodynamic twist (i.e., a,-o is
constant along the span). From Equation (2.38), we have seen that a;, is constant along the
span. Hence, o,y = @ - @; is also constant along the span. Since the local section lift
coefficient ¢; is given by

€1 = ap(Qesy — €L=0)
then assuming that ay is the same for each section (ap = 27 from thin airfoil theory), ¢; must
be constant along the span. The lift per unit span is given by
L'O) = oo (2.40)
Solving Equation (2.40) for the chord, we have
L'(y)
Soot (2.41)

c(y) =

In Equation (2.41), q. and ¢; are constant along the span. However, L'(y) varies elliptically
along the span. Thus, Equation (2.41) dictates that for such an elliptic lift distribution, the
chord must vary elliptically along the span; that is, for the conditions given above, the wing
planform is elliptical.

The related characteristics-the elliptic lift distribution, the elliptic planform, and the constant

downwash-are sketched in Figure 2.12.
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Figure 2.12 Illustration of the related quantities: an elliptic lift distribution, elliptic planform,

and constant downwash.



Important formulas:

Ci
‘D = 144
Cp. JIAR( +0)

where § = 3°) n(A,/A,)%. Note that 5 > 0; hence, the factor 1 + & in Equation
(5.61) is cither greater than | or at least equal to 1. Let us define a span efficiency
factor, e, as e = (1 4+ §)~'. Then Equation (5.61) can be written as

CI
CD.: - L

= - [5.62]

where ¢ < 1. Comparing Equations (5.61) and (5.62) for the general lift distribution
with Equation (5.43) for the elliptical lift distribution, note that § = 0 and ¢ = |
for the elliptical lift distribution. Hence, the lift distribution which yields minimum
induced drag is the elliptical lift distribution. This is why we have a practical interest
in the elliptical lift distribution.

5.3.3 EFFECT OF ASPECT RATIO

Returning 10 Equations (5.61) and (5.62), note that the induced drag coefficient for a
finite wing with a general lift distribution is inversely proportional to the aspect ratio,
as was discussed earlier in conjunction with the case of the elliptic lift distribution.
Note that AR, which typically varies from 6 to 22 for standard subsonic airplanes
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Figure 5.18  Induced drag foctor 4 as a function of taper
ratio. (Source: McCormick, B. W.,
Aerodynamics, Aeronautics, and Flight
Mechanics, John Wiley & Sons, New York,
1979.)

and sailplanes, has a much stronger effect on Cp; than the value of §, whir’

Figure 5.18 varies only by about 10 percent over the practical range of tap + 15/272
Hence, the primary design factor for minimizing induced drag is not the closc

an elliptical lift distribution, but rather, the ability to make the aspect ratio as large

as possible. The determination that Cp, is inversely proportional to AR was one of

the great victories of Prandtl’s lifting-line theory. In 1915, Prandtl verified this result
with a series of classic experiments wherein the lift and drag of seven rectangular
wings with different aspect ratios were measured. The data are given in Figure 5.19.
Recall from Equation (5.4), that the total drag of a finite wing is given by

2

C
Cp=cy+ —* [5.63]
D= meAR
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and therefore C; = 1. Assume that we plot C, for the finite winé VErSUS e, a8
shown at the top of Figure 5.21. Because we are using . the lift slope corresponds

to that for an infinite wing a;. However, in real life, our naked eyes cannot se¢ e
instead, what we actually observe is a finite wing with a certain angle between the
chord line and the relative wind; that is, in practice, we always observe the geomeltric
angle of attack @. Hence, €, for a finite wing is generally given as a function of
«. as sketched at the bottom of Figure 5.21. Since @ > a.q. the bottom abscissa is
stretched, and hence the bottom lift curve is less inclined; it has a slope equal to a, and
Figure 5.21 clearly shows that a < ap. The effect of a finite wing is to reduce the hift
slope. Also, recall that at zero lift, there are no induced effects; i.e.,a;, = Cp,; = 0.
Thus, when C; = 0, @ = ay. As a result, a; _g is the same for the finite and the
infinite wings, as shown in Figure 5.21.
The values of @, and a are related as follows. From the top of Figure 5.21,

dC,
—_— =
dla — a;)
Integrating, we find
Cj_ = apla — ;) + const [’o.’}

Substituting Equation (5.42) into (5.67), we obtain

" §1
Cy = ag (u o N—A‘R) + const [5.68]
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Figure 5.21 Lift curves for an infinite wing versus a
finite elliptic wing.

Differentiating Equation (5.68) with respect to &, and solving fordC; /da, we obtain

dC, o
—_——s —
da 1 +ao/mAR

Equation (5.69) gives the desired relation between ag and a for an elliptic finite wing.

lI;‘:]r a finite wing of general planform, Equation (5.69) is slightly modified, as given
ow:



a= .
T T+ (ao/mAR)Y(1 + 1)

In Equation (5.70), t is a function of the Fourier coefficients A,. Values of r were
first calculated by Glauert in the early 1920s and were published in Reference 18,
which should be consulted for more details. Values of t typically range between 0.05
and 0,25,

[5.70]



Extended lifting line theory — Lifting surface theory, Vortex Lattice method
for wings

Prandtl’s classical lifting-line theory gives reasonable results for straight
wings at moderate to high aspect ratio. However, for low-aspect-ratio straight wings,
swept wings, and delta wings, classical lifting-line theory is inappropriate. For such
planforms, sketched in Figure 5.30,

Here, a simple lifting line spans the wing, with its asso-
ciated trailing vortices. The circulation I' varies with v along the lifting line. Let
us extend this model by placing a series of lifting lines on the plane of the wing,
at different chordwise stations; that is, consider a large number of lifting lines all
parallel to the y axis, located at different values of x, as shown in Figure 210 In
the limit of an infinite number of lines of infinitesimal strength, we obtain a vortex
sheet, where the vortex lines run parallel to the y axis. The strength of this sheet
(per unit length in the v direction) is denoted by y, where y varies in the y direction,
analogous to the variation of I" for the single lifting line in Figure 5.13. Moreover,
cach lifting line will have, in general, a different overall strength, so that y varies with
x also. Hence. y = y(x, v) as shown in Figure 5.31. In addition. recall that each
lifting line has a system of trailing vortices: hence, the series of lifting lines is crossed

S A

Low aspect ratio Swept wing Delta wing
straight wing

Figure 5.30  Types of wing plonforms for which classical lifting-line
theoty is not appropriate,
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Figure 5.3V  Schematic of o lifting surfoce.



by a series of superimposed trailing vortices parallel to the x axis. .In the limit of an

infinite number of infinitesimally weak vortices, these lrailjng vortices form another
sheet of strength § (per unit length in the y direcqon). _

Lo gt':"o see this more clearly, consider a single line parallel lq the x

axis. As we move along this line from the leading edge to the trailin; gdgc: we pick up

an additional superimposed trailing vortex each time we cross a lifting line. Hence,

& must vary with x. Moreover, the trailing vortices are simply parts of the horseshoe
vortex systems, the leading edges of which make up the various lifting lines. Since the
circulation about each lifting line varies in the v direction, the strengths of different
trailing vortices will, in general, be different. Hence, & also varies in the y direction,
that is, 8 = d(x, y), as shown in Figure 5.31. The two vortex sheets—the one with
vortex lines running parallel to v with strength ¥ (per unit length in the x direction)
and the other with vortex lines running parallel to x with strength § (per unit length
in the y direction)—result in a lifiing surface distributed over the entire planform of
the wing, as shown in Figure 5.31. At any given point on the surface, the strength
of the lifting surface is given by both y and . which are functions of x and v. We
denote y = y(x, y) as the spanwise vortex strength distribution and § = d(x, y) as
the chordwise vortex strength distribution.

Note that downstream of the trailing edge we have no spanwise vortex lines, only
trailing vortices. Hence, the wake consists of only chordwise vortices. The strength
of this wake vortex sheet is given by &, (per unit length in the y direction). Since in
the wake the trailing vortices do not cross any vortex lines, the strength of any given
railing vortex is constant with x. Hence, 4, depends only on v and, throughout the
wake. d,,(v) is equal 10 its value at the trailing edge.

Consider point
P located at (x, y) on the wing, as shown in Figure 5.31, The lifting surface and the
wake vortex sheet both induce a normal component of velocity at point P. Denote
this normal velocity by w(x. v). We want the wing planform to be u stream surface of
the flow; that is, we want the sum of the induced w(x, v) and the normal component
of the freestream velocity to be zero at point £ and for all points on the wing-—this is
the flow-tangency condition on the wing surface.

The central theme of lifting-surface
theory is to find y(x, y) and 8(x. y) such that the low-tangency condition is satisfied
at all points on the wing. [Recall that in the wake, 8, (y) is fixed by the trailing-
edge values of 6(x, y): hence, 8,,(v) is not, strictly speaking, one of the unknown
dependent variables, )

Let us obtain an expression for the induced normal velocity wi(x. y) in terms of
v 4, and 8. Consider the sketch given in Figure 5.32, which shows a portion of the
planview of a finite wing. Consider the point given by the coordinates (£, 1). At this
point, the spanwise vortex strength is (£, n). Consider a thin ribbon, or filament,
of the spanwise vortex sheet of incremental length d& in the x direction. Hence, the
strength of this filament is y d&, and the filament stretches in the y (or ») direction.
Also, consider point P located at (x. y) and removed a distance r from the point
(&, n). From the Biot-Savart law, Equatior. 2.2 . the incremental velocity induced at
P by a segment dy of this vortex filament of strength y d& is

V] = l_l_dl X X

_ ydE (dn)rsind
dr |r]? |

4 r3

(5.77]




Exafnfin.ing Figure 5.32, and following the right-hand rule for the strength y, note that
dv| |s.mduccd downward, into the plane of the wing (i.e., in the negative z direction).
Following the usual sign convention that w is positive in the upward direction (i.e., in

the positive z direction), we denote the contribution of Equation (5.77) to the induced

velocity w as (dw), = —|dV|. Also, note that siné = (x — §)/r. Hence, Equation
(5.77) becomes
~ E)d
(dw), = __"_.(x__‘?)T.s_d?. [s.78]
an re

Considering the contribution of the elemental chordwise vortex of strength 4 dn 1o
the induced velocity at P, we find by an analogous argument that
8 (y—mdEdn

(dw)ﬁ = _4_1[ r3

To obtain the velocity induced at P by the entire lifting surface, Equations (5.78) and
(5.79) must be integrated over the wing planform, designated as region S in Figure
5.32. Moreover, the velocity induced at P by the complete wake is given by an
equation analogous to Equation (5.79), but with §,, instead of &, and integrated over
the wake, designated as region W in Figure 5.32. Noting that

r=J(x=£6724(y-n?

[5.79]

Region W

Figure 5.32 Velocity induced at point P by an
infinitesimal segment of the lifting
surfoce. The velocity is perpendicular
1o the plane of the poper.

the normal velocity induced at P by both the lifting surface and the wake is

! L“E)Y(E-l’]]{f-{\-j )8(&
u’(.x. }') == -———f . n . f?]
4n A [(x =& + (v — g2 d& dn [5.80]

_| j‘ f (v = (&, n)
ar J) =6+ - mApAdedn




The central problem of lifting-surface theory is to solve Equation (5.80) for y (£, )
and 8(&, n) such that the sum of w(x, y) and the normal component of the freestream
is zero, that is, such that the flow is tangent (o the planform surface S. The details of
various lifting-surface solutions are beyond the scope of this book; rather, our purpose

here was simply to present the flavor of the hasic modal
On each

panel, either constant or prescribed variations of both y and 4 can be made. Control
points on the pancls can be chosen, where the net normal flow velocity is zero. The
evaluation of equations like Equation (5.80) at these control points results in a system
of simultaneous algebraic equations that can be solved for the values of the y's and
d’s on all the panels.

A related but somewhat simpler approach is to superimpose a finite number
of horseshoe vortices of different strengths I, on the wing surface. For example,
consider Figure 5.33, which shows part of a finite wing. The dashed lines define a
pancl on the wing planform, where / is the length of the panel in the flow direction,
The panel is a trapezoid: it does not have to be & square, or even a rectangle. A
horseshoe vortex abed of strength I, is placed on the panel such that the segment
be is a distance //4 from the front of the panel. A control point is placed on the

Flgure 8.33  Schematic of a single horseshoe vortex, which is port of o
vortex system on the wing

Figure 5.38  Vorlex lottice system on o finite wing.



centerline of the panel at a distance 2/ from the front. The velocity induced at an
arbitrary point P only by the single horseshoe vortex can be calculated from the
Biot-Savart law by treating each of the vortex filaments ab. bc, and cd separately.
Now consider the entire wing covered by a finite number of panels, as sketched in
Figure 5.34. A series of horseshoe vortices is now superimposed. For example, on
one panel at the leading edge, we have the horseshoe vortex abed. On the panel
behind it, we have the horseshoe vortex aefd. On the next panel, we have aghd,
and on the next, aijd, etc. The entire wing is covered by this lattice of horseshoe
vortices. each of different unknown strength I',.. At any control point P, the normal
velocity induced by all the horseshoe vortices can be obtained from the Biot-Savart
law. When the flow-tangency condition is applied at all the control points, a system of
simultaneous algebraic equations results which can be solved for the unknown [7,'s.
This numerical approach is called the vortex lattice method and is in wide use today
for the analysis of finite-wing properties. o -



