Four Fources of Flight
The four forces of flight - lift, drag, weight and thrust are denoted by L, D, W and T resply for an airplane in level flight. The free stream velocity V_{∞} is always in the direction of the local flight of the airplane The alp lift and shag ane I^{r} and llel to V_{∞} resply. ' L ' and ' D ' au e avodynamic forces of the complete $a l p$. ' W ' always ads towards the centre of the earth for the level- flight case and W is always \perp^{γ} to V_{∞}. The thrust is produced by whatever flight propulsion device is powering the airplane.

Condition: Level flight.

fig: level flight

Condition: Climbing flight.

Earth's Surface
fig: Climbing flight
At any given instant as the a / p mores in the curved flight path, the local instantaneous angle of the flight path, relative to the horizontal is θ. Hence V_{∞} is inclined at angle θ which is called the local chimb angle of the alp. Fo The direction of 'N' is inclined at the angle θ relative to the lift.

Conchion: Climbing flight and rolled through angle ϕ.
The climbing fight is rotated about the longitudinal axis. The alp roll through the roll angle d.

In the side view; the lift is rotated anal from the local vertical through the angle ϕ.

fig: A / P in climbing flight and rolled through angle ϕ.
In the head-on front view, the lift " L is chancy inclined to the vertical at the angle ϕ. The thrust' T is inclined to the flight path direction through the angle ' t '. In the head -on font view, I projects as the component 'Tint'; this component is also notated away from the vertical through angle ϕ.. The weight' W' is always directed downward in the local vertical direction. In the head on front view, the wight projects as the component $W \cos \theta$. In the sidevicw, drag D is $U^{e /}$ to the local relative wind. In the head on view, D is parallel to V_{∞}.

Equations of MOTION
The eqns. of motion for an alp is explained with Newton's Seemed law;

$$
\begin{equation*}
F=m a \tag{1}
\end{equation*}
$$

where $F \rightarrow$ force
$a \longrightarrow$ acceleration .
Egn (1) is a vector eqn. To represent the above eqn. in scalar form, choose an arbitrary direction in space, denoted by ' s '.
Let F_{S} and a_{s} be the comporients of F and a resply in s direction.

$$
\begin{equation*}
F_{S}=m a_{s} \tag{2}
\end{equation*}
$$

Visualize the motion of the alp along its curved flight path in three-dimensional space.
*) Fig for airplane in chimbing flight and rolled through angle ϕ.

Replace the fig; with a point mass at its center of gravity, with the four forces of flight acting through this point.
center of gravity
of the alp.

: fig: Forces projected in to the plane formed by the local free stream velocity Y_{∞} and the vertical
\rightarrow The component of lift in this plane is L cos \rightarrow.
\rightarrow The thrust is represented by its components $T \cos t$ and $T \sin t \cos \phi$. $11^{l l}$ \& f^{γ} to V_{∞}.

The curvilinear motion of the phase airplane along the curved flight path, san be expressed by Newton's second law, by first taking components 11 le l to the flight path and then taking components 1^{r} to the fright path.

The components of four parallel to the singh path is:

$$
\begin{equation*}
F_{11}=T \cos t-D-W \sin \theta \tag{3}
\end{equation*}
$$

Aucluation parallet to the flight path is:

$$
a_{11}=\frac{d V_{\infty}}{d t} \longrightarrow
$$

Newton's second law, taken $1 I^{e l}$ to the flight p

$$
\begin{gather*}
m a_{11}=F_{11} \\
\frac{d V_{\infty}}{d t}=T \cos t-D-W_{\sin \theta}
\end{gather*}
$$

In the direction perpendicular to the flight path, the component of force is

$$
F_{\perp}=L \cos \phi+\tau \sin \epsilon \cos \phi-[N \cos \theta
$$

The racial aucleration of the curvilinear motion, L^{2} to the fright path is;

$$
a_{1}=\frac{V_{\infty}^{2}}{\gamma_{1}}
$$

$$
\begin{aligned}
\text { centrifugal force } & =m r w^{2} \\
& =m r\left(\frac{v^{2}}{r}\right)^{2} \\
E & =\frac{m v^{2}}{r}
\end{aligned}
$$

where $\gamma_{1} \rightarrow$ local rachis of curvature of the flight path.

Hence Newton's scent law, taken perpendicular to the flight path is

$$
\begin{align*}
& m a_{\perp}=F_{\perp} \\
& \frac{m V_{\infty}^{2}}{r_{1}}=L \cos \phi+\tau \sin t \cos \phi-\mid x L \cos \theta
\end{align*}
$$

For the figure of airplane in climbing fight and rolled through angle Φ, vifualize a horizontal planea plane parallel to the flat earth.

fig: Forces projected into the horizontal plane parallel to the flat earth.

The instantaneous location of the auplane's center of gravity $(0, g)$ is the large dot represented by ' B ' the velocity vector of the airplane projects in to this horizontal plane as the component $V_{\infty} \cos \theta$; tangent to the projected flight path at the cog location. The local radius of curvature of the flight path in the horizontal plane is shown as r_{2}. The projection of the lift vector in the horizontal, plane is $t=0$. $\sin \phi$ and is perpendicular to the fight path. The components of the thrust vector in the
horizontal plane are $T \sin \epsilon \sin \phi$ and $\tau \cos \epsilon \cos \theta$. perpendicular and penallel, resply, to the projected flight path. The component of chag in this plane is $D \cos \theta$. Sconce the weight acts perpendicular to the horizontal, this component is zero.

Consider the forme components that one perpenchiculan to the flight path at the instantaneous location of the center of gravity. The sum of these forces ane denoted by F_{2}.

$$
F_{2}=[\sin \phi+\tau \sin \in \sin \phi
$$

The instantioncons racial acceleration along the pars. curvilinear path;

$$
a_{2}=\frac{\left(v_{\infty} \cos \theta\right)^{2}}{r_{2}}
$$

From Newton'second law taken along the direction perpendicular to the flight path in the horizontal plane:

$$
\frac{m\left(V_{\infty} \cos \theta\right)^{2}}{r_{2}}=L \sin \phi+T \sin t \sin \phi
$$

The equations (5), (6), \& (7) describes the 10 translational motion of an airplane though there dimensional space over a flat earth. They are called the equations of motion for the alp.

THRUST AVAILABLE AND THRUST REQURED CURVES
The thrust available $\left(\tau_{A}\right)$ is the thrust provided by the power plant of the alp. There are various flight propulsive devices such as reciprocating engine (propeller, turbojet, turbofan, turboprop te.. These devices reliably and efficiently provide thrust inorder to propel the afc. Hence T_{A} is associated with powerplant of an alp.

Consider an alp in steady, level flight at any given velocity and attitude. To maintam the speed and altitude, thrust must be generated to exactly overcome the drag and to keep the ariplane going. This is the thrust required to maintain these flight conditions. The thrust required (T_{R}) depends on the velocity, the altitude, and the aerodynamic shape, size and weight of the of p. It is an airframe associated feature. The thrust required $\left(T_{R}\right)$ is indeed equal to the drag of the a/p-it is the thrust required to overcome the aerodynamic drag.

Thrust required curves:-
A plot showing the variation of T_{R} with free stream velocity V_{∞} is called thrust required curve. It is one of the essential elements io the analysis of af performance. A thrust required curve pertains to a given app at a given standard altitude. Since the thrust required is equal to the drag ot the alp, the thrust required curse is the plot of drag versus velocity for a
a given airplane at a given altitude.
Graphical approach.
Consider a given alp flying at a ge altitude in steady, level flight. Let the physical charactertstion of the alp be
$W \rightarrow$ weight
$A R \rightarrow$ aspect ration
$S \rightarrow$ wing planform area.
The drag polar for the alp;

$$
C_{D}=C_{D, 0}+k C_{L}^{2} \longrightarrow(1)
$$

where $C_{D} \rightarrow$ total drag coefficient

$$
\begin{aligned}
& C_{D, 0} \rightarrow \text { zero lift drag coefficient } \\
& \dot{K} C_{L}^{2} \rightarrow \text { drag due to lift }
\end{aligned}
$$

In eqn(1) $C_{0,0}$ and k are known for the given alp.
seeps to calculate thrust required:-
(1) Choose a value of ' V_{0} '. .
(2) For the chosen k_{∞} calculate C_{L}

$$
\begin{align*}
& L=W-\frac{1}{2} \rho_{\infty} V_{\infty}{ }^{2} S C_{L} \\
& \therefore C_{L}=\frac{2 W}{\rho V_{\infty}{ }^{2} S} \tag{2}
\end{align*}
$$

$$
(\star<\leftarrow\}
$$

(3) Calculate C_{D} using eqn (1).
(4) Calculate drag

$$
D=\frac{1}{2} \rho_{\infty} V_{D}^{2} S C_{D}
$$

Drag required using ear (3) is equal to the thrust required $\left(T_{R}\right)$. This ${ }^{\prime} T_{R}$ ' correspmeds to the velocity chosen in step (1). This combination $\left(T_{k}, V_{\infty}\right)$ is one point on the thrust required cenves.
(5) Repeat seeps 1 to 4 for a large number of different values of Y_{0}, thus generating enough points to plot the thrust required. cave.

fig: Thrust required curer.

$$
\begin{aligned}
& \text { SCrotal Drag }=\text { Zerolift drag } t \text { drag due tolift? }
\end{aligned}
$$

At low velocity, C_{L} is high and the total drag is dominated by the drag due to lift. Since the drag due to lift is proportional to the square of C_{L}, and C_{L} decreases rapidly as V_{∞} increases, the drag due to lift rapidly decreases, inspite of the fact that the dynamic pressure $\frac{1}{2} \delta_{0} y^{2}$ is increasing. This is why the T_{R} carve first decreases as V_{0} increases. This pant of the curve is shown to the left of the vertical dashed line...the region where the drag due to lift increases rapidly as K_{∞} decreases.

In contrast, as in eqn (A) of total drag, the zero-lift drag increases as the square of v_{∞}. At high velocity, the total drag is dominated by the zero-lift drag. Hence as the velocity of the alp increases, there is some velocity at which the increasing ziro-lift drag exactly compensates for the decreasing drag due to lift; this is the velocity at which T_{R} is a minimum At higher velocities, the rapidly increasing zero-lift drag cares T_{R} to increase with increasing velocity this is the parts of the curve shown the right. of the vertical dashed lure. That is the reason, T_{R} first dircreases with V_{∞}, passing through a minimum value and the increases with V_{∞},
\rightarrow Region left to the dashed line \rightarrow Region of velocity instability

The airplane velocity is denoted by V_{1}. For steady fright, the engine throttle is adjusted such that the thrust from the engine is exactly equal to T_{R}.

Assume the alp is perturbed in some fashion by a horizontal gust, which momentarily decreases V_{∞} for the alp to. velocity V_{2}. This decrease in velocity $\Delta V=V_{2}-V_{1}$ causes an increase in T_{R}. But the engine trots has not been touched and momentarily the drag of the airplane is higher than the thrust from the engine. The further slows down the airplane and takes it even farther away from its original point, paint 1. This is an: instable condition.

Similarly, if the perturbation momenta increases V_{∞} to V_{3}, where the increase in velocity is $\Delta V=V_{3}-V_{1}$, then T_{R} decreases, hens drag also decreases; ie, $\Delta T_{R}=\tau_{R_{3}}-T_{R_{1}}$. Again the engine throttle has not been touched, ans momentarily the thrust from the engine is higher than the drag of the airplane. This accelerates the airplane to an even higher velocity, taking it farther away from its original point, point 1. This is also an constable condition. This is why the region to the left of the vertical dashed line is a region of velocity instability.
\rightarrow Region right to the dashed line \rightarrow Region of velocity stability.

A momentary increase in velocity $\Delta V=V_{2}-V_{1}$ causes a momentary increase in T_{R}, hence drag increases. Since the throttle is not touched, momentarily the drag will be higher than the engine thrust, and the airplane will slow down that is, it will tend to return back to its original point. This is a stable condition.

Similarly, a momentary decrease in velocity $\Delta v=v_{3}-v_{1}$ causes a momentary decrease in τ_{R}, hence drag decreases. Since the throttles is not touched, momentarily the drag will be less than the engine theist and the airplane will speed up, that -is, it will tend to return to its original point l.

This is also a stable condition.

Analytical Approach.
For a steady level fight;

$$
\Lambda_{R}=D
$$

(x) \& (i) by bl

$$
C \because w=\angle Q
$$

$$
\begin{aligned}
& T_{R}=\frac{D}{W} \cdot W=W \cdot \frac{D}{L} \\
& T_{R}=\frac{W}{(L / 0)}
\end{aligned}
$$

For an ariplane with fixed weight, T_{R} decreases as L / D increases. Minimum τ_{R} occurs when $L D$ is maximum. The lifl-to drag ratio is one of the most important pentameters affecting dieplane performance.

$$
\frac{L}{D}=\frac{\frac{1}{2} \rho_{\infty} V_{\infty}{ }^{2} S C_{L}}{\frac{1}{2} \rho_{\infty} V_{\infty}{ }^{2} S C_{D}}=\frac{C_{L}}{C_{D}}
$$

The lift to crag ratio is the same as the ratio of C_{L} to C_{D}.

THRUST AVAILABLE AND MAXIMUM VELOCITY Thrust Available:-Thrust available (T_{A}) is completely associated with the flight propulsive device.

* Propeller- Driven Aircraft

The component of aerodynamic force -generated on a propel ier is the thrust of the propeller. For a propeller/ reciprocation g engine combination this propeller thrust is the thrust available, T_{A}. For a turboprop engine, the propeller thrust is augmented by the jet exhaust. The combined propeller thu sit and jet thrust is the thrust available ' T_{A} ' for the turboprop.

fig: Variation of thrust available versus velocity for a propeller - driven afc.

The thrust is highest at zeno velocity [called the static thrust] and decreases with a_{n} increase in V_{0}. The thrust rapidly decreases as K_{D} approaches sonic speed, this is because the propeller tips encounter compressibility problems at-high speeds, including the formation of shool waves. This is why, propellen-driver ale have been limited to moderate sonic speeds. the propeller is attached to a rotating shaft which delivers power from a reciprocating piston engine or a gas turbine. The values of A for a propelles-driven alp can be readily obtained from the power ratings. The power available from a propeller lreciprocating engine combination is given by

where $\eta_{p r} \rightarrow$ paopdles efficiency
$P \rightarrow$ shaft power from the piston engird:
W.K.T

Power $=$ Force \times velocity
\therefore Power available from any flight propulbing device is;

$$
\begin{equation*}
\left.P_{A}=\tau_{A} V_{\infty}\right] \tag{2}
\end{equation*}
$$

Sobs Comparing eqn (1) \& (2)

$$
\begin{aligned}
& U_{p r} P=T_{A} V_{\infty} \\
& \left.T_{A}=\frac{V_{p r} P}{V_{\infty}}\right] \rightarrow \text { (3) }
\end{aligned}
$$

This is the thrust available for a propeller t reciprocating engine combination.

Similarly: for a turboprop engine, the thrust available is given by

$$
\left.T_{A}=\frac{\eta_{p r} P_{e s}}{V_{\infty}} \right\rvert\, \Longrightarrow \text { (4) }
$$

where $R \wedge \rightarrow$ shape pow re for a piston engiore.
$P_{\text {es }} \rightarrow$ equivalent shaft power for a turboprop.

Both equ (3) \& (4) shows that τ_{A} decreases as V_{0} cròcreases.

* Jet-propelled aircraft.

Turbojet and turbofan engines are rated in terms of thrust.
a) Turbojet engine.

For turbojet engine; thrust equation is given by

$$
T=\left(\dot{m}_{\text {air }}+m_{\text {fuel }}\right) y_{j}-\dot{m}_{\text {air }} Y_{\infty} t\left(p_{i}-p_{\infty}\right) A_{e}
$$

where $m_{\text {air }} \rightarrow$ mass flow of air
$\mathrm{m}_{\text {fuel }} \rightarrow$ mass flow of fuel
$p_{e} \rightarrow$ gas pressure at exit of thenoj2l
$P_{\infty} \rightarrow$ ambient pressure
$A_{c} \rightarrow$ exit area of the $\operatorname{nog} l$ le.

$$
T_{A}=\dot{m}_{\text {arr }}\left(V_{j}-V_{\sigma_{0}}\right) \pm \dot{m}_{\text {fuck }+V_{j}+\left(P_{c}-P_{\infty}\right) A_{c}, ~}^{\text {and }}
$$

The value of $V j$ is a fernetion of the internal compression and combustion processes taking place inside the engine.

Hence the value $\left(V_{j}-V_{\infty}\right)$ tends to decrea as V_{0} increases. With V_{0} increasing but V_{j} remaining same, the value of $T \angle S$ decreased.
\rightarrow At subsonic speeds. V_{j} and V_{∞} tends to cancel and I_{A} will be a weak function of v_{0}, u,

$$
T_{A} \approx \text { constant with } V_{D}
$$

\Rightarrow At super sonic speeds

$$
\frac{T_{A}}{\left(T_{A}\right)_{M a c h}}=1+1 \cdot 18 \cdot\left(M_{\infty}-1\right)
$$

b) Turbofan engines.
the effect of altitude on T_{A} is given by

$$
\frac{\Gamma_{A}}{\left(T_{A}\right)_{0}}=\frac{\rho_{0}}{\rho_{0}}
$$

where
$\left(T_{A}\right)_{0} \rightarrow$ thrust aterilable at sea level
$S_{0} \rightarrow$ standard sea-level density.
b) Turbofan engine.

Turbofan engine combine the high thrust of a turbojet with the high efficiency of a propeller.
\rightarrow For high-by pass-ratio turbofans, the thrust anaibabla decreases with increasing velocity.
$\Lambda_{A}^{\prime}=A M_{\infty}$
$\left(T_{A}\right)_{V}=0$
Where $\left(T_{A}\right) \rightarrow$ static thrust $_{y=0} \rightarrow$ available
$A \& n \rightarrow$ functions q altitude obtained by correlating the data for a given engine.
\rightarrow For low-bypass-ratio turbofan the thrust variation with velocity is much closer to that of a turbojet, almost constant at subsonic speeds and increasing with velocity at super sonic speeds.

The altitude variation of thrust for a high-bypass-ratio civil turbofan is given by

$$
\frac{T_{A}}{\left(T_{A}\right)_{0}}=\left[\frac{1}{\rho_{0}}\right]^{m}
$$

where $\left(\tau_{A}\right)_{0} \rightarrow$ thrust aneailable at sea level $m \rightarrow$ depends on engine degign, us usually near 1 .

Maximum Velocity:-
Consider an alp flying at any given altitude. For steady, level flight at a given velocity U_{1}, the value of τ_{A} is adjusted such that $T_{A}=T_{R}$ at that velocity. This is denoted by point 1 . The pilot of the alp can adjust (L_{A}) by adjusting the engine throttle in the cockpit. For point 1, the engine is operating at partial throttle, and the resulting value of \vec{T}_{A} is denoted by $\left(\tau_{A}\right)$ partial.

fig: Partial and full throttle conditions, intersection of the thrust available and thrust sequins curves.

When the throttle is pushed all the way forward, maximum thrust available is produced $\left(T_{A}\right)_{\text {max }}$. The al p will accelerate to bigber velaxt and T_{R} will increase. un $H L T_{R}=\left(T_{A}\right)_{\text {max }}$ denoted
by point 2. When the af is at point 2, any further increase in velocity requires more thrust than is available from the power plant. Hence for steady level flight, point 2 defines the maximum velocity $V_{\text {max }}$ at which the given alp can fly at the given altitude.

By definition, the thrust available curve is the variation of T_{A} with velocity at a given throttle setting and altitude. For the throttle full piswand, $\left(T_{A}\right)_{m a x}$ is obtained. The maximum thrust available curve is the vacation If $\left(T_{A}\right)_{\text {max }}$ with velocity at a given altitude.

For turbojet and low by pass-ratio turbofans, at subsonic speeds, the thrust is essentially constant with velocity. Hence fer such power plants: the thrust available curve is a horizontal line. In steady level flight the maximum velocity of the alp is determined by high speed intersection of the $T_{R} \& T_{A}$ curves.
Thrust

fig: Thrust available curve for a turbojet and low bypass ratio-tuobofon is essentially constant' with velocity at subsonic speeds. The high speed intersection of the $\left(T_{A}\right)_{\text {max }}$ curve and T_{R} curve determines the $V_{\text {max }}$.

For steady level flight,

$$
T_{R}=T_{A}
$$

For flight at $Y_{\text {max }}$;

$$
\begin{gathered}
T_{R}=\left(T_{A}\right)_{\text {max }} \\
V_{\text {max }}=\left\{\left[\frac{\left.\left(T_{A}\right)_{\text {max }} / W\right](W / S)+(W / s) \sqrt{\left.\left(T_{A}\right)_{\text {max }} / W\right]^{2}-4 C_{D D}{ }^{k K}}}{\rho_{\infty} C_{D, 0}}\right.\right. \\
{\left[\left(T_{A} \text { max }_{\text {m iv }} / W\right]\right.}
\end{gathered}
$$

where \rightarrow Max thrust to weight ratio
$[\omega / s] \Rightarrow$ wing loading g.
$\therefore V_{\text {max }}$ increase with increase in $\left[\left(\tau_{A}\right)_{\text {max }}[W]\right.$ and [W/s] and decreases as $C_{D, 0}$ and $/$ or k increases.

Formulae:

$$
\begin{aligned}
& \rightarrow V_{\left(T_{R \text { min }}\right)}=\sqrt{\rho_{\infty} C_{D, 0}}\left(\frac{T_{R}}{W}\right)_{\min } \frac{W}{S} \\
& \rightarrow\left(\frac{T_{R}}{W}\right)_{\text {min }}=\sqrt{4 C_{D, 0} K} \\
& \rightarrow V_{\left(\tau_{R \text { min }}\right)}=\frac{2}{\rho_{\infty} S} \sqrt{\frac{K}{C_{D} 0}} \frac{W}{S}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow A R=\frac{b^{2}}{s}=\frac{b}{a} \\
& \rightarrow k=\frac{1}{\operatorname{TeAR}}
\end{aligned}
$$

POWER AVAILABLE AND POWER REQUIRED CURVES:

Power Available (P_{A})
P_{A} is the power provided by the power provided by the power plant of the alp.

$$
P_{A}=T_{A} V_{20}
$$

Power required $\left(P_{R}\right)$
V_{0}
P_{R} is the dot product of T_{R} and

$$
P_{R}=T_{P} \cdot V_{D}=D V_{0}
$$

Power required carves.
A graphical plot of P_{R} versus V_{∞} for a given alp at a given altitude is called power required curve.

$$
\begin{gather*}
P_{R}=T_{R} V_{\infty} \rightarrow D V_{\infty} \tag{1}\\
W \cdot K \cdot T ; \quad T_{R}=\frac{W}{L_{D}}=\frac{W 1}{C_{C} / C_{D}} \\
P_{R}=\frac{W_{1}}{\left(C_{L} / C_{D}\right)} \cdot V_{\infty} \tag{2}
\end{gather*}
$$

For steady level flight,

$$
\begin{align*}
L & =W \\
\therefore L=W & =\frac{1}{\alpha} f_{\infty} V_{\infty}{ }^{2} S C_{L} \\
V_{\infty}{ }^{2} & =\frac{2 W}{\rho_{\infty} S C_{L}} \\
V_{\infty} & =\sqrt{\frac{2 W}{\rho_{\infty} S C_{L}}} \tag{3}
\end{align*}
$$

Sub. (3) in (2)

$$
\begin{aligned}
& P_{R}=\frac{W}{\left(C_{L} / C_{P}\right)}-\sqrt{\frac{2 W}{I_{\infty} S C_{L}}} \\
& P_{R}=\sqrt{\frac{2 W^{3} C_{D}{ }^{2}}{\rho_{\infty} S C_{L}^{3}}} \\
& \Rightarrow \quad P_{R} \propto \frac{C_{L}{ }^{3 / 2}}{C_{D}}
\end{aligned}
$$

Hence, minimum power required occurs when the alp is flying such that $C_{L}^{3 / 2} C_{C_{D}}$ is a maximum value.
\rightarrow At minimum P_{R};

$$
\left(\frac{C_{L}^{3 / 2}}{C_{0}}\right)_{\text {max }}=\frac{1}{4}\left(\frac{3}{K C_{D, 0}^{3 / 2}}\right)^{3 / 4}
$$

\rightarrow Zero-lift drag equals one-third of the drag clue to lift.
\rightarrow The velocity at which P_{R} is a minimum occur at

$$
\left(C_{L}^{3 / 2} ; C D\right)_{\text {max }}=\left(\frac{2}{\rho \infty} \sqrt{\frac{K}{3 C_{D}},} \frac{1 N}{S}\right)^{Y_{2}}
$$

This velocity is less than that for miniomen τ_{R}, where r $C_{L}{C_{C_{D}}}^{\text {is a maximum, Indeed }}$

$$
\frac{v}{\left(c b^{3 / 2}, c_{D}\right)_{\text {max }}}=0.76 V_{(4 D)_{\text {max }}}
$$

POUTER AVAILABLE AND MAXIMUM VELOCITY

$$
P_{A}=T_{A} V_{\infty}
$$

* Propeller - Driven aircraft

Case I: Power available for a propeller \int reciprocating engine combination \& given by

$$
P_{A}=\eta_{p r} P
$$

The velocity and altitude effects on 'p' po a piston engine are:

1. Power ' P ' is reasonably constant with V_{∞}
2. For an unsupercharged engine;

$$
\frac{P}{P_{j}}=\frac{\rho}{\rho_{0}}
$$

where P \& \rightarrow shaft power output f density respectively at allixudu.
Pot $\rho_{0} \rightarrow$ shaft power output f density respectively at seal level.

Caking into account the temperature effect,

$$
\frac{P}{P_{0}}=1.132 \rho-0.132
$$

3. For a supercharged engine, P is essentially constant with altitude up to the critical design altitude of the supercharger. Above this critical altitude, P decreases with ρ_{0} replaced by the density, at the critical altitude, $f_{\text {cit. }}$

Case II: The power available for a turboprop is given by

$$
P_{A}=\eta_{p r} P_{e s}
$$

The velocity and altitude variations of P_{A} for turboprop an:

1. Power available ' P_{A} is reasonsably constant with V_{∞} or M_{∞}.
2. The altitude effect is given by

$$
\frac{P_{A}}{\rho_{A, 0}}=\left(\frac{\rho}{\rho_{0}}\right)^{n} \quad n=0.7
$$

* Jet propeller acruaft

Turbojet and turbofan engines one rated in terms of thees t

$$
P_{A}=T_{A} V_{\infty}
$$

Case I: The Variation of P_{A} with velocity and altitude is reflected through the variation Ta.. Hence for a turbojet engine:

1. At subsonic speeds, T_{A} is essentially constant. Hence P_{A} is directly proporitonal to T_{A}.
For seeperisonic speeds.

$$
\frac{T_{A}}{\left(T_{A}\right)_{\text {Mach }}}=1+1.18\left(M_{\infty}-1\right)
$$

In this case, P_{A} for supusonic speeds is a non linear: friction of. Uso.
2. The effect of altitude on τ_{A} is same as that of effect of P_{A}

$$
\frac{P_{A}}{\left(P_{A}\right)_{0}}=\frac{\rho}{\rho_{0}}
$$

Case Y: Xeverespar The variation of PA for a turbofan is reflected through the varitaing of T.. Hence for a turbofan:

1. The Mach number variation of the thrust is given by

$$
\frac{T_{A}}{(T A)_{V=0}}=A M_{\infty}^{-n}
$$

2. The altitude variation for turbofan thrust

$$
\frac{T_{A}}{\left(T_{A}\right)_{0}}=\left(\frac{\rho}{\rho_{0}}\right)^{m}
$$

Hence the variation of P_{A} with altitude is

$$
\frac{P_{A}}{\left(P_{A}\right)_{0}}=\left[\frac{\rho}{\rho_{0}}\right]^{m}
$$

Rewnera
Maximum Velocity

* Propeller driven alp

The power available P_{A} is essentially constant with velocity. The intersection of the maximum power available curve and the power required carve defines the maximum velocity for straight and level flight.

* Jet-propelled alp

Assuming T_{A} is constant with velour the power available at subsonic varies linearly with C_{0}. The power P_{R} is also plotted. The high speed intersection of the maximum power available curve and power. requmed curves defines the maxinian veloaty for straight and level flight.

Formula used for Numuicals:
(1) $L=W=\frac{1}{2} \rho_{\infty} V_{\infty} S C_{L}$
(2) $C_{D}=C_{1,0}+K C_{L}{ }^{2}$
(3) $k=\frac{1}{\operatorname{He} A R}$
(4) $A R=\frac{b^{2}}{s}$
(5) $\quad \frac{L}{D}=\frac{C_{L}^{\prime}}{C_{D}}$
(6) $T_{R}=\frac{W}{(40)}$
(f) $\left(\frac{T_{R}}{W}\right)_{\text {min }}=\sqrt{4 C_{D, O} K}$
(8) $V_{\left(T_{\text {min }}\right)}=\left(\frac{2}{\rho_{\infty}} \sqrt{\frac{k}{C_{D, 0}}} \frac{W}{S}\right)^{Y_{2}}$
(a) $\left(\frac{L}{D}\right)_{\max }=\frac{1}{\sqrt{4 C_{D_{10}} k}}$

Numericals.
Q:1) A private aeroplane with propeller driven engine has the following choracterusties.
wing span $=10.912 \mathrm{~m}+(b)$
Wing ava $=16.165 \mathrm{~m}^{2}$ (S)
Normal gross weight $=131.27 .5 \times(\mathrm{w})$
Fuel capacity $=65$ gal of aviation gasoline
Powerplant $=$ one piston engine of 230 hp at sea level.
Parasite diag coefficient, $C_{D, 0}=0.025$
Oswald efficiency factor, $e=0.8$
Propeller efficiency $=0.8$
Assume $v_{\infty}=60.96 \mathrm{~m} / \mathrm{s}$.
Find $C_{L}, C_{D}, L D, T_{R}$. Plot thrust requineduen
Som: To find C_{L}

$$
\begin{aligned}
C_{L}=\frac{W}{\frac{1}{2} 8_{\infty} V_{\theta}{ }^{2} S} & =\frac{13127.5 \times 2}{1.225 \times(60.96)^{2} \times(16.165)} \\
& =0.3568
\end{aligned}
$$

To fid C_{D}

$$
\begin{aligned}
& C_{P}=C_{D, 0}+K C_{L}^{2} \\
& K=\frac{1}{\pi C A R}=\frac{1}{\pi \times 0.8 \times A R} \\
& A R=\frac{b^{2}}{8}=\frac{(10.912)^{2}}{16.165}=7.366
\end{aligned}
$$

$$
\begin{aligned}
k & =0.054 \\
c_{b} & =0.025+0.054(0.3568)^{2} \\
& =0.03187
\end{aligned}
$$

To find $4 p$

$$
\frac{L}{D}=\frac{C L}{C_{p}}=\frac{0.3568}{0.03187}=11.195
$$

T_{0} find \bar{T}_{R}

$$
T_{R}=\frac{W}{(4 D)}=\frac{131275}{11.195}=1172.62 \mathrm{~N}
$$

		C_{L}	C_{D}	L / D	T_{R}
	V_{0}				$(\mathrm{~N})$
	m/s)				
(19)	30.48	1.43	0.135	10.6	1238.44
(2)	45.72	0.634	0.047	13.6	965.257
(3)	60.96	0.3568	0.03187	11.195	1172.62
(4)	9.1 .44	0.159	0.026	6.01	2184.28
(5)	106.68	0.116	0.0266	4.53	2897.90

$$
\left\{\begin{array}{ll}
l b \rightarrow \text { libra }=\text { pound } . & l f t=0.000305 \mathrm{~km} \\
1 \text { dug }=14.594 \mathrm{~kg} & 1 \mathrm{lb}=0.454 \mathrm{~kg} .
\end{array}\right\}
$$

Q:2) For Gulfstream IV at the conditions stated; calculate marainumancon thrust required and the velocity at which it occurs. The data given an

$$
\begin{array}{lll}
W_{0}=73000 \mathrm{lb} & S=950 \mathrm{ft}^{2} & \rho_{\infty}=8.9068 \times 10^{-4} \mathrm{~s} \operatorname{lyg} \mid f \\
C_{D_{1}}=0.015, & k=0.08 &
\end{array}
$$

Som: To find minimum thrust required $\left(\tau_{R}\right)_{\text {min }}$

$$
\begin{aligned}
\left(\frac{F_{R}}{W}\right)_{\min } & =\sqrt{4 C_{D, 0} k} \\
& =\sqrt{4 \times 0.015 \times 0.08} \\
& =0.0693
\end{aligned}
$$

$$
\begin{aligned}
T_{R_{\mathrm{mcn}}} & =0.0693 \times \mathrm{W} \\
& =0.0693 \times 73,000 \\
& =50589 \mathrm{lg}
\end{aligned}
$$

T_{0} find velocity for minimum T_{R}

$$
\begin{aligned}
& V_{\left(T_{R}\right)_{\text {min }}}=\left(\frac{2}{\rho_{\infty}} \sqrt{\frac{K}{C_{0,0}}} \frac{W}{s}\right)^{U_{2}} \\
& \text { Wind loading; } \frac{\mathrm{W}}{s}=\frac{73000}{950}=76.84 \mathrm{lb} / \mathrm{ft}^{2} \\
&=\left(\frac{2}{\left.8.9068 \times 10^{-4} \sqrt{\frac{0.08}{0.015}} \times 76.84\right)^{U_{2}}}\right. \\
&=6.31 .24 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Q:8) A jet powered executive ale has the following characteristics

$$
\text { wingspan }=16.25 \mathrm{~m}
$$

wing area $\quad 29.54 \mathrm{~m}^{2}$
Normal gross weight $=8.8176 .75 \mathrm{~N}$
Parasite drag coefficient: 0.02
Oswald efficiency factor $=0.81$
Calculate $C_{L} C_{D_{1}} L_{D_{1}} T_{R}$
Assume $v_{\infty}=152.4 \mathrm{~m} / \mathrm{s}$.
som:

$$
\begin{aligned}
C_{L} & =\frac{w}{\left.\frac{1}{2} \rho_{\infty} V_{\infty}\right)^{2} S}=\frac{88176.75}{\frac{1}{2}(1.225)(152.4)^{2}(29.54)} \\
A_{R} & =\frac{b^{2}}{S} \\
& =\frac{(16.25)^{2}}{29.54}=8 \\
C_{D} & =C_{D 0}+\frac{C_{L}{ }^{2}}{\Pi_{e A R}} \\
& =0.02+\frac{(0.21)^{2}}{\Pi(0.81)(8.93)} \\
\frac{L}{D} & =\frac{C_{L}}{C_{D}}=\frac{0.21}{0.022}=0.022 \\
= & =\frac{w .55}{(40)}=\frac{88176.75}{9.55}=9233.167 \mathrm{~N}
\end{aligned}
$$

Q:4) For the Gulf stream in at the conditions given below, calculate the minimum power required and the velocity at which it occurs.

$$
\begin{aligned}
& \text { Altitude }=30,000 \mathrm{ft} \\
& \rho_{\infty}=8.9068 \times 10^{-4} \operatorname{slug} l \mathrm{ft}^{3} \\
& W=73,000 \mathrm{eb} \\
& S=950 \mathrm{ft}^{2} \\
& C_{D_{1} 0}=0.015 \\
& B=0.08 \\
& A R=5.92
\end{aligned}
$$

$$
\begin{aligned}
& l h_{p}=550 \mathrm{ftlb} / \mathrm{s}=746 \mathrm{w} \\
& \text { Hanna Gold } \\
& \left(\frac{C_{L}^{3 / 2}}{C_{D}}\right)_{\text {max }}=\frac{1}{4}\left(\frac{3}{K C_{P_{1}}^{1 / 3}}\right)^{3 / 4}=\frac{1}{4}\left(\frac{3}{(0.08)(0.015)_{3}}\right) \\
& =10.83 \\
& \left(\frac{C_{0}^{2}}{C_{L}^{3}}\right)_{\text {min }}=\left(\frac{1}{10.83}\right)^{2}=8.526 \times 10^{-3} \\
& P_{R}=\sqrt{\frac{2 w^{3} C_{D}{ }^{2}}{\rho_{\infty} C_{1}{ }^{3}}} \\
& \left(P_{R}\right)_{\text {min }}=\sqrt{\frac{2 W^{3}}{\rho_{\infty 2} S}\left(\frac{C_{P}^{2}}{C_{Q}^{3}}\right)_{\text {min }}} \\
& =\sqrt{\frac{2(73000)^{3}\left(8.528 \times 10^{-3}\right)}{\left(8.9068 \times 10^{-4}\right) .950}}-2.8 \times 10^{6} \mathrm{ft}-\mathrm{ed} / \mathrm{s} \\
& \left(P_{R}\right)_{\text {min }}=5091 \mathrm{hp} \\
& \left.V_{\left(c_{L} / c_{0}\right.}\right)_{\text {max }}=\left(\frac{\rho_{\infty}}{\rho_{\infty}} \sqrt{\frac{k}{3 c_{D, 0}}} \frac{w}{8}\right)^{V_{2}} \\
& =\left[\frac{2}{8.9068 \times 10^{-4}} \sqrt{\frac{0.08}{3(0.015)}(76.84)}\right]^{1 / 2} \\
& =4 \mathrm{Tog} \cdot 6 \mathrm{fe} / \mathrm{s}
\end{aligned}
$$

ALTITUDE EFFECTS ON POWER AVAILABLE AND POWER REQUIRED

With regard to P_{β}, curves at altitude could be generated by repeating the calculation of power, with s_{∞} appropriate to the given altitude.
Let the subscript ' O ' designate sea-level condition

$$
\begin{aligned}
& v_{0}=\sqrt{\frac{2 W}{\rho_{0} S C_{L}}} \\
& P_{R_{1}}=\sqrt{\frac{2 W^{3} C_{D}{ }^{2}}{\rho_{0} S C_{L} 3^{3}}}
\end{aligned}
$$

At altitude, where density is ρ, these relations are

$$
\begin{aligned}
& V_{\text {alt }}=\sqrt{\frac{2 W}{\rho S C_{1}}} \\
& P_{R_{\text {alt }}}=\sqrt{\frac{2 W^{3} C_{P}^{2}}{\rho S G_{L}^{3}}}
\end{aligned}
$$

Let C remain fixed, hence c_{p} is fixed

$$
\begin{aligned}
& V_{\text {alt }}=V_{0}\left(\frac{\rho_{0}}{\rho}\right)^{1 / 2} \\
& P_{R, \text { alt }}=P_{R, O}\left(\frac{\rho_{0}}{8}\right)^{1 / 2}
\end{aligned}
$$

\rightarrow Propeller driven alp

The minimum velocity is determined either by stalling or by the low speed intersection of th power curves. These velocity consideration are important part of the alp performance indeed
\rightarrow Jet propelled alp

